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AN ALGORITHM FOR OPTIMAL SYNTHESIS
IN CONTROL PROBLEMS

by Stefan MiRrica ()

Abstract. — An algorithm for an optimal synthesis is described and its effectiveness is
shown on two examples.

1. INTRODUCTION

The algorithm proposed in this paper was suggested by the R. Isaacs’
technique and the results from {10] and {11} concerning admissible and optimal
synthesis for a class of control problems and differential games.

We ought to point out that the algorithm may be considered as a generali-
sation and in the same time a justification of Isaacs’ technique.

The algorithm consists in the « backward integration » (with some special
« final » conditions) of the Hamiltonian system which defines in [10], {11] the
dual variables.

R. Isaacs uses in [8] a technique to construct optimal synthesis for many
examples of differential games and control problems. This technique consists
in the backward integration of the characteristic system of a partial differential
equation — the fundamental equation.

As we may easily observe, the dual trajectories defined in [10] and [11]
eoincide with the characteristique curves from [8] in the particular case consi-
dcred by Isaacs.

The Isaacs’ technique can be applied only to the control problems (and
differential games) for that the terminal manifold is a surface that is a diffe-
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56 S. MIRICA

rentiable manifold of dimension n— 1 if the phase space is of dimension #.
The algorithm proposed in this paper is applicable also to control problems
for that the terminal manifold is k-dimensional where 0 < kK < n— 1 and
hence it represent a generalisation of the Isaacs’ technique.

The properties of the admissible synthesis proved in [10], [11] allow us to
describe in a precise manner all the operations of the algorithm and especially
the technique in the large. The algorithm is rigurously divided in « steps »,
«routines », « subroutines » and « operations » and this allows to apply it
in a sufficiently automatic manner.

Moreover, the definition of the admissible synthesis and the sufficient
conditions for its optimality represent rigurous criteria for optimality of the
obtained synthesis. From this point of view this algorithm represent a justi-
fication of R. Isaacs’ technique.

We ought to notice that the consideration in [11] of the control systems
on differentiable manifolds suggested a basic idea of the algorithm : to work
in the cotangent manifold of the phase space and to project the results on the
phase space by the cotangent bundle. In this case — the global one — the
dual variables are to be considered in the cotangent space and there exist
some curves on this space — the dual trajectories — that are projected by
cotangent bundle on the « marked trajectories » (the trajectories generated by
the admissible synthesis on the phase space).

To understand and to justify the operations of the algorithm we present
shortly in the section 2 the definition and some properties of the admissible
synthesis proved in [10] and [11].

In the section 3 we present the algorithm and we prove that if the algo-
rithm is working for a control problem then we obtain the optimal synthesis.

In the section 4 we apply the algorithm to two examples of control problems
solved in [9]; [6] by other methods and we obtain the same results.

The algorithm may be formulated and may be applied to control systems
on differentiable manifolds. In this paper was preffered the local case —
control systems in which the phase space is an open domain of a real euclidian
space — because of the frequency of such problems for the applications and
because in this case the main features become more understandable.

For differential games the algorithm can be applied in the same manner
as for the control problems ([8], [10]).

We note that although the algorithm is described as a typical one for
the use of the computers, the use of computers to construct the optimal
synthesis is not matematically justified because of the absence of some results
concerning the « stability » of the optimal synthesis to variations of the data
of the control problem and to computing errors. This remains an important
open problem.
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OPTIMAL SYNTHESIS IN CONTROL PROBLEMS 57

2. THE ADMISSIBLE SYNTHESIS.
DEFINITION AND PROPERTIES

We consider an open domain G C R" — called phase space, a set U C R?
which is supposed to be a closed set, called control space and a C! — map
f: G x U— R" which defines the « parametrized » differential system :

dx

2.1 a = f(x, u) , xe€G , ueU.

A differentiable manifold 6 € G of dimension k, 0 < & < n—1, called
terminal manifold, is also given.

We say that S = (G, U, f, G) is a control system on G.

An admissible control related to the initial point x, € G is a vector valued

piecewise continuous function u : [0, #] — U such that the « controlled »
differential system :

@2 & = fx, u(®) = fix,

has the solution ¢(-; x,) which remains in G and intersects G in a finite time
(that is there exists ¢, €[0, z,] such that o(¢; x,) €G\T for 0 < 1< ¢,
and x; = @(#; ; xo) € G). The curve ¢ is called admissible trajectory.

If two other C!-functions, g: G — R and f°: G X U— R are given,
‘for each admissible control ¥ we may define the real number :

@3) P(u) = P(g) = glxy) + 0}'°<qo(t ; xo), u(®) dt,

called the performance of the control u. If U, is the set of all admissible controls
related to the point x € G and U, = U Al then the relation (2.3) defines
x€G
.a map P : W — R called the performance of the system S.
We say that the pair (S, P) represent a preferential control system on G.

An admissible control u, € W, is an optimal control (related to the point
x € G) if the following inequality holds for any u € U, :

(24 P@u,) < P(u)
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58 : S. MIRICA

Generally speaking, and admissible synthesis is a map v : G— U such
that the « synthetised » differential system :

@) 8 o, v0) =7

has a solution ¢ (¢,(0) = x) at every point x € G such that v%, is an admis-
sible control. The most simple examples show that the optimal synthesis is a
piecewise smooth map and hence the differential system (2.5) is a right hand
side discontinuous one. But it is impossible to study such differential systems
without the explicite description of the discontinuity set of the function fand
without the explanation of the behavior of the solutions of (2.5) on this set.

One of the most general hypothesis in this sense was proposed by
V. G. Boltyanskii ([4] [S]) : the synthesis (the « regular synthesis ») is a C1-map
on G exept a singular set which is a « piecewise smooth set ».

In [10], [11] is defined an admissible synthesis by omitting the condition
that the marked trajectory of the regular synthesis of Boltyanskii satisfy the
maximum principle. For such synthesis a set of properties are proved and this
allow by adding the maximum principle or the functional equation of the
dynamic programming to deduce that the synthesis is optimal. In this way it
is proved that the maximum principle (or the dynamic programming principle)
assures the optimality of the Boltyanskii’s regular synthesis.

To define the admissible synthesis we need the notions of « curvilinear
polyhedron » and « piecewise smooth set » (4], [5]) :
Definition 2.1

Let KC R® be a convex, bounded, closed, s-dimensional polyhedron,
¥V C R® an open neighborhood of K and ¢ { ¥ — G a C!-map, injection at the
points of K and such that

rank g:—P—_(x‘,...,xs) =
ox’

for any (x', ..., x°) € K.
Then the set L = ¢(K) C G is a curvilinear polyhedron in G of dimension s.

Definition 2.2

The set M C G is a piecewise smooth set od dimension s < n if the following
conditions hold :

(1) M is a union of curvilinear polyhedra in G ;
(2) every compact subset of G intersects only a finite number of such
polyhedra ;
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OPTIMAL SYNTHESIS IN CONTROL PROBLEMS 59

(3) there exists in M a s-dimensional polyhedron and the others are of
dimension < s.

As is observed in [4], p. 256, every closed in G C R" smooth surface of
dimension less then » is a piecewise smooth set.

Let N, P* p**t . P""!1 C G be piecewise smooth sets, P' is of dimen-
sioni,i=k, k+1,...n—1, Nis of dimension less then » and

BGCpcptlic..cplice,
We denote P*™! = 6, P" = G.

Definition 2.3

The sets N, PX, P*' ..., P"" ! and the map v : G — U represent an admis-
sible synthesis if the following requirements are fulfilled :

A. (i). The connected components of the sets
P\NPWUN),i=kk+1,..,n,

are differentiable manifolds in G of dimension i ; we call them i-dimensional

cells. The connected components of the target set T = P*~! are also called
k-dimensional cells.

(ii) The restriction v, = v|c is a Cl-map from the cell c to U. Moreover,
there exists a neighborhood ¢ C G of the closure ¢ of the cell ¢ and a smooth
extension g, : ¢ — U of the map v,.

