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EQUITABLE COLORATIONS OF GRAPHS (*)

par D. de WERRÂ (*)

Abstract. — An edge coloration o f a graph is a coloration of its edges in such a way that
no two edges of the same colour are adjacent. We generalize this concept by introducing the
notion of'équitable coloration, i.e., coloration ofthe edges ofa graph such that iffi(x) dénotes
the number of edges with colour i which are adjacent to vertex x, we have \ft(x) —fî(x) | < 1
for every vertex x and every pair of colours i, j . Equitable colorations are also defined for
hypergraphs,

Final'ly s o me r e suit s on edge colorations are gêner alized to the case o f équitable colora-
tions.

1. Coloration of Hypergraphs

A hypergraph H — (X, U) consists of a finite set X of vertices xl9 ..., xn
m

and a family U of nonempty edges Uj(j = 1, ..., m) satisfying U Uj = %•
j=i

A hypergraph H is unimodular if its edge incidence matrix A (atj = 1
if xt sUj or 0 otherwise) is totally unimodular. The subhypergraph of
H - (X, U) spanned by a subset F C X is the hypergraph H(Y) = (Y, U(Y))
where U(Y) = { Uj fl Y\ Uj H Y ^ 0 }. An équitable k-coloration E of
H = (X, U) is a partition of X into k subsets Fu ..., Ffc such that for every
edge Uj

I l ^ n ^ j - l ^ . n ^ l I ̂  1 Vp9qe{l9...9k}

The resuit of Camion [1] and Ghouila-Houri [2] about totally unimodular
matrices may be formulated in terms of hypergraphs as follows [3] [4] :

Lemma : A hypergraph H is unimodular if and only if ail its subhyper-
graphs have an équitable bicoloration.

We have the following :

Theorem 1 : A unimodulai hypergraph H has an équitable ^-coloration
for any k.
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4 D. DE WERRA

Proof : Given a coloration E of the vertices of H with A colours (E is not
necessarily an équitable A-coloration), for each edge Uj we define a vector
E(j) = (ƒ{, ƒ{,...,ƒ£) where ƒ£ is the number of vertices of Uj which have
colour p. Let Fp C jf be the subset of vertices which have colour p. For every
edge let e(j) = max (ƒ£ — ƒ£) ^ 0 ; let e* = max e(y). If e* < 2, E is an

équitable A-coloration of H. Otherwise, let Uj be an edge such that
e(j) = e* = fs

p — fs
r We consider the subgraph # ' spanned by Fp U Fq. It

follows from the lemma that H' has an équitable 2-coloration E'\ we colour
its vertices with 2 colours;? and q in such a way that | ƒ£ — fJ

q\ < 1 for every £/,-.
The values f{ are unchanged for r ^p9 q and for every Uj. Thus at least one
value e(j) is such that the number of pairs/?, q with \fj

p — fJ
q\ < e(j)— 1 has

increased by at least one unit and the other e(j) have not increased. This pro-
cedure can be repeated until e* < 2. We get thus an équitable A>coloration
of H.: End of proof.

A transversal of a hypergraph H = (X, U) is a subset of vertices T such
that T H Uj T^ 0 for y == 1,..., m. The following corollary is a slight genera-
lization of a theorem in Berge [3],

Corollary 1 : Let H = (Z, C/) be a unimodular hypergraph and k ~ min | C/,. |
j

the minimal cardinality of its edges. The set X of vertices of H may be parti-
tioned into k transversals.

Proof : Consider an équitable A>coloration of H where k = min \Uj\ ;

such a ^-coloration exists from theorem 1. Clearly in each edge there will
be at least one vertex of each colour. Hence the subsets Fl9..., Fk defined by
the &>coloration are transversals.

Following Berge [3], we call strong chromatic number of H = (X, U) the
smallest integer k such that there exists a partition of X into subsets Fî9..;Fk

with \Ft n Uj\ ^ 1 i = 1, ..., A. The next corollary is due to Berge [5].
7 = l,...,m

Corollary 2 : The strong chromatic number of a unimodular hypergraph
is equal to the maximal cardinality of its edges.

