ALEXANDER ŽENÍŠEK A general theorem on triangular finite $C^{(m)}$-elements

Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique, tome 8, n ${ }^{\circ}$ R2 (1974), p. 119-127
http://www.numdam.org/item?id=M2AN_1974__8_2_119_0
© AFCET, 1974, tous droits réservés.
L'accès aux archives de la revue «Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

A GENERAL THEOREM ON TRIANGULAR FINITE $\mathbf{C}^{(m)}$-ELEMEENTS

par Alexander ŽEníŠEK (${ }^{(1)}$
Communiqué par P.-A. Raviart.

Summary. - The following theorem is proved : To achieve piecewise polynomials of class C^{m} on an arbitrary triangulation of a polygonal domain, the nodal parameters must include all derivatives of order less than or equal to $2 m$ at the vertices of the triangles.

For the sake of brevity we shall use the expression «triangular $C^{(m)}$ element» for a polynomial on a triangle which generates piecewise polynomial and m-times continuously differentiable functions on an arbitrary triangulation. (From this point of view the Clough-Tocher element [4, p. 84] is not a triangular $C^{(1)}$-element.)

In the last few years there were constructed various types of interpolation polynomials on a triangle (see e.g., $[3,5]$). All these polynomials have two following features :

1. A general triangular $C^{(m)}$-element is constructed in such a way that at the vertices of a triangle there are prescribed at least all derivatives of order less than or equal to $2 m$.
2. The lowest degree of a general triangular $C^{(m)}$-element is equal to $4 m+1$.

These two features suggest the following questiones :
(i) Which derivatives should be prescribed at the vertices of a triangle to get a triangular $C^{(m)}$-element? (In other words: Is it necessary for constructing a triangular $C^{(m)}$-element to prescribe all derivatives of order less than or equal to $2 m$ at the vertices of a triangle?)
(ii) What is the lowest degree of a triangular $C^{(m)}$-element?

The aim of this paper is to prove the following theorem which gives the answers to both questiones (i) and (ii).

[^0]Theorem 1. (i) To get a triangular $C^{(m)}$-element we must prescribe all derivatives of order less than or equal to $2 m$ at the vertices of a triangle.
(ii) The lowest degree of a triangular $C^{(m)}$-element is equal to $4 m+1$.

In [4, p. 84] the first part of Theorem 1 is formulated in a little different way with reference to [6]. However, in [6] the features 1 and 2 are mentioned only.

To express ourselves in a concise form we divide the parameters uniquely determining a triangular $C^{(m)}$-element into two groups:

1. The parameters of the first kind guarantee the $C^{(m)}$-continuity of a global function on an arbitrary triangulation. These parameters are prescribed at the vertices of a triangle and at some points lying on the sides of a triangle.

In other words, the parameters of the first kind prescribed at the points of the segment $P_{r} P_{s}$ uniquely determine the polynomials

$$
\begin{equation*}
q_{r s, x}(\tau)=\left.\frac{\partial^{x} p}{\partial v^{x}}\right|_{\iota} \equiv \frac{\partial^{x}}{\partial v^{\chi}} p\left(x_{r}+\left(x_{s}-x_{r}\right) \tau, y_{r}+\left(y_{s}-y_{r}\right) \tau\right) \tag{1}
\end{equation*}
$$

where $x=0, \ldots, m, P_{r}\left(x_{r}, y_{r}\right), P_{s}\left(x_{s}, y_{s}\right)$ are two vertices of a triangle \bar{T}, l is the straight line determined by the points P_{r}, P_{s} and $p(x, y)$ is a triangular $C^{(m)}$-element on the triangle \bar{T}.
2. The parameters of the second kind have no influence on the smoothness of a global function; they enable together with the parameters of the first kind to determine uniquely a triangular $C^{(m)}$ element. These parameters are usually prescribed in the interior T of a triangle \bar{T} but they may be prescribed also at the vertices of a triangle (see, e.g., [5, Corollary of Theorem 3]) or at some points lying on the sides of a triangle.