B. Every cell is either of type I or of type II :
(i) The n-dimensional cells are of type I, the k-dimensional ones of type II.

(ii) If ¢ is a i-dimensional cell of type I then from any point x € ¢ a unique
solution ¢, of the differential system (2.5) (for which the right hand side is
discontinuous) starts.

There exists a unique (i-1)-dimensional cell II(c) (of type I or II) such
that the solution ¢, leaves ¢ after a finite time and reaches II(¢) transversally
(nontangently), that is, in the incidence point x" = ¢.(¢") € II(c), the vector
lim f(¢,()) does not belong to the tangent space 75.II(c).

tat’

(iii) If ¢ is a i-dimensional cell of type II and ¢ ¢ G then there exists a
unique (i 4+ 1)-dimensional cell Z£(¢) of type I such that from any point x € ¢
a unique solution of the system (2.5) entering Z(c) and having in ¢ only the
point x starts. Moreover, the set ¢’ = ¢ U Z(c) is a differentiable manifold
possibly with boundary and v, is a C1-map.

C. (i) Every solution of the system (2.5) reaches G transversally, in a
finite time and intersects only a finite number of cells.

n° R-2, 1971.



60 S. MIRICA

(ii) From the points in N may start several solutions of (2.5). The solutions
of (2.5) starting at points in N do not remain in N but enter a cell of type L.

We call the solution ¢, of (2.5) marked trajectory through the point x € G.

If x € G\N then ¢, is unique. If #; is the first moment when the curve ¢,
reaches G and x; = ¢,(tz) then for the point x € G and for the marked trajec-
tory ¢, we define the real number :

2.6) P(x, 9.) = g0xp) + f " O0ult), vlpnD)) dr

D. The number P(x, ¢,)is the same for any marked trajectory starting
at x € N. The function W : G — R defined by :

Q.7 W(x) = P(x, ¢,)

is continuous and we call it zhe value of the synthesis.

Let us enumerate the properties of the admissible synthesis which justify
the operations of the algorithm for the construction of the optimal synthesis.

1. To obtain differentiability properties for the solutions of the discon-
tinuous differential system (2.5) we use the extensions o, : ¢ — U of the
restrictions v, for all the cells of the admissible synthesis.

Indeed we define the maps f; : ¢ — R":
(2.8)¢ Jx) = f(x, B(x))

which defines the differential systems :
dx » ~
(2.9) T Je(x) s X €C.

It is easy to show that the solutions of (2.9), that pass through the points
in ¢ coincide with the corresponding marked trajectories.

2. From the definition of the admissible synthesis we deduce that the
marked trajectory enter the cell ¢ of type I in the following two manners :

— either there exists a cell ¢, of type II such that from any point in ¢,
starts a marked trajectory which enters ¢ and hence ¢ = Z(c,) ;

— or the marked trajectory reaches ¢ from another cell of type I. In what
follows we denote by ¢’ the submanifold which is either the cell ¢ of type I
or the union ¢, U ¢ if there exists a cell ¢, of type II such that ¢ = 2(¢,).

3. Analising the way that the marked trajectories leave the cell ¢ of type I
we deduce that for any point x € ¢’ there exists a real number t(x) > 0 such
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OPTIMAL SYNTHESIS IN CONTROL PROBLEMS 61
that the curve ¢, reaches the cell II(c) at the moment =(x), that is we have :
210 X9 = @) €110
and g, (1) ec¢’ for 0 < ¢t < (x).

If we denote II(¢) = II(c) N ¢ then we have two maps :
2.11) t:¢’ >R , yx:¢ —1I)

which satisfy the property (2.10).

4. Using the maximal flow J);: D, C R x ¢—¢ of the differential sys-
tem (2.9)) we may prove that the maps (2.11) are of class C'.

5. Let consider the cells ¢; = ¢, €5, ... ¢;, of type I through passes every
marked trajectory starting in ¢’ and such that Il(c,) € G.

From the definition of the admissible synthesis it follows that every marked
trajectory passes from the cell ¢;_; either directly to thecell ¢; if II(¢c;-)is of
type I (and hence ¢; = II(¢;-,)) or by «crossing » the cell Il(¢c;_,) of type IT
and then Ci = Z(H(Ci_l)).

For every such a cell ¢; we obtain : the submanifold ¢! (which is the union

¢; U II(c;_,) or even the cell ¢;) ; the neighborhood ¢,; the map 7, :¢; — R"
(and hence the system (2.9);)) and the maps :

(2.11)“) Té C'i — R s :Bi . C'i - H(Ci)

with the properties (2.10).

6. On the other hand, for every point x € ¢’ = ¢}, the marked trajectory ¢,
reaches the cell II(c;) at the moment 7/(x), j = 1, 2, ... g. If we denote :

@12) L@ =) > J=12..4

we obtain the maps

@13 =R , X;:o—0c) ., j=12..9

which satisfy the conditions :

2.14)  L(x) = @u(t;(x) , @.(8) €¢; for 7;_1(x) < 1 < Ti(x)
Since the marked trajectory ¢, is unique we have :

215)  elt) = o, ot —7-1(x))  for  1€[r;_4(x), 7(X)]

and j = 2, 3, ... q. If we define the maps 74 : ¢’ — R, Ly : ¢’ — ¢’

(2.16) 7o(x) =0 , Lo(x) = x , x€c =cy,
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then we have :
@17 { ) = %L1 + -4
:I;j(x) = :I;J(J;J(x)) H .] = 1’ 2’ e 4,

and hence the maps <;, &; are also of class C.

7. For every cell ¢ of type I the function 7 : ¢ — R given by :
(2.18) fox) = £, Bx)) . xec
is of class C! and hence the function A, : ¢ x R" — R given by :
219)  H(xN=fix) +2r- fx) , x€ECG , reR"
is also of class C!.

Since the first » equations of the Hamiltonian system :

dx 0H, N
ar = o x, ) = fx)

(2.20) da oH of
__:_~._.i(x’)\)=_ d
dt ox

of

) — A5 )
do not depend on 2 and represent a differential system which coincides
with (2.9) (), we deduce that at every point (x, 2) from ¢ x R" there exists
a unique solution ®, 5y = (Y 7e.n) Of the system (2.20),, which is defined
on the whole interval of definition (f; (x), £ (x)) of the maximal solution ¢,
of the system (2.9)(). Moreover, the function H,is a first integral for the
system (2.20), that is H(e(2), Nea(t)) = constant for ¢ € (¢7(x), &5 (x)).

8. We consider again the cells ¢ = ¢4, ¢, ... ¢,, of type I, through which pass
all the marked trajectories starting in ¢}, the maps 7, : ¢’ —> R, L; : ¢’ — II(c,)
which satisfy (2.14). Since II(c,) © G we have £,(x) = tp(x), Ly (x) = x5(x)
for x €.

If II(c,) (and hence Ii(c,) is of dimension k, k, >k, k;<n-—1
~i=1,2,...¢q) and if we have the following parametric representation :

(2.21) X' =yt 57 s
for x” in a coordinate neighborhood of the point X(x) € I1(¢;) we may prove :

Proposition

For every marked trajectory o, : [0, #] = G which starts from the point

x € G\N there exists a vector A(x) € R" and a curve w,, : [0, 5] — R" with
the following properties :

Revue Frangaise d’Informatique et de Recherche opérationnelle
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(l) nl(x)(o) = )\(X) and for tG(Ti_l(X), T;(X)) the curve ((Px’ n)‘(x) is a
solution of the system (2.20);,;

(ii) 7y is continuous to the right hand side and its one sided limits at
the points 7 = t,(x), A] = M(7i(x) —0),i = 1, 2, ... g, satisfy the following
relations :

; - %@ L 52 s")=§}-7. ', 835, 7=1,2, .. k
.22 o’ o’

H (5", 5% . 85,2,) =0

[ A
2, | & o
| H(x (5", 8% 85),07) = 0

. oy(i )
—ax%f) (st s =xt ——’(—({) (s', 5%, ... s%)

where i =1,2,...g— 1 and h(s', s% ... s*) is the local representative of the
function g in the considered neighborhood of the point X,(x) = x¢(x) € G

and Ar(x) = nh(x)(Ti(x))y i=12,.. q9— 1.
In particular we have H,(x, \(x)) = £°(x, v(x)) + A(x) + £(x, v(x)) = 0.