Proof ; Let k = max \Uj\ and consider an équitable A-coloration of H;
let Ft be the set of vertices with colour i for i = 1, ...,£. Obviously

We can also apply theorem 1 to graphs; an équitable A-coloration of a
graph is then a coloration of its edges with A colours such that for each vertex x,
we have :

I ƒ , ( * ) - ƒ . ( * ) ! < 1V/>,«€{1, .. . ,*}
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EQUITABLE COLORATION OF GRAPHS 5

where fp(x) dénotes the number of edges with colour p which are adjacent
to x.

Corollary 3 : A bipartite graph G = (X, U) has an équitable fc-coloration
for any k.

Proof : This resuit is obtained by applying theorem 1 to the hypergraph H
obtained as follows : its vertices are the edges of G and its edges are the sets
of edges which are adjacent to the same vertex of G, H is unimodular since
its edge incidence matrix is the transposed matrix of the edge incidence matrix
oîG.

When applied to the case of graphs, corollary 1 becomes the theorem of
Gupta [3] : If G = (X, U) is a bipartite graph with minimum degree k, then
there exists a partition of U into k spanning subsets of edges Hu ...3 Hk.
(Ht is a spanning subset if the edges in Ht meet all vertices of G.)

Moreover corollary 2 gives the well-known resuit ; the chromatic index
of a bipartite graph is equal to the maximum degree of the vertices in G (the
chromatic index of G is by définition the smallest& such that the edgesof Gmay
be partitioned into k subsets of nonadjacent edges).

2. P-bounded colorations

We will now generalize some results about edge colorations, A p-bounded
fc-coloration E of a graph G is a partition of its edges into k nonempty sub-
sets Fi9..., Fk such that for any vertex x : \fj(x) —ft{x) j < p for i9 j = 1, ...,
k where fj(x) is the number of edges of Fj which are adjacent to x. An équitable
^-coloration is thus a 1-bounded ^-coloration. Let E= {Fu ..., Fk } be a
j?-bounded ^-coloration and ft ^ ... ^ fk the cardinalities of Fu..., Ffe res-
pectively.

Theorem 2 : If the séquence (fi,..^f^) corresponds to a ^-bounded
^-coloration of G, then any séquence ƒ î , ...,ƒ* with :

a) f[ > ... > f'k

corresponds to a j:?-bounded fc-coloration of G.

Proof : A) We first prove that any couple of subsets Fi9 Fj in E with
f —fj = K > 2 may be replaced by two subsets F(9 Fj with f[ — fj = K— 2.
Ey = (Fu Fj) is a p-bounded bicoloration of Gy = {X, Ft U Fs) ; we consider
any edge u in Gi}> and construct an alternating path P containing u (i.e.5 the

noR-3,1971.



6 D. DE WERRA

edges of which belong alternately to Ft and FJ); we extend the path P as far
as possible; we obtain thus either an alternating circuit (with even length)
or an alternating open path. We remove P from Gtj and repeat the same
construction with another edge u, until all edges in Gi7 are removed.

Since ft —/} = K ^ 2, there is at least one alternating path P in which
the first edge and last edge belong to Ft; we interchange the edges of P f) Ft

and P f! Fj.
Let x and y be the endpoints of P. Since P terminâtes at x with an edge

in Ft we have ft(x) ^ f/x) + 1 ; by interchanging the edges of P we get

f/x) < fi'ix) - f lx) - 1 < f lx)

f/x) < f/x) = f/pc) + 1 ̂  ft(x)

The same inequalities hold for y. Furhtermore, for all vertices z zfi x, y we
have ƒ l(z) = ƒf(^) and ƒ j(z) = fj(z). So we obtain a new /?-bounded bicolo-
ration {F'h F}) with f'. — f}^K~2.

B) By successive applications of the above described procedure we can
obtain /7-bounded £>colorations corresponding to any séquence (ƒ {,..., f'k)
satisfying a), b) and c). This ends the proof.

Theorem 2 is a generalization of a resuit which appears in Folkman and
Fulkerson [6]. (Their theorem corresponds to the case where p = 1 and k is
at least equal to the chromatic index of G.) We raise now and answer the follo-
wing question : given a graph G, what is the smallest value/) such that G has a
/?-bounded Ar-coloration for any kl From corollary 3, we know that if G is
bipartite, then the minimum value of p is p = 1. If G is not bipartite, it is
not the case : a triangle has for instance no équitable 2-coloration. (Clearly
for any k not less than the chromatic index of G, there is a 1-bounded ^-colo-
ration of G.)