The basic property of the parameters of the first kind can be expressed also in the following way :

Lemma 1. Let $p(x, y)$ be a triangular $C^{(m)}$-element, P_{r}, P_{s} two vertices of the triangle \bar{T} and $l\left(P_{r}, P_{s}\right)$ the straight line determined by the points P_{r}, P_{s}. If all parameters of the first kind prescribed at the points of the segment $P_{r} P_{s}$ are equal to zero then

$$
\begin{equation*}
D^{\alpha} p(P)=0 \quad, \quad|\alpha| \leqslant m \quad, \quad \forall P \in l\left(P_{r}, P_{s}\right) \tag{2}
\end{equation*}
$$

In (2) and in what follows we use the following notation for derivatives :

$$
D^{\alpha} u=\partial^{|\alpha|} u / \partial x^{\alpha_{1}} \partial y^{\alpha_{2}} \quad, \quad \alpha=\left(\alpha_{1}, \alpha_{2}\right) \quad, \quad|\alpha|=\alpha_{1}+\alpha_{2}
$$

The proof of Lemma 1 is very simple : If the assumption of Lemma 1 is satisfied then

$$
q_{r s, x}(\tau) \equiv 0 \quad(x=0, \ldots, m)
$$

These relations imply with respect to (1)

$$
\begin{equation*}
{ }^{x+\lambda} p(P) / \partial \nu^{\kappa} \partial \tau^{\lambda}=0 ; x, \lambda=0, \ldots, m ; \forall P \in l\left(P_{r}, P_{s}\right) \tag{3}
\end{equation*}
$$

As the derivative $\partial^{k} p / \partial x^{k_{1}} \partial y^{k_{2}}\left(k=k_{1}+k_{2}\right)$ can be written in the form of a linear combination of $k+1$ derivatives

$$
\partial^{k} p / \partial \nu^{k}, \partial^{k} p / \partial \nu^{k-1} \partial \tau, \ldots, \partial^{k} p / \partial \nu \partial \tau^{k-1}, \partial^{k} p / \partial \tau^{k}
$$

the relations (2) follow from (3).
Theorem 1 is in the case $m=0$ trivial. In the case $m \geqslant 1$ the first part of Theorem 1 is equivalent to the assertion of Lemma 2.

Lemma 2. Let $m \geqslant 1, k \geqslant 1, l \geqslant 0$ and $\rho \geqslant 0$ be given integers. It is impossible to construct a triangular $C^{(m)}$-element the parameters of the first kind of which prescribed at the vertices P_{1}, P_{2}, P_{3} of a triangle are of the form

$$
\begin{equation*}
D^{\alpha} p\left(P_{i}\right) \quad, \quad \forall|\alpha| \in A \backslash B \quad(i=1,2,3) \tag{4}
\end{equation*}
$$

where the sets A, B are defined by

$$
\begin{gather*}
A=\{0,1, \ldots, 2 m+\rho\}, \tag{5}\\
B=\left\{j_{1}, j_{2}, \ldots, j_{k}, h_{1}, h_{2}, \ldots, h_{l}\right\} \tag{6}
\end{gather*}
$$

and the integers from the set B satisfy the inequalities

$$
\begin{equation*}
m<j_{1}<j_{2}<\ldots<j_{k} \leqslant 2 m<h_{1}<h_{2}<\ldots<h_{l} \leqslant 2 m+\rho \tag{7}
\end{equation*}
$$

Before proving Lemma 2 we introduce some lemmas which will be used in the proof of Lemma 2.

Lemma 3. If at every point P of the straight line $l\left(P_{r}, P_{s}\right)$ determined by the points $P_{r}\left(x_{r}, y_{r}\right), P_{s}\left(x_{s}, y_{s}\right)$ the relations (2) hold then the polynomial $p(x, y)$ is divisible by the polynomial $\left[f_{r s}(x, y)\right]^{m+1}$ where

$$
\begin{equation*}
f_{r s}(x, y)=-\left(y_{s}-y_{r}\right)\left(x-x_{r}\right)+\left(x_{s}-x_{r}\right)\left(y-y_{r}\right) \tag{8}
\end{equation*}
$$

The proof of Lemma 3 is a modification of one device used in the proof of [2, Theorem 1].