9. For every x € G\N the value of the functional to minimize along the
marked trajectory ¢, is given by :

Ti{x)

(2.29) W(x) = g(Ly(x)) + Z f Tiox0)dr

Ti--1(x)

and it is proved that the restriction W, = W|, is of class C! and verifies the
relation :

d 1.2 r aXc 1.2 r
(2.25) — W((s, 57,...58) =Mx) = (s, 55 ...57)
os’ os’

forj =1, 2, ... r, where r is the dimension of the cell ¢ and x’ = X(t)(sl’ s2...5")
is the parametric representation of in a coordinate neighborhood of the point

X = Y50, .- 5p) € €. B
In particular, when ¢ C G\ M, M = ( U Pi) U N, that is ¢ is a cell of

\i=k—1
the maximum dimension », then we obtain :

ow

(2.26) P

= MX)
and A(x) is uniquely determined. From 8. it follows that :

2.27) B 39+ 106, 0) + 75, v() = 0, x G\ M.
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10. If we denote
g=W|ley=Wneyi=12.9—1,g,=¢
then from 9. we obtain :

Oy, o
. 52.£0) ', 5% s =—
57 Os’

. c
O (s, %8 = —h(s",... s
3 &i(xciy( ) a7 ( )

for j = 1,2, ... k;, where h,(s*, s% ... s%) is the local representative of the func-
tion g; in a neighborhood of the point X,(x) on Il(c;). Hence the formulae (2.22),.
(2.23) from 8. may be written in a unitary manner :

- Oy oh,
2.28 A7 2 (o1 5?50y = (s s, s
(2.28) o5/ ( ) as’( )

fori=1,2,..q where h, = hand g, = g.

11. Using the Boltyanskii’s lemmas and the properties of the admissible
synthesis we may prove the following necessary ans sufficient condition for
optimality of the admissible synthesis in the form of dynamic programming
principle :

Theorem 1

The marked trajectories (the controls generated by the admissible synthesis)

are optimals if and only if for every point x € G\M the following inequality
holds :

@29 e 1w+ 100 > D@ 1600 + SO, ) = O

for any u € U.

12. The same condition may be stated in a certain form of the maximum
(minimum) principle of Pontryagin : if we define the function

J:Gx Ux R —Rby:
(2.30) Je(x, u, N) = fOx, u) + A+ f(x, u),

we observe that Je(x, v(x),A) = H(x, M) for x € ¢. Using 2.26 and (2.27)
and the theorem from 11. we obtain :

Theorem 2

The marked trajectories are optimal if and only if for every marked tra-
tectory o, : [0, tz] — G, x € G\M, we have for every 7 €[0, t5] :

Je(‘?x(t)a u, nz(x)(t)) 2 Je((Px(t )> U(‘Px(t)), nl(x)(t) =0
for any u € U.
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3. THE ALGORITHM FOR THE CONSTRUCTION
OF THE OPTIMAL SYNTHESIS

The algorithm proposed in this section contains three « steps » every step
on his side containing several « operations ».

The first step contains preliminary operations which deal with the whole
phase space G.

The second step which is « the main routine » is worked many times for
different « data » of the problem. This step contains two « cycles » and repre-
sent what usually is called a routine.

The third step contains the operations to verify some conditions that
must be satisfied by synthesis obtained.

Some of the operations of the algorithm (even in the step I or II) cannot
be worked if some conditions are not satisfied. These operations were labeled
with small latine letters a, b, ... Some of these conditions are very strong : if
they are not satisfied then algorithm does not work for our problem. The
other are less strong in the sense that they are satisfied if we restrict the phase
space to a subset of G.

The passage from an operation to another is made either nonconditioned,
in the natural order of the operations, or conditioned, that is we must pass to
an operation or to another if a condition or another is satisfied.

THE ALGORITHM

The step 1
a) F-1. We define the map £ :G x U X R"—R:
3e(x, u, ) = £, u) + A+ f(x, u)

or

Je(x, X%, . x"ut, u? o uh A e ) = £ X d L uP)
n ) .
+ Z NG X% X" ut uP ).
. J=1

For every (x, ) € G X R" we are looking for min J&(x, u, A).
u€lu

Condition (@). There exists a map #: G X R" — $(U) (where F(U) is
the family of all subsets of U) such that :

@G.1)  min B(x, u, A) = Je(x, u(x, A), ) = H(x, ®) for every (x, A)

u€l
in G X R".

n° R-2, 1971.
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If Uis a compact subset of R?, condition (a) is satisfied.

If there exist points in G for which u(x, \) € U with the property (3.1) does
not exist then we may restrict our problem to an open subset G' C G for
which the condition (a) is satisfied.

If there is no such G’ we stop : the algorithm does not work for our pro-
blem ; otherwise we pass to the next operation.

b) 12

Condition (b). We verify that function H : G X R® — R obtained by the
operation I-1 is a piecewise smooth function (of class C!) that is, there exist
the open sets Uj, U, ..., U, € G x R" such that |J (U)) =G x R" and

— - j=1
H; =H| , isofclass C! forj=1,2,...m.

If this condition is not satisfied we stop : the algorithm does not work ;

otherwise we pass to the next operation.

We denote by FIJ the extension of class C! of the map I?, to a neighbo-
rhood U; of the closure U}, j = 1,2, ..., m.

The step 11

We take by definition B = B, gi” = g, ko = k = dim (BY).

We suppose that we have determined by recurrence : («) the nonnegative
integers k; > k, m; > 0, for i=0,1,2,...1—1, and for i =0, 1,...1, the
integers m;, > 1, n;, > 1 where r =0, 1,...m;, when i =0, 1,...1 —1, and
r=0,1,..g—1 when i =1; (8) the differentiable manifolds B’ C G of
dimension k; for r =0, 1, ... m; when i =0,1,...1—1and forr=0,1,...q
when i =1; (y) the C!-functions gt : B — R for y =0, 1, ... m; when
i=0,1,..1—1,andforr=0,1,..., g wheni =1;

We suppose that for every pair (G{?, g(?) we have determined :

(i) the differentiable manifolds S{%% C G of dimension k; + 1 possibly
with boundary 3G ;

(i) the differentiable manifolds G{;% C G of dimension k; such that the
union G* =G DT UGS DS is a differentiable manifold with boundary
S5 Vol

e . (), .

(iii) the maps v{)* : G{%*— U of class C! ;

(iv) the functions W,(2*: G{%%: — R of class C1, where & = 1,2, ... n;,,
p=12,..m;,.
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The routine (G, g)

We shall describe the operations to obtain the numbers my ,, 7 , and the
elements G5, GP;%, v(q")l;ﬁ Ww®e for p=1,2,..my, and « = 1,2, ... ny g

II-1. We take ny, = the number of the connected components of the
manifold BY and we denote B** « = 1,2, ..., ny , these connected compo-
nents. We take by definition g?* = g |

In order to avoid still more complicated notations we shall consider that
the connected differential manifold G{** admits a global parametric repre-
sentation :

(32 x =Pt 5% e 5
If not, we have to repete the construction for every coordinate neigh-

borhood.

We denote h>%(s", s ..., ') the local representative of the function g
with respect to the parametrisation (3.2).

