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R.I.R.O.
(5e année, R-2, 1971, p. 55-92)

AN ALGORITHM FOR OPTIMAL SYNTHESES
IN CONTROL PROBLEMS

by Stefan MIRICA Q

Abstract. — An algorithm for an optimal synthesis is described and iîs effectiveness is
shown on two examples.

1. INTRODUCTION

The algorithm proposée! in this paper was suggested by the R. Isaacs'
technique and the results from [10] and [11] concerning admissible and optimal
synthesis for a class of control problems and differential games.

We ought to point out that the algorithm may be considered as a générali-
sation and in the same time a justification of Isaacs' technique.

The algorithm consists in the « backward intégration » (with some special
« final » conditions) of the Hamiltonian system which dermes in [10], [11] the
dual variables.

R. Isaacs uses in [8] a technique to construct optimal synthesis for many
examples of differential games and control problems. This technique consists
in the backward intégration of the characteristic system of a partial differential
équation — the fundamental équation.

As we may easily observe, the dual trajectories defined in [10] and [11]
eoincide with the characteristique curves from [8] in the particular case consi-
dered by Isaacs.

The Isaacs' technique can be applied only to the control problems (and
differential games) for that the terminal manifold is a surface that is a diffe-

(1) Universitatea Bucuresti, Facultatea de Matematica-Mecanica.
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56 S. MIRICA

rentiable manifold of dimension n — 1 if the phase space is of dimension ».
The algorithm proposed in this paper is applicable also to eontrol problems
for that the terminal manifold is &-dimensional where 0 < k ^ n — 1 and
hence it represent a généralisation of the Isaacs* technique.

The properties of the admissible synthesis proved in [10], [11] allow us to
describe in a précise manner all the opérations of the algorithm and especially
the technique in the large. The algorithm is rigurously divided in « steps »,
«routines», «subroutines» and «opérations» and this allows to apply it
in a sufficiently automatic manner.

Moreover, the définition of the admissible synthesis and the sufficient
conditions for its optimality represent rigurous criteria for optimality of the
obtained synthesis. From this point of view this algorithm represent a justi-
fication of R. Isaacs' technique.

We ought to notice that the considération in [11] of the eontrol Systems
on differentiable manifolds suggested a basic idea of the algorithm : to work
in the cotangent manifold of the phase space and to project the results on the
phase space by the cotangent bundle. In this case — the global one — the
dual variables are to be considered in the cotangent space and there exist
some curves on this space — the dual trajectories — that are projected by
cotangent bundle on the « marked trajectories » (the trajectories generated by
the admissible synthesis on the phase space).

To understand and to justify the opérations of the algorithm we present
shortly in the section 2 the définition and some properties of the admissible
synthesis proved in [10] and [11].

In the section 3 we present the algorithm and we prove that if the algo-
rithm is working for a eontrol problem then we obtain the optimal synthesis.

In the section 4 we apply the algorithm to two examples of eontrol problems
solved in [9], [6] by other methods and we obtain the same results.

The algorithm may be formulated and may be applied to eontrol Systems
on differentiable manifolds. In this paper was preffered the local case —
eontrol Systems in which the phase space is an open domain of a real euclidian
space — because of the frequency of such problems for the applications and
because in this case the main features become more understandable.

For differential games the algorithm can be applied in the same manner
as for the eontrol problems ([8], [10]).

We note that although the algorithm is described as a typieal one for
the use of the computers, the use of computers to construct the optimal
synthesis is not matematically justified because of the absence of some results
concerning the « stability » of the optimal synthesis to variations of the data
of the eontrol problem and to eomputing errors. This remains an important
open problem.
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OPTIMAL SYNTHESIS IN CONTROL PROBLEMS 57

2. THE ADMISSIBLE SYNTHESIS.

DEFINITION AND PROPERTEES

We consider an open domain GCjR" — called phase space, a set U C Rp

^which is supposed to be a closed set, called control space and a C1 — map
J : G x U-+ Rn which defines the « parametrized » diiferential system :

(2.1) Tt^fipC'u) ' X € G ' UeU'

A d i f f e r e n t i a b l e m a n i f o l d TS C G o f d i m e n s i o n &, 0 < / : < « — 1, c a l l e d
terminal manifold, is also given.