Lemma 4. Let $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right), P_{3}\left(x_{3}, y_{3}\right)$ be the vertices of a triangle \vec{T}. Let the polynomial $p(x, y)$ be of the form

$$
\begin{equation*}
p(x, y)=g(x, y) q(x, y) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
g(x, y)=\left[f_{12}(x, y) f_{13}(x, y) f_{23}(x, y)\right]^{m+1} \tag{10}
\end{equation*}
$$

n^{0} août 1974, R-2.
the linear functions $f_{r s}(x, y)$ being defined by the relation (8). Then the conditions

$$
\begin{equation*}
D^{\alpha} p\left(P_{i}\right)=0 \quad, \quad|\alpha|=2 m+x \quad(x \geqslant 2) \tag{11}
\end{equation*}
$$

give at most $x-1$ linearly independent homogeneous conditions for the polynomial $q(x, y)$ which are prescribed at the vertex P_{i}.

Proof. We prove Lemma 4 in the case $i=3$. Let \bar{T}_{0} be the triangle which lies in the Cartesian co-ordinate system ξ, η and has the vertices $\tilde{P}_{1}(0,0)$, $\tilde{P}_{2}(1,0), \tilde{P_{3}}(0,1)$. The transformation

$$
x=x_{0}(\xi, \eta) \equiv x_{3}+\left(x_{1}-x_{3}\right) \xi+\left(x_{2}-x_{3}\right) \eta
$$

$$
\begin{equation*}
y=y_{0}(\xi, \eta) \equiv y_{3}+\left(y_{1}-y_{3}\right) \xi+\left(y_{2}-y_{3}\right) \eta \tag{12}
\end{equation*}
$$

maps one-to-one the triangle \bar{T} on the triangle \bar{T}_{0} and the vertex P_{3} is mapped on the vertex \tilde{P}_{1}. Let us define the polynomial $\tilde{p}(\xi, \eta)$ by

$$
\begin{equation*}
\tilde{p}(\xi, \eta)=p\left(x_{0}(\xi, \eta), y_{0}(\xi, \eta)\right) \tag{13}
\end{equation*}
$$

According to (9), (10), (12) and (13), the polynomial $\tilde{p}(\xi, \eta)$ is of the form

$$
\begin{equation*}
\tilde{p}(\xi, \eta)=\tilde{g}(\xi, \eta) \tilde{q}(\xi, \eta) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{g}(\xi, \eta)=J^{3 m+3} \xi^{m+1} \eta^{m+1}(\xi+\eta-1)^{m+1} \tag{15}
\end{equation*}
$$

J being the Jacobian of the transformation (12), and

$$
\begin{equation*}
\tilde{q}(\xi, \eta)=q\left(x_{0}(\xi, \eta), y_{0}(\xi, \eta)\right) \tag{16}
\end{equation*}
$$

It follows from (15) that at the vertex $\tilde{P}_{1}(0,0)$ the following derivatives of the function $\tilde{g}(\xi, \eta)$ are different from zero only :

$$
\frac{\partial^{2 m+2+\sigma} \tilde{g}\left(\tilde{P}_{1}\right)}{\partial \xi^{m+1+\sigma-\rho} \partial \eta^{m+1+\rho}} \quad, \quad \rho=0, \ldots, \sigma \quad ; \quad \sigma=0, \ldots, m+1
$$

This fact and the Leibnitz rule for differentiation of a product imply

$$
\begin{equation*}
\frac{\partial^{2 m+x} \tilde{p}\left(\tilde{P_{1}}\right)}{\partial \xi^{\alpha_{1}} \partial \eta^{\alpha_{2}}}=0, \alpha_{1}+\alpha_{2}=2 m+x, \alpha_{1} \leqslant m \text { or } \alpha_{2} \leqslant m \tag{17}
\end{equation*}
$$

Let

$$
\begin{equation*}
\xi=\xi_{0}(x, y), \quad \eta=\eta_{0}(x, y) \tag{18}
\end{equation*}
$$

be the inverse transformation to the transformation (12). The polynomial $p(x, y)$ can be written in the form

$$
\begin{equation*}
p(x, y)=\tilde{p}\left(\xi_{0}(x, y), \eta_{0}(x, y)\right) \tag{19}
\end{equation*}
$$