We take « = 1 and we pass to :

The subroutine (G*, h{""%)

I-2. Foreveryset U}, j = 1,2, ..., m, we define the following set : B;%* =
the set of all points (x, A) € 17; which satisfy the following three conditions :

1. x = X(;)'“(sl, 5% ..., 8 e T)’g)’“

2. h = AP*(sY, 5% ..., s") is given by the system :

@, a M,a
x-a—)a‘q— R S R I R S S
(33) §

HGO(shs2 ..., 81,0 =0.

3. (The condition of transversal intersection.) For every (s, 52, ..., s"I) the

set #"-* of all the points u in the set ﬁ(x(q‘)'“(.;'l, 52, ., 80, 2025, 5% L, 5)
. o 8y 0=

for which the matrix with columns aJ%"—(s‘, v 80, =1, .., k, and

5

Y %(s", ..., s'), w) has the maximum rank k; + 1, is nonempty.

If the boundary of the control space U is piecewise smooth then this condi-
tion assure also the application of the implicite functions theorem to give
%1s Ags ... A, from the system (3.3).
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If all the sets G.W"* j = 1, 2, ..., m are empty we pass to the operation II-8.
a.j »J p
If there exists a set ’G;“J) ** #£ @ we pass to the next operation.

I-3. Let (x5 %, 2), A% ; x, %)) the solution defined for f < 0 of
the system :

dx OH;
a = *-aT" (x,2)
(3.9), o
! S& _ gl_-’. (x )\)
dt ox

with the initial conditions :
xP:%(0; x,0) = x
{ AP %05 x, 0) = A
for every point (x, A) € B, 9=
For every such point (x, A), we define t{%*(x, ) < 0 as follows :
@ if G5 x, ), 20 (2 ; x,0)) € U; for all

< 0 then T (x, ) = —

(i1) if for every t < O there exists ¢’ < 0, ¢’ > ¢ such that
GO 5%, 0,092 ;x,0) ¢ U;  then  «P(x,2) =0;

)

(iii) if neither (i) nor (i) occur, then t$%*(x, n) is the negative number
which satisfies the conditions :

P75 %, 0), K057 (¢ 5x, M) € U] for t{%%(x,2) < t < 0 and
G0, K057 (15 %, 0) ¢ T; for 1 < P%(x, W).

We define now the sets (1) :
BS5)  S0 = (0N | 10N < £ < 0, (x,2) € BLO
(3.6)
8W% = {xB GO, N 5 %N | (62 €T, P — 0 < P (x,2) < 0}

foreveryj=1,2,..

If all the sets Gf}?}f‘,, %%, j = 1,2, ..., m are empty we pass to the opera-

tion II-8 ; otherwise we pass to the next operation.

(1) With the natural convention that a set is empty if its definition is meaningless.
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¢) II4. We delate the sets G4, 80:% such that @P;% is contained in
B or 0% is not a differentiable manifold (possibly with boundary) of
dimension k; + 1 or if @!% is not empty or a differentiable manifold of

. . 4.,J,2
dimension k;.
If there not exist some sets G0;%, ©%% that satisfy the condition (c) we
pass to the operation II-8 ; otherwise we pass to the next operation.

d) II-5. For every x €GP =8N rUG®:5 we consider the point

. 4,451
(X0s Ao) € B and ¢, < 0 such that :

(3.7) x = xPs* (15 5 X0, Ro)-

Condition (d). For every x € €0} we may take a point v("'“(x) in the
union of all the sets #(x, XD3* (2, ; Xo, Ao)) Where #;, xo, A satisfies the condi-
tion (3.7) such that the followmg conditions hold :

(i) the map v?;* : @P;* — U so defined is of class C!;

(ii) there exists an open neighborhood @g’,“ of the closure Gg_’;“ and
a Cl-extension 5% to &} of the map v{;*.

Again we retain only the sets §;%, ;% and the corresponding maps v
g 4,i,1° q,j,2 p

for which this condition is verified. If there exists such a set we pass to the
next operation ; otherwise we pass to the operation II-8.

We notice that for a set G;* we may obtain two or more maps v{;*
and hence we may obtain more than one optimal synthesis. In what follows
we work with one of these maps.

e) II-6. Let x € 8™ and #, < 0, xo, Ao, With the condition (3 7). Then
we define the map <p(‘) °‘( x) : [0, — 1,1 —> SO by

(3.8) eD*(t 3 x) = xP*(t + 1, 5 Xo, Ap) for £ €0, — 1,].

Condition (). We verify that ¢{*(- ; x) defined in this way is a solution
of the differential system :

(39) = £ o0

with the initial condition :

(3.10) ¢D(0; x) = x
We note that in this case we have :

3.11) P (— 13 %) = Xo.

n° R-2, 1971,



70 S. MIRICA

REMARK 3.1

We notice that this condition is verified if we have :
ail : o o~ o
(3.12) 3 06 M= £ v (), x € 87

and (3.12) is satisfied if the boundary of U is piecewise smooth.

We retain only the sets §J’;* and the maps v{’y* for that the condition (e)
is verified. If such elements do not exist we pass to the operation II-8 ; other-
wise we pass to the next operation.

f) II-7. We define the map Wq(f}'“ : Gf;,’;“ — Rby:
(.13) W) = gD @D (— 1)

+ f 70 5 %), @05 (15 x)))dr

Condition (f). We verify that the map W, 9" is of class C!.

We retain the sets &;* (and hence the maps v (% W) for that the

condition (f) is verified and pass to the next operation.
We notice that at this moment the subroutine (G, g ) is finished.
; i i M. O, —
Now we repete this subroutine for all pairs (G,”*%, g,”") for « =1, 2, ... ng .
I-8. If « < n; , then we take « + 1 instead of « and pass to the subrou-
tine (0% g (to the operation II-2).
If « = ny, (hence we have considered all connected components ’82"’“
of the manifold BY) we pass to the next operation.

I-9. We continue the routine (G, gP). For all indeces i, «, 7, p, Y and
I, B, g, j, & for that @)% N GP/§ £ ¢ we define the sets :

r.p,Y
G149 NG = {x €SN X5 | W) =Wk (0}
(.15) SRl e = €05 N5
U{xe&ls Nl W) ) < W)}
(3.16) SQFKn = ©PEN &l%
U {x e85 N&Y5 | Wit > W)}

sPsY

If all the above intersections are empty then we pass to the operation II-11;
otherwise we continue.
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II-10. We write the sets G{2;%$8. . above determined in the form &{%%
by changing the integers m;, m; ,, n;,, fori < I, r < g, and the routine (G, g)

is finished. We pass to the next operation.
II-11. We define the set :

’ () T e ) A,
(3.17) Bprr = U U (872 UG,
j=1a=1

If B, # ® we define the map g{), : BY); — R by :
(318)  gN,x) =W (x) for x € e“} * We put g + 1 instead of g and
pass to the routine (Gf}’, g‘;’) (to the operation II-1).

If B, =® and ky+ 1 <n we take my =g, kj,y =k + 1 and we
define the set :

my,e Ny

(3.19) BED = U U U (int(&%9%,)) andthe map:
r=0p=1 a=1
(3.20) g8V (x) = WOA(x) if x €int (S%)

We take I + 1 instead of I, 0 instead of g and pass to the routine (G, g®).
If B&, = ® and k; + 1 = n we pass to the step IIL

The step I

g) MI-1. We define the cells of the optimal synthesis :
(i) the k;-dimensional cells of type I are the connected components of the
sets GS‘;"{ N G and 0845 ;

r,p,1 >

(ii) the k,-dimensional cells of type II are the sets &{)%.

Condition (g). We retain only the cells that verify the conditions B-(ii)
and B-(iii) from the definition of the admissible synthesis.

If such cells do not exist we stop : the algorithm does not work for our
problem ; otherwise we pass to the next operation.

h) I-2. We define the sets N,P* P¢*! . P""' P" of the admissible
synthesis :

(i) N is the union of all the sets in the form N%;%0% 5 defined in the
operation II-9 ;

(i) P’ is the union of all the cells of dimension less or equal to i, i = k,
k +1,..n, and we define the set G' = int (N U P") which is the new phase
space of our problem in which the optimal synthesis exists.