Théorèm 3 : Let G be any graph; for any k, G has a 2-bounded fc-colo-
ration.

Proof : The theorem is true for a graph G with one edge. Suppose that
it is true for graphs with at most m— 1 edges; we will show that it is also
true for graphs with m edges. Let G be a graph with m edges; let us remove
from G an edge u joining vertices x and y. By our induction hypothesis,
G' = G — u has a 2-bounded £>coloration for any k. Given some integer k>
let Fl9 ...5 Fk be the subsets of edges defined by such a ^-coloration of G\
There exist 2 integers a, b ^ 0 such that

a < ft(x) ^ a + 2 for i = 1, ..., k

b < ftiy) ^ b + 2 îori^h .... k

Revue Française d'Informatique et de Recherche opérationnelle



EQUITABLE COLORATION OF GRAPHS 7

We can assume that there is at least one colour, say q, such that fq(x) — a
(otherwise a is replaced by a + 1); similarly there is one colour r such that

fr(y) = b. We have to examine the following cases :

A) There is a colour s with/s(x) < a + 2 &ndfs(y) < b + 2. Then u may
be introduced into Fs and Fl9 ..., Fk is a 2-bounded A:-coloration of G.

B) For every colour s with fs(x) < a + 2 we have ^O) = b + 2 and for
every colour t with /,(y) < b + 2 we have ƒ,(*) = a + 2. Let us consider
colours q and r; we have q ^ r (otherwise we are in case A).

We détermine an alternating chain C starting at x with an r-edge (i.e.,
an edge in Fr) and whose edges are alternately r-edges and #-edges. We extend
chain C as far as possible. Then 2 cases may occur :

BI) The last vertex in C is y; so the last edge in C is a gr-edge (because if
we arrive at y with an r-edge we can introducé one more #-edge into C since
fqiy) = b + 2 > f£y) = è). By interchanging the #-edges and the r-edges in C
we obtain a 2-bounded A:-coloration of G' with fq(x) =^fr(x) = a + 1 and
fqiy) =fr(y) = 6 + 1. So M may be introduced into Fq (or Fr) and Fl9..., Fk

is a 2-bounded À>coloration of G.

B2) The last vertex in C is z ^ y, Again by interchanging the #-edges and
the r-edges in C we obtain a 2-bounded ^-coloration of G' with f£x) = a + 1,
/r(j) = b (if C ends for instance with a #-edge we have fr(z) + 2 ^ /g(z) > /r(z)
and after having interchanged the r-edges and the g-edges, we still have
j / r ( z ) - / 4 ( z ) | < 2 ) .

We can now introducé edge u into Fr and we still obtain a 2-bounded
A:-coloration of G.

We have examined ail possible cases and the proof is completed.

We now define an odd cycle as a connected graph containing an odd num-
ber of edges and such that ail degrees are even.

Theorem 4 : A connected graph G has an équitable bicoloration if and
only if it is not an odd cycle.

Proof : A) Suppose G is an odd cycle; for any équitable bicoloration
{^1,^2 } we must have fx(x) =f2(x) at each vertex x. Hence, Ft and F2

have the same cardinality; but this is not possible since G contains an odd
number of edges.

B) Conversely if G is not an odd cycle, then from Euler's theorem, the edges
of G may be partitioned into a unique even cycle (if ail degrees are even) or
into one or more chains joining 2 vertices with odd degrees. By coloring the
edges in each chain (or in the unique cycle if ail degrees are even) alternately
with colours 1 and 2 we obtain an équitable bicoloration of G.

n°R-3, 1971.



ö D. DE WERRA

Necessary and sufficient conditions for a graph G to have an équitable
/^-coloration [k > 2) are much more difficult to obtain (this would in fact
solve the four color problem). However we can formuiate :

Proposition : If in a connected graph G ail degrees are multiples of k
and if the number of edges is not a multiple of k, then G has no équitable
fc-coloration.

Proof as in theorem 4, A.

However even if ail degrees and the number of edges in a connected graph G
are multiples of k? G may not have an équitable A:-coloration for k > 2.
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