As the transformation (18) is linear we get from (19), according to the rule of differentiation of a composite function,

$$
\begin{equation*}
D^{\alpha} p\left(P_{i}\right)=\sum_{|\beta|=2 m+x} a_{\alpha \beta} D^{\beta} \tilde{p}\left(\tilde{P}_{1}\right) \quad, \quad|\alpha|=2 m+x \tag{20}
\end{equation*}
$$

where $a_{\alpha \beta}$ are constants.
Setting (20) into (11) we get, with respect to (17), $2 m+x+1$ homogeneous linear equations for at most $x-1$ derivatives of order $2 m+x$ of the polynomial $\tilde{p}(\xi, \eta)$ at the point \tilde{P}_{1}. Omitting the linearly dependent equations we get a system of at most $x-1$ linearly independent equations. This system is, according to (14) and (15), a system of linear equations for derivatives of the function $\tilde{q}(\xi, \eta)$ at the point \tilde{P}_{1}. Returning to the variables x, y by means of the transformation (18), we get, according to (16), a system of at most $x-1$ linearly independent homogeneous equations for the derivatives of the polynomial $q(x, y)$ at the point P_{i}. Lemma 4 is proved.

Proof of Lemma 2. Lemma 2 will be proved by a contradiction. Let us suppose that the assertion of Lemma 2 is not true, i.e. that it is possible to determine uniquely a triangular $C^{(m)}$-element $p(x, y)$ the parameters of the first kind of which prescribed at the vertices of a triangle are the parameters (4) only. Let n be the degree of this triangular $C^{(m)}$-element. As the triangulation is chosen quite arbitrarily the polynomials $q_{r s, 0}(\tau)$ (see (1)) are also polynomials of degree n. Thus it holds, with respect to (5) and (6),

$$
\begin{equation*}
n \geqslant 4 m+2 \rho-2 k-2 l+1 \tag{21}
\end{equation*}
$$

Let us set

$$
\begin{equation*}
d=n-(4 m+2 \rho-2 k-2 l+1) . \tag{22}
\end{equation*}
$$

As the triangulation is quite arbitrary the polynomials $q_{r s, x}(\tau)$ are polynomials of degree $n-x$. Thus to achieve the $C^{(m)}$-continuity we must prescribe $d+x$ parameters of the first kind on each side $P_{r} P_{s}$ for each $x(x=0, \ldots, m)$. Usually these parameters are of the form

$$
\begin{equation*}
\partial^{\kappa} p\left(Q_{r s}^{(\lambda, d+x)}\right) / \partial \nu_{r s}^{x}(\lambda=1, \ldots, d+x ; x=0, \ldots, m) \tag{23}
\end{equation*}
$$

where $\nu_{r s}$ is the normal to the segment $P_{r} P_{s}$ and $Q_{r s}^{(1, q)}, \ldots, Q_{r s}^{(q, q)}$ are the points dividing the segment $P_{r} P_{s}$ into $q+1$ equal parts.

Let the symbols V and S denote the numbers of the parameters of the first kind prescribed at one vertex and on one side, respectively. It follows
from (4)-(7), (22) and (23) that the total number of the parameters of the first kind is given by the relation

$$
\begin{align*}
3(V+S)=3(m+1) n-9 m & (m+1) / 2+3 \rho(\rho-1) / 2 \tag{24}\\
& +6(m+1)(k+l)-3(k+l+j+h)
\end{align*}
$$

where

$$
\begin{align*}
& j=j_{1}+j_{2}+\ldots+j_{k} \tag{25}\\
& h=h_{1}+h_{2}+\ldots+h_{l} \tag{26}
\end{align*}
$$

The polynomial $p(x, y)$ has N coefficients where

$$
\begin{equation*}
N=(n+1)(n+2) / 2 \tag{27}
\end{equation*}
$$

The integers N, S, V must satisfy the inequality

$$
\begin{equation*}
R \equiv N-3(V+S) \geqslant 0 \tag{28}
\end{equation*}
$$

which expresses the fact that the total number of the parameters of the first kind cannot be greater than N.

Let us set

$$
\begin{equation*}
G=48(m+1)(k+l)+12 \rho(\rho-1)-24(k+l+j+h)+1 \tag{29}
\end{equation*}
$$

If we put (24) and (27) in (28) we get a quadratic inequality in n. It follows from this inequality that

$$
\begin{equation*}
n \geqslant n_{1}=\left(6 m+3+G^{1 / 2}\right) / 2 \tag{30}
\end{equation*}
$$

where n_{1} is the first root of the quadratic polynomial in n on the left-hand side of the inequality (28). The second formal possibility $n \leqslant n_{2}$ does not suit because in this case, according to (22) and (33),

$$
d \leqslant \max d_{2}=\max n_{2}-(4 m+2 \rho-2 k-2 l+1)<0
$$

It holds, according to (7), (25) and (26),

$$
\begin{align*}
& \max j=2 m k-k(k-1) / 2 \tag{31}\\
& \max h=2 m l+\rho l-l(l-1) / 2 \tag{32}
\end{align*}
$$