We notice that in this operation the set P"is not the same as in the definition
of the admissible synthesis.
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Condition (/). We verify that the set N is a piecewise smooth set of
dimension less than # and P’ is a piecewise smooth set of dimension
i(i=k,k+1,..n).If it is not the case we stop : the algorithm does not
apply for our problem ; otherwise we continue.

i) II-3. We verify the fact that every solution of the differential system :

dx
3.21) ar = S o)
reaches transversally and in a finite time the terminal manifold B and inter-
sects only a finite number of cells.
We may retain only an open subset G” C G’ such that the points in G”
have this property. If such a set G” does not exists we stop : the algorithm
does not work for our problem ; otherwise we continue.

j) II-4. We verify that the function W : G" — R defined by the functions
W,)-% on every cell is a continuous one.
We may retain only an open subset G” of G” for which this condition is

satisfied. If"such a set G” does not exists we stop : the algorithm does not
work for our problem ; otherwise we continue.

II-5. The sets N, P*, P**' .. P" and the map v : G” — U represent an
optimal synthesis. STOP.

REMARK 3.2

In certain cases we may apply the algorithm even if some of the numbers m;,
m;,,, n; , are not finite.

Indeed, if the fact that such a number is infinite is caused by the fact that G
is non-bounded, then we may restrict our considerations to a bounded open
subdomain G’ © G and we deal with finite numbers m;, m, ,, n; ,.

In other cases there are some general formulae or some recurrence relations
that allow to work with infinite numbers m;, m; ,.

To justify the statement of operation III-5 of the algorithm (that is the fact
that the sets N, P¥.. P"~! P" anf the map v : G” — U represent an optimal
synthesis) we observe that every condition of the definition 2.1 of the admissible
synthesis is implied by a corresponding condition in the algorithm. Hence we
have obtained an admissible synthesis.

Moreover, from the operations I-1 and II-5 we deduce that the maps
v:G"—Uand 3 : G" x U xR— R" verify the condition :

(P (1), 4, Moy (1)) 2 FAP ) (1), 0(P (3y(1)s Mxy()) = O
for every u € U, t € [0, 1z] where, (¢ (), 0)x)(*) is the solution of the Hamiltonian
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system (3.4) with the initial condition (x, A(x)) and which satisfies the rela-
‘tions (3.3). From the theorem 2.2 in section 2 it follows that the obtained
synthesis is optimal. Therefore we may state :

‘Theorem 3.1

If all the operations of the algorithm may be accomplished (that is we arrive
to the operation III-5) then an optimal synthesis is obtained.

REMARK

Conversely, if there exists an optimal synthesis and if the conditions (a)
and (b) are verified then the algorithm is working.

A proof of this statement will be given separately.

4. EXAMPLES

Example 1 : the forced pendulum ([9])
The control system is the following :

do _
a ~ ?

(ai;:’:——sinﬁ—otZ-Fu, where |u| < 1, > 2,

The terminal manifold is T= {(2nn,0)|n=0, + 1, + 2,... }. The
functional to minimize is defined by g = 0, f° = 1.

The step 1
a) I-1. We define the map J8(0, z, u, A [, A,) = 1 + Az + X, (u—sin 6 + az)

and we find : min J&(0, z, u, A, A,) = H(D, z, A, A,) where :

Ul
140z +20—sinb—az) for r, <0

H®, 2, 0,09) = § 14+ Az — (1 4-sin 6 + az) for A, > 0

b) I-2. We take
Ul*—_:{(e,z,)\l,xz)lkz < O}, U;={(9,Z,7\1,7\2) l )\2 > O}
and we observe that the function H, = H | %, j = 1, 2, are of class C!, hence

the condition (b) is verified.

n° R-2, 1971.



74 S. MIRICA

The step I
We take by definition B’ =G, gl = g = 0, k, = dim (BY”) = 0 and
we pass to
The routine (GY, g&”)
I-1. The connected components of the terminal manifold BY’ are the

points " = { (2xn,0)},n =06, + 1, + 2,..., which are O-dimensional
manifolds with the parametrisations :

0 = %0?""(s) = 27n
@D ] =3O =0 for s=0n=0%1,%2,..
The local representative of the function g{® corresponding to this parame-

trisation is :
4.2) A"(s) =0 for s=0.

We note that we are in the situation from the remark 3.2 since the num-
ber n, o of the connected components of GS” is infinite, but in this case "
are regularly disposed on the 6-axis. This regularity allows us to obtain the
results for G translating the results for BE-° along the 6-axis. Therefore
we shall effect the subroutine (G{°°, 4{"°) and translate its results with 2nn
along the 6-axis and obtain the results of the subroutine (G$"", #{'"). Hence
we take o = 0 and pass to

The subroutine (G0, K-%)

I1-2. We define the sets BF%j =1,2:
For j = 1 the system (3.3) becomes :
H,(0,0,23,25) =1 -+ 29 = 0and hence A} = — 1. Therefore

GBI ={0,0,2), — D[R}
For j = 2 we have :
H,(0,0,29,29) =1 —23 = 0and hence B9"° = {(0,0,2{, 1) | \’e R}
II-3. We integrate the differential systems :

dx az},
I “-5)7()6’ A)

ar
4.3)) o o
@ = N
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where x = (0, z) and A = (%, ), with the initial conditions from the sets
G*(0),0

0,j

For j =1 we have :

@ _,
T
% =—oaz—sin 0 4+ 1
4.9 )
da

1 -
——= =2, cos 0
dt 2

da
d—;:—xﬁtuz

and the initial conditions : 6(0) = 0, z(0) = 0, 1,(0) = A} € R, 1,(0) = — 1.
The first two equations do not depend on A,, A, and in the right hand side
verify the conditions for existence and uniqueness of the solutions on the
whole plane (0, z) ({7], [12]).

It follows that there exists a solution (65;°(-), z;°(-)) of the system :

4.5)
dz

a?-:—smf)—ocz—i—l

which satisfies the conditions : 6§°)°(0) = 0, z{’)°(0) = 0 and which is defined
for all ¢t € R. It is easy to show that this solution is monotonically decreasing
to — oo for ¢t — — o0 and that it does not intersect the 86-axis for any point
t < 0(fig. 1).

Figure 1
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The other two equations of the system (4.4) form the linear differential
system :

% = %, cos 857°(1)
4.6)
d—;\tz iz e )\1 + 1)\2
with the initial conditions : 1,(0) =23 €R , 1,(0) =—1.

To define the sets §§°}'%, v = 1, 2, we need only the second component A,(?)
of the solution of this system. Hence we consider the second order differentiial
equation :

2
A
d );2 d =2 2+ 2, cos 0°:°(t) =0
dt
with the initial conditions : A,(0) = — dxz (0) = — A} — o which is eaqui-

valent with the system (4.6).