We say that S = (G, *7, ƒ, TS) is a co«?ro/ system on G.

An admissible control related to the initial point x0 € G is a vector valued
piecewise continuous function M : [0, f J —• U such that the « controlled »
differential system :

(2.2) ^ =/(x, «(0) = ƒ„(*, 0

has the solution <p(« ; JC0) which remains in G and intersects 15 in a finite time
(that is there exists t1 e [0, t J such that <p(? ; x0) € GXTï for 0 ^ ^ < tx

and JCX = cp^i ; JC0) € "G). The curve <p is called admissible trajectory.

If two other C^-functions, g : ! S - > i î and / ° : G X C / ^ R are given,
for each admissible control u we may define the real number :

(2.3) P(u) - P(9) = ^ 3 ) + f V(?a ; *oX «(0) dt,
Jo

called the performance ofthe control u. If CILJC is the set of all admissible controls
related to the point x€G and CUL = U ^ then the relation (2.3) defines

x€G

& map P :c\Jb-> R called the performance of the system S.

We say that the pair (5, P) represent a preferential control system on G.

An admissible control üx e ^ * is an optimal control (related to the point
x € G) if the following inequality holds for any u ç C\LX :

(2.4) Pfe) ^ P(«)

n° R-2, 1971.



5$ S. MÏRICA

Generally speaking, and admissible synthesis is a map v : G~+U sucfa
that the « synthetised » differential system :

(2.5) ~ =ƒ(*, v(x)) = f(x)

has a solution <px(«px(O) = JC) at every point x € G such that y°cp* ̂ s a n admis-
sible control. The most simple examples show that the optimal synthesis is a
piecewise smooth map and hence the differential system (2.5) is a right hand
side discontinuous one. But it is impossible to study such differential Systems
without the explicite description of the discontinuity set of the function ƒ and
without the explanation of the behavior of the solutions of (2.5) on this set.

One of the most gênerai hypothesis in this sense was proposed by
V. G. Boltyanskii ([4] [5]) : the synthesis (the « regular synthesis ») is a CJ-map
on G exept a singular set which is a « piecewise smooth set ».

In [10], [11] is defined an admissible synthesis by omitting the condition
that the marked trajectory of the regular synthesis of Boltyanskii satisfy the
maximum principle. For such synthesis a set of properties are proved and this
allow by adding the maximum principle or the functional équation of the
dynamic programming to deduce that the synthesis is optimal. In this way it
is proved that the maximum principle (or the dynamic programming principle)
assures the optimality of the Boltyanskii's regular synthesis.

To define the admissible synthesis we need the notions of « curvilinear
polyhedron » and « piecewise smooth set » ([4], [5]) :

Définition 2.1

Let KC. Rs be a convex, bounded, closed, s-dimensional polyhedron,
V C Rs an open neighborhood of K and 9 : F—> G a C^-map, injection at the
points of K and such that

for any (x1, . . . , /)ç£

Then the set L = <p(K) C G i s a curvilinear polyhedron in G of dimension s.

Définition 2.2

The set M C G is a piecewise smooth set od dimension s < n if the following
conditions hold :

(1) M is a union of curvilinear polyhedra in G ;

(2) every compact subset of G intersects only a finite number of such
polyhedra ;
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OPTIMAL SYNTHESIS IN CONTROL PROBLEMS 59

(3) there exists in M a s-dimensional polyhedron and the others are of
dimension < s.

As is observed in [4], p. 256, every closed in G C Rn smooth surface of
dimension less then n is a piecewise smooth set.

Let N, P\ P*+1, ..., Pn~x C G be piecewise smooth sets, Pl is of dimen-
sion z, i = ky k + 1,... n — 1, N is of dimension less then n and

*%<zpk<zpk+l<z ... c p"" 1 c G.

We dénote