Thus

$$
\begin{equation*}
\min G=12 k(k+1)+12(\rho-l-1)(\rho-l)+1 \tag{33}
\end{equation*}
$$

As $\rho \geqslant l, k \geqslant 1$ the relations (30) and (33) imply

$$
\begin{equation*}
n>3 m+3 \tag{34}
\end{equation*}
$$

The interger R defined by (28) is the number of the parameters of the second kind. Let us prescribe these parameters quite arbitrarily and set all N parameters equal to zero. Then, according to Lemmas 1 and 3, the polynomial $p(x, y)$ is of the form (9). The relations (10) and (34) imply that in this case the polynomial $q(x, y)$ is at least a polynomial of the first degree. Let the symbol M denote the total number of the coefficients of the polynomial $q(x, y)$. It is easy to find that

$$
\begin{equation*}
M=N-3(m+1) n+9 m(m+1) / 2 \tag{35}
\end{equation*}
$$

The relations (24), (28) and (35) imply

$$
\begin{equation*}
M-R=6(m+1)(k+l)-3(k+l+j+h)+3 p(p-1) / 2 \tag{36}
\end{equation*}
$$

It holds with respect to (31) and (36)

$$
\begin{equation*}
M-R \geqslant Q \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
Q=3 k(k+1) / 2+6(m+1) l-3(l+h)+3 \rho(\rho-1) / 2 \tag{38}
\end{equation*}
$$

Each integer h_{s} can be expressed in the form

$$
\begin{equation*}
h_{s}=2 m+r_{s}(s=1, \ldots, l) \tag{39}
\end{equation*}
$$

Using (26) and (39) we can write

$$
\begin{equation*}
h=2 m l+\left(r_{1}+\ldots+r_{l}\right) \tag{40}
\end{equation*}
$$

Putting (40) in (38) we find

$$
\begin{equation*}
Q=3 k(k+1) / 2+H \tag{41}
\end{equation*}
$$

where

$$
\begin{equation*}
H=3 l-3\left(r_{1}+\ldots+r_{l}\right)+3 \rho(\rho-1) / 2 . \tag{42}
\end{equation*}
$$

According to (5)-(7), (39) and Lemma 4, the conditions

$$
\begin{equation*}
D^{\alpha} p\left(P_{i}\right)=0, \quad|\alpha| \geqslant 2 m+2, \quad|\alpha| \in A \backslash B(i=1,2,3) \tag{43}
\end{equation*}
$$

give H_{1} linearly independent homogeneous conditions for the polynomial $q(x, y)$ where

$$
\begin{align*}
H_{1} \leqslant 3(1+2+\ldots+ & \left(r_{1}-2\right)+\sum_{s=1}^{l-1}\left[r_{s}+\left(r_{s}+1\right)+\ldots\right. \tag{44}\\
& \left.\left.+\left(r_{s+1}-2\right)\right]+r_{l}+\left(r_{l}+1\right)+\ldots+\rho-1\right)
\end{align*}
$$

n^{0} août 1974, R-2.

The right-hand side of the inequality (44) is equal to H. Thus

$$
\begin{equation*}
H_{1} \leqslant H . \tag{45}
\end{equation*}
$$

As, according to (8) and (10), the relations

$$
\begin{array}{lll}
D^{\alpha} g(P)=0 & , & |\alpha| \leqslant m \quad,
\end{array} \quad \forall P \in \partial T=\bar{T} \backslash T, ~(i=1,2,3)
$$

hold the parameters of the first kind except for the parameters (43) give no conditions for the polynomial $q(x, y)$.

The parameters of the second kind prescribed for the polynomial $p(x, y)$ give $\boldsymbol{R}_{\mathbf{1}}$ linearly independent homogeneous conditions for the polynomial $q(x, y)$ where

$$
\begin{equation*}
R_{1} \leqslant R \tag{46}
\end{equation*}
$$

Thus we get $H_{1}+R_{1}$ linearly independent homogeneous equations for the coefficients of the polynomial $q(x, y)$.