To find the set of all # < 0 for which the solution
OFY°@), 25Y°0), 125 29), 1,(2519))

belong to the set U} = { (6, z, A;, 1,) | A, < 0} we use the change ([9)]) :

at

4.8) M) =e * §(1)

and obtain the differential equations :
2

4.9) ‘:1—‘23 + (cosO 0w — )q, =0
t

Since we have « > 2 it follows that cos 8§%°(f) — — < 0 and if we apply

a comparison theorem ([7] chap. VIII) we deduce that any solution of the
equation (4.9) changes the sign at most once. From (4.8) it follows that any
solution A,(¢ ; A) changes the sign also at most once. Now it is easy to show
that there exists a A} € R such that A,(z’ ; A9) < 0 for any ¢’ < 0, that is we
have :

8% = { (O5°®, z80°) |t < 0}, 8% = .
For j = 2 we must integrate the differential system :
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4
dt

dz
dr

=12z

=_—sin@—az—1

(4.10) ‘

— = —7; oA,
with the initial conditions : 0(0) = 0, z(0) = 0, ,(0) = 23, 2,(0) = 1. In the
same manner as above we obtain :

By = { 03°(), 2%°) [t < 0}, 8%% =@ where (68%°(1), 26°5°(1)
is the solution of the differential system :

(4.11)

which satisfies the initial conditions 6°y°(0) = 0, z{’}°(0) =0

¢) II-4. Tt is clear that 8%)9,j =1,2 are ko + 1 = 1-dimensional mani-
folds without boundary (hence 98§} = @, j =1, 2) and the condition (c)
is verified.

d) II-5. Since for every point (6, z, A, A,) € U* we have u(0, z, Ay, A,) = 1

and for every (0, z, A, &,) € U¥ we have u(0, z, A,, A,) = — 1, we define the
functions : v : €% —[— 1, 1], = 1, 2, as follows :

o0, =1,  0gy%02) =—
and hence the condition (d) is verified.
e) II-6. Let us consider the point (6, z) € €53 such that :
(412); 6=000°) , z= 2%, H<0(G=12)
We define now the function ¢§*»°(; (8, 2)) : [0, — ti] — &5)] :

4.13);, 980%t ;5 (9, 2)) = OOt + t,), 280t + t,)) for 1 €[0, — 1]

Since the condition from the remark 3.1 is satisfied the condition (e) is
also satisfied.
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f) -7, We define the maps W§*° j = 1, 2 : W§*%0, z) = — t{ where
£, < 0is given by (4.12);,.
For every z # 0 the first relation (4.12);, defines #; < 0 as an implicite

function of 6 and hence W§*)°(j = 1, 2) are C!-functions on &:{. The condi-

tion (f) is verified.

II-8. Instead of change « by « + 1 (or by « — 1) and pass to the same
subroutine with the new data we use the remark from the operation II-1
and deduce that the results of any subroutine (B{"", A"™"(n = + 1, + 2,...)
may be obtained by translating corresponding resuits of the subroutine
(BP0, KM% with 27n along the 0-axis.

Hence we obtain :

(i) the solutions (85°)"(-), z&’)"(+)) of the differential system (4.5) for j = 1,
and of the system (4. 11) if j= 2 with the initial conditions

05"(0) = 27n, z{"(0) =0, = 1,2 ;

(i) the sets &5)7 = { (65"(), z&r"(®) [t < 0}, &% = @ and G )"
are differentiable manifolds of dlmenswn ko+1=1;
(iii) the maps v{*)" : €% — [— 1, 1],j = 1, 2, defined by :

©

o= 1 o= — 1

him —
1 = H s =

(iv) the functions W§°)": @$°)" — R, j =1, 2, given by :
W™, z) = — 1" where ¢}’ satisfies the relations :
6 = 65‘3} M,z =z00(#)") for j = 1, 2 respectively.
We are now in the situation « = n, o (we have considered all the connected
components of the terminal manifold G{’) and we pass to the next operation.

II-9. For every two sets we have €)% N §{%% = @ and hence we must
pass to the operation II-11.

II-11. We have B = U U @5 UaBs) =@ and ko + 1 <
n=-® j=

< 2 = and hence we must define B = U U &)1 and the function

n=cawo ]
1B — R:gh(0, 2) = W, z2) if (6, 2) € P

We pass now to
The routine (G, gi)

I-1. The new terminal manifold B has also infinitely many connected
components GG =G rin =0, + 1, + 2,...j =1,2. We denote

Revue Frangaise d’Informatique et de Recherche opérationnelle



OPTIMAL SYNTHESIS IN CONTROL PROBLEMS 79

gy ) = g1 | GG ™P and we take the parametrisations :
1,(1),(m,j 0),
B = %o ™ s) = 65 "(s)
(4.16),., |
7 = Xg,(l):(nu)(s) — Zgﬁ'"(&‘), s<0

The local representative of the function g§7 is :
K m)gy — — 5 for s < 0. We take « = (0, 1) and we pass to.
The subroutine (B§') ", 4i (1)

II-2. To define the sets BF V), j = 1,2 we must solve the linear alge-
braic system :

de(o) ,0 d (0) 0 dh(o)’(o,l)
A 01 ()+7\OZ ()——“—O?E——(S)

4.17) .
Hj(e(O) 0(S) z67%s), A, 23) =0

For j =1 we have :
ASZEY%(s) + 3L — sin 0§ °(s) — oz?y%s) + 1] = — 1
1+ 2926%°) + AL — sin 0§ °(s) — «z;°() + 1] = 0

where the condition of transversal intersection is not verified (the rank of the
0 -0 ;

matrix of this system with respect to A, A5 isequalto 1 < k&, + 1 = 2).
For j = 2 the system (4.17) becomes :
{ MECY(S) + 23— sin B () — azfA%() + 1) = — 1

1+ A%E%%s) + A — sin 01°(s) — az{4°() — 1) =0

1
and hence A)(s) = 0, A{(s) = — o570, It follows that :
Zo,0" ()

]
‘83‘,‘2“’(0") — ! (6(0) o(s) z(o) °(s) _ “B‘)IT“’ O)\ s<0
l 0,1 (s)

II-3. We must integrate the differential system (4.10) with the initial
conditions from the set BF)"%D. Then for every s < 0 we obtain the solu-
tion (655 V(-; 5), 2515 1’( ;5)) of the system (4.11) defined for all ¢ € R
and which satisﬁes thP condmons :

[ 0683000 55) = 60%°(s)

28500 5 5) = 28°%s)

(4.18) (0,1)
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If we integrate now the other two equations of the system (4.10) with the

initial conditions A;(0) == — ~gy o, <> #,(0) =0 then we obtain the solution

1
20%(s)
(-5 8), 2(-; ) for whxch we have M(t;8)>0forallz <0, 5 <0 (we
apply again the comparison theorem from [7]).

Therefore we have :
Gy = {(O8Y (¢t 5 9), 2835 9) | £ < 0,5 < 0} GGLED =0

¢) II-4. Since the set §5'%('" is a 2-dimensional manifold without boun-
dary the condition (c) is verified.

d) I-5. For every (8, z) € 855" we have v§'}®(0, z) = — 1 and the
condition (d) is verified.

€) I-6. Let us consider the point (6, z) € 8)'%*" and ¢, s, < 0 such
that
4.19) 6 = 0630, 550,z =265Vt 5 51)

We define now :
@Gy O 5 (0, 1) = (OO + 1, 55, 2685 OV + 1, 5 59))
for t € [0, — #,]. As in the preceeding routine the condition (e) is verified.

) D1, Fort every (6, z) € €5’ " we define :

-1

@20)  WEODEO,2) = IOVs) 4 | dr=—s5,—1,
(4]

where 5, < 0, t; < 0 are given by (4.19). From the implicite functions theorem
it follows that W§'} (%1 is a C!-function on &'y ("".

II-8. We take « = (0, 2) and pass to

The subroutine (G2, pGH-(0-2)

Since BGV(%? and GGV are symmetrics, the results of this subroutine
may be writen directly from the results of the preceeding subroutine chan-
ging the system (4.10) with the system (4.4).

As in the preceeding routine we apply the remark 3.2 and deduce that the
results of any subroutine (BL™, AP j=1,2,n =+ 1, + 2,... may
be written from the corresponding results of the subroutines (GG, f{D-(0-7)
j = 1, 2 translating with 2=n along the 6-axis (fig. 2).

We have considered all the connected components of the manifold G’
and hence we may pass to the next operation to continue the routine (G4, g(V).
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II-9. We observe that for every n = 0, + 1, + 2, ... the following inter-
sections are nonempty (fig. 2) :

(1) ST NSy ete Y £ 0,k =1,2,..
(i) Seye P NI £ Bk =—1,—2,...
(iii) S NSIYTe £ 0,k =1,2,..

(0) n+t

Az g0 ! 02,1
G(c),o ) 0,2,1 {1)(n,1) i
0,21
.21 < M. . i
0,2,1 | \
\‘ \
\
\ \
\ \
0.0 \ 2m(n+1),0) €
(0,0) : ( )>
Y
!
'N( DRI
AN S
(1}0.2)
S h.2)
o1 0.0 I3 50)n+1
& 0,1 o1 013
Figure 2

Therefore we must define the new sets & and the sets of type N. It is easy
to show that foreveryn =0, + 1, + 2, ... we have

G((:)l)l(,l+k ,»2) ) 6(1) ,(n,2) and W(l) ,n+k,2) (0 Z) > W(l) (n, 2)(0 Z)

51,1

for all (0,2) e S{y PP and k=1,2, ...
It follows that NG — @, GL{IEDD.D _ Gtk
S and GRLAMIEHED _ geD for every k=1, 2, .

Similarly, for the intersections (ii) we have :

0,1,1

(1),(n,1),(1),(n+k,2) __ (1),(n+k,1),(1),(n,1 1),(n+k,1 (1),(n,2
N 0,2 ';).(0 2, ;‘ G(0)2("1) 0 )2(1)) " = G(0)2,(1' ) \ 60,)2,('1' )
1 1),(2),(n+k,1 1),(n,1 —
S e T =80y k =—1,—2,...

However, the sets

= N1):(1.2),(1)(n+k, 1)6(1),(".2),(1),(n+k.1) 6(1).("“'"‘,1).(1),(",2)
0,1,1)(0,2,1) 0,1,1),(0,2,1) » ~(0,2,1),(0,1,1)

from the intersectlons (iii) are nonempty for k£ = 1 and empty fork =2, 3 ...

II-10. In this case it is not necessary to change the indeces of the new sets &
obtained in the operation II-9. We may change only the definitions of the
sets @S2, Gy ¢Y that is we take :

1),(n,2 1 21 1,1 1),(n+1,1 1),(n+2,1),(1),(n,
SGY = SRR L GG — SRR
n° R-2, 1971.
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+ o0 . .
I-11. We have B = U U S I UM =@

n=~® (i,j)=(1,2),(2,1)
and k; + 1 = 2 = »n and hence we must pass to the step III.

The step I

g) III-1. We define the cells of the optimal synthesis :
(1) the O-dimensional cells (of type IT) are :

C¥ ={Q@mm0)},n=0+1,1+2..

(the connected components of the terminal manifold BE)

v (23 thell-dirgensional cells of type I are: C{!)! = &Q%} for j=1, 2 and
n=0, %1, + 2,..;

(3) there not exist 1-dimensional cells of type II ;
(4) the 2-dimensional cells (of type I) are the following :
G =&, OB = &4
forn=0, + 1, + 2, ...

It is obvious that all the above defined cells verify the conditions B-(ii)
and B-(iii) of the definition of the admissible synthesis.

h) I-2. We define the sets N, P°, P1, P2 ;

v o r=Ue . r-ru(UT e

‘n=—o00 n=-—o n=-o j=1

+ o0 2
r-ru( 0 Ues)

n=—0 j=
We note that P2U N = R? and hence G’ = G = R? is the phase space
of our control problem.

Since every smooth surface of an Euclidian space is « piecewise smooth
set ([4)) it follows that the sets N, P°, P!, P2 are piecewise smooth sets and the
condition (A) is verified.

i) II-3. It is clear that every solution of the system :
do

—=z

de

dz .
a=«—s1n0—-~acz+v(ﬁ,z)
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where the map v : R2— [— 1, 1] is given by :

+
+1for 0,2 U (€c@uctucd)
(0, z) = nmme

+00
—1for®,20¢ U (€%uc®y)
n=—aw
reaches the terminal manifold G ={ (2nn, 0)[n=0,+ 1, £+ 2,.. } trans-
versally, in a finite time and intersects only a finite number of cells (at most
two cells).

j) II4. It is easy to show using the definitions of the functions W§%",

W ™) that the function W : R?-— R which represent the value of the
synthesis v defined above is continuous on R2,

IO-5. The sets N, P% P!, P2 and the map v above defined represent an
admissible synthesis. STOP.

Example II ([6]).

We apply the algorithm to the time optimal control problem studied by
Boltyanskii in [6] as an interesting example in which the phase space that the
optimal synthesis exists does not coincides with the domain of controllability.

The control problem is the following :

dx' _ -
@y )| ¥
2
9%_:._%“.6(;;2)2 N uGU:[——l,l] s foEl,gEO

and the terminal manifold is the point G = { (0, 0) }.

The step I
a) I-1. We definethe map J8: R2 X U X R2—R:

Jee, x%, uy A, ) =1+ ax2 42,0 %u . e
and we find :
min Je(x, x%, u, Ay, A;) = H(x', x, A, \;) where
lul<|
_ 1 + sz + )\2%3(’:2)2 for )\2 < 0
(4°22) H(xl’ xz’ )‘1’ )\2) =

2)2

14 2x%>—2, -lée(" for A,>0

n° R-2, 1971.
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b) 1-2. If we denote
U= {5 x% A0 €R |2, <0},
U={Ghx a0 €RY [0, > 0}, H;=H| U j=1,2,

then it is clear that TI,-, j =1, 2 are Cl-functions and hence the condition (b)
is verified.

The step I

We denote G = 6, gP=g =0, k, =dim (B§’) =0 and we pass to

The routine (G, g)
I-1. The terminal manifold B§” = B = { (0, 0) } has only one connected

component Gy = { (0, 0) } (hence ny o = 1) which is a 0-dimensional mani-
fold with the parametrisation :

{ xt =y ) =0

x? =32 s) =0 for s=0.

Corresponding to this parametrisation we have :

() =0 for s=0.

We take « = 1 and pass to

The subroutine (G$'*, A1)

II-2. To define the set G} we must solve the equation

and we obtain :

BED'={(0,0,22—1)|2] €R}

In the same way we obtain :

B = {0,021 [} R}
II-3. For j = 1 the Hamiltonian system (3.5);, is :
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L
(4.23) J a2

Y

& =0

dx,

2
— )\1 i x2 e(xZ) ;\2

with the initial conditions x*(0) = 0, x*(0) = 0, 2,;(0) = A€ R,2,(0) = —
We integrate the first two equations of this system and we obtain the solu-
tion (x5 ()x3:47"!(-)) where x3**'(z) is given by

2

4.29) =2 j e¥ds  and  xyONH  by:
0

t
@29 0 = [ 06 6

We note that the curve (xg:$”"'(-), x3:”*%(-)) may be written in the impli-
cite form :

(4.26) Xt =1—e ¢
From the third equation of the system (4.23) we obtain: A, (7 ; A3) = A}
for t € R and from the last equation :
(4.27) Malt529) = — (1 + 20 () O
We must define now ="»*(A) < 0 such that for ¢ € [t{’;*(A)), 0] we have
G 71 @), x50 (1), 23, 23(r5 AD) € Ut
From (4.23) it follows that x3:{*! is an increasing function and hence

for every AY € R there exists at most one t; € R such that A,(z, ;23) =0,

namelyif 2 > Othenwehave a,(f ; A}) < Oforallz€ Rbutfor A} < 0, A,(f; A7)
chages the sign at

1
= 530
1, =2J. Me=dds > 0
0
Tt follows that

(0)1()\) —-OOifleO
0 if )\? <0
n° R-2, 1971.
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and hence
SO = {5 0. 3PN @) | 1< 0}, 8005 =0

Similarly, for j = 2, we obtain :
Sk = (0. 2 @) [ £ < 0}, 8%h =

where x3'(""!(¢) is given by the relation :

(4.28) t=—2 foxze*S’ds

and x3°$""1(¢) by :

4.29) x5 (1) = f; x5 8 (s)ds

As for j = 1, the curve (x§'$"'(-), %" (-)) may be written in the impli-
cite form :

4.30 xl=e
(4.30)

2)2

—1
¢) II-4. From (4.26) and (4.30) it follows that &{%1,j=1,2 are
ko + 1 = 1-dimensional manifolds without boundary.
d) TI-5. We define :
o (x, x?) =1 for (x!, x?) € Y},
%1 (x!, x?) = —1 for (x', x?) € &%’}

and we see that o’)* : %] — U, j = 1,2 are C!-functions which may be
extended to C!-functions on some open neighborhoods of the closures

a,a_ﬂ, nggll respectively.

e) II-6. Let us consider the point (x', x*) € G“B 1 and #{ < O such that :
4.31);, xt =xgP(#),i=1,2, for every j=1,2.