As it holds, according to (37), (41), (45) and (46),

$$
\begin{equation*}
M-R_{1}-H_{1} \geqslant 3 k(k+1) / 2>0 \tag{47}
\end{equation*}
$$

we can complete these $H_{1}+R_{1}$ homogeneous equations by such $M-R_{1}-H_{1}$ non-homogeneous equations that we get M linearly independent equations for M coefficients of a polynomial $q(x, y)$ for which it holds

$$
\begin{equation*}
q(x, y) \not \equiv 0 \tag{48}
\end{equation*}
$$

According to (9), (10) and (48), we get a polynomial $p(x, y)$ which satisfies prescribed N homogeneous conditions and is not identically equal to zero. This is a contradiction. Lemma 2 is proved.

The proof of the second part of Theorem 1 is now now very simple : It follows from the first part of Theorem 1 that the lowest degree of a triangular $C^{(m)}$-element is greater than or equal to $4 m+1$. This fact and the result of [5] prove the second part of Theorem 1.

The assertion of the following theorem is well-known $[2,5]$:
Theorem 2. A triangular $C^{(m)}$-element of degree $4 m+1$ can be uniquely determined by the parameters

$$
\begin{array}{cc}
D^{\alpha} p\left(P_{i}\right) \quad, \quad|\alpha| \leqslant 2 m \quad(i=1,2,3) \\
\partial^{\alpha} p\left(Q_{r s}^{(\lambda, \alpha)}\right) / \partial \nu_{r s}^{\chi}, & r=1,2, s=2,3(r<s) \\
\lambda=1, \ldots, x ; x=0, \ldots, m \\
D^{\alpha} p\left(P_{0}\right), & |\alpha| \leqslant m-2 \tag{51}
\end{array}
$$

where P_{0} is the centre of gravity of the triangle \bar{T} and the meaning of other symbols is the same as in the preceding text.

Generalizing Bell's device [1], the number of independent parameters can be reduced by imposing on $p(x, y)$ the condition that the derivatives $\partial^{x} p / \partial \nu^{x}$ be polynomials of degree $n-2 x$ along the corresponding sides of the triangle. Then the parameters (50) prescribed on the side $P_{r} P_{s}$ are linear combinations of the parameters (49) prescribed at the vertices P_{r}, P_{s}.

Setting $k=0$ in the proof of Lemma 2 we get no contradiction. This suggests to construct triangular $C^{(m)}$ elements with $\rho>0$ and $l>0$. However, these polynomials are not useful for applications because their degrees are too high. Only one exception can be mentioned : A triangular $C^{(0)}$-element of the fourth degree can be determined by the parameters

$$
\begin{equation*}
D^{\alpha} p\left(P_{i}\right) \quad, \quad|\alpha|=0,2 \quad ; \quad p\left(Q_{i}\right) \quad(i=1,2,3) \tag{52}
\end{equation*}
$$

where Q_{1}, Q_{2}, Q_{3} are the mid-points of the sides of a triangle. This element can be used when we do not need the first derivatives and want to get from some reasons continuous second derivatives at the nodal points of a triangulation.

Remark. A family of triangular $C^{(m)}$-elements with arbitrary $\rho>0$ and $l=0$ is studied in [3].

REFERENCES

[1] Bell K., A refined triangular plate bending finite element. Int. J. Num. Meth. Engng., 1969, 1, 101-122.
[2] Bramble J. H. and Zlámal M., Triangular elements in the finite element method. Math. Comp., 1970, 24, 809-820.
[3] Koukal S., Piecewise polynomial interpolations in the finite element method. Apl. Mat., 1973, 18, 146-160.
[4] Strang G. and Fix G., An analysis of the finite element method. Prentice-Hall Inc., Englewood Cliffs, N. J., 1973.
[5] Ženíšek A., Interpolation polynomials on the triangle. Numer. Math., 1970, 15, 283-296.
[6] ŽeniŠEK A., Polynomial approximation on tetrahedrons in the finite element method. J. Approx. Theory, 1973, 7, 334-351.

[^0]: ${ }^{(1)}$ Computing Center, Technical University of Brno, Brno, Tchécoslovaquie.
 Revue Française d'Automatique, Informatique et Recherche Opérationnelle no août 1974, R-2.