Then, for every j =1, 2, the map ¢} ; (x*, x?) : [0; — ] — &)1,
BERDY - i (e (6!, %) = (xb 120 + £, 1340 + 1)
is the solution of the differential system :

dx! 2
"
ax* 1 oO 2\ ?
ar =30 L x)e
with the initial condition ¢§’}*(0; (x*, x%)) = (x', ¥%),j = 1, 2,
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We note that the condition from the Remark 3.1 issatisfied and hence the
condition (e) is automatically satisfied.

f) I-7. We define the maps W' : €)' — R,j=1,2, by :
—n

4.32) W', x?) = , dt =—1¢

where #} < 0is given by (4.31);;. Therefore W{’;% =1, 2 are C'-functions
and the condition (f) is verified.

The subroutine (BY’, A{!) is finished and we continue the routine

(BY, g

II-8. We have « = 1 = nq o, and hence we must pass to the next operation
to continue the same routine.

I-9. We have @)} N &%} = @, hence we pass to II-11.
II-11. We have

B = U (GRAVECT

0,j,1/ —

andky +1=1<2=n
Therefore we define :

BY = U (int (6“3,})) = Gf;‘f’l'fl U Gf,%’, and gi": GV — R using (3.17),

(3.18)
We pass now to the new routine :

The routine (G, gV’)

I-1. We have ny,, =2 because TGS’ has two connected components
B = BEYY, B2 = B, with the parametrisations :

_s2
(4.33) «6(()1),1 . { x! = X(l)’(l)’l(s) —1-—e
¥ =y s) =5 s<0

(4.34) T E i A OB
=y 2 g 50

n° R-2, 1971.
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The local representatives of the functions gf* = gf”| B§% o =1,2,
are :

(4.35) B (s) = —2 f e dt, s<0
(1]
(4.36) HD2(s) =2 f e~ dt, s> 0
0
We take « = 1 and pass to.

The subroutine (GLV*, A{V+Y)

II-2. For j = 1 the system (3.4) has the following form :

d 1,(1),1 d 2,(1),1 dh(l),l
NE— () + 3] o () = ——(®)

1+ 20 33 (s) + 23 e 0" =0
and from (4.33), (4.35) we obtain :
Aes+2.29e =—1
1+ 10 +222e" =0
Since the rank of the matrix of this system with respect to Ay, AJ is
D 15 A2

equal to 1 for every s < 0, the condition of transversal intersection is not
satisfied.

For j = 2 the system to be considered for the definition of the set G4
is the following : \
2
W25 £ =—2e7F

14+29.5— ;:)\ge82=0

Therefore we have :

“(33,(2”'1:{ (1 —e s, —&1—,0) |s < 0}

II-3. We integrate the system :
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dx?

de

2 9
dx” 1 ey
dt 2
dr

4.37) ‘
=0

da 222
B,

with initial conditions from the set 'G*“) 1 and obtain the solution

(080 (5 8), X35 (e ;s),—s-l,xz( s)) where x5! (#; 5) is given by :
2

(4.38) t=—2f e " ds,

A0 (155 by
t

(4.39) xSt 8) = I x5 (v s 8) d
0

and A,(¢; 5) by :

@40) (39 = (_ 2+ 220G s)) i es”

We notice that the curve (x§°$"'(-;s), x5'57"'(- ; 5)) may be written as
follows :

(4.41) x'=e P e 11
For every s < 0 we have x3'{""!(¢;5) > sfor t < 0 and hence 2,(z;5) > 0
for every t < O:

Therefore we have :

SOy = { (x5 (15 8), X350 (t5 ) | 1 < 0,5 < 0} &Gy, =0

We notice that according to (4.41) the set &§'%) may be written as
follows :

Syl ={( " =2 +1,5)|s<0,t> s}

¢) I-4. 1t is clear that ')’} is a 2-dimensional differentiable manifold
without boundary that looks as in fig. 3 ([6]).

n° R-2, 1971.
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?) Ilfs. For eve(xg) (x*, x*) € By, we take vi'y'(x!,x?) =1 and we
verify the condition (d).

e) II-6. Since the condition from the remark 3.1 is verified, the condi-
tion (¢€) is also verified. Moreover, since the function f° (equal to 1) does not

contain neither x! nor x? we need not the function g{'%* for passing to the
operation.

-
T
-
e

/ \
I ‘\
! \
! \
! A
._ll \ x
f M [l
{ H
\ I}
' /
\ !
\ !
\ {
\ |
\ !
\ [}
\ I
i t
Figure 3
f) I-7. According to (3.13) for every (x, x%) € €5'}'} and ¢, s; < 0 such
that :

4.42) x'=x35"V ey ss) . X =x$0 Nt ;s)  we have:

- s
WEP e, x*) = B () + f dt =—2 f e P dt—1¢,
0 )
and using (4.38) and (4.39) we obtain :

(4.43) Weri(x!, x*) = —2 f

0o

x2

e dr 4+ 2f e~ dt

51

S1

where s, is given by :

(4.44) 5 =— J 1n 1___2___

+e —@_ 41

Now it is obvious that W§'}! is a Cl-function.
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II-8. We have « =1 < n,;,; = 2 and hence we take « =1+ 1 =2 and
pass to :
The subroutine (TS, h{V+%)

By symetric reasons the results of this subroutine may be written immediae
tely from the corresponding results of the subroutine (B!, A{P+1).

II-8. We have « = 2 = n,,; and we pass to the next operation.

II-9. All the intersections 0% N &% are empty and hence we pass
directly to the operation II-11.

I-11. We have .
B = L_J l_J D U 384%) = 0

and k; - 1 = 2 = n. Therefore we must pass to the step IIl.

The step III

g) II-1. We define the cells of the admissible synthesis :

(1) the O-dimensional cells (of type II) are : C{¥ = B = { (0, 0) }

(2) the 1-dimensional cells of type I are : C{*}' =& )1, C&Yt = &5%3
(3) there not exist 1-dimensional cells of type II;

(4) the 2-dimensional cells (of type I) are : C?) = &§')}, CZ) = &4%%
(The meaning of the upper and lower indeces of the cells is the following :

the left upper index shows the dimension of the cell; the right upper one
the type of the cell (we note that we need not show the type of the 0-dimensional
or 2-dimensional cells) ; the left lower index is a order number and the right
lower one shows the « type » of the trajectories that the cell contains (in our
problem we have trajectories of two sorts : the solutions of the system (4.23)
and the solutions of the system (4.37).

It is clear that the above defined cells verify the conditions B-(ii) and B-(iii)
from the definition 2.3.

h) II-2. We define the sets :
N=0,P°=CQ, P'=P°UC{)'UCH! =P'UCRUCH =G

21’

As in the preceeding example the sets N, P, P!, P2 are piecewise smooth
sets and the condition (4) is verified.

i) I-3. If we define :
o, ) = { L for () ee UCHY UCR)
—1 for (x!,x*eCiH' UCY),
n° R-2, 1971.
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then from the above results it follows that every solution of the system :

dxl 2

&

gﬁ 1 o(x*, x%) e’
t 2 >

reaches G transversally, in a finite time and intersects only a finite number
of cells (at most two cells).

j) II-4. From the definition of the functions W = it follows that the
functions W : G — R that coincides on every set G* with W, )** is conti-
noous and the condition () is verified.

HI-5. The sets P° P!, P2 and the map v represent an optimal synthesis
for the control problem (4.21). STOP.
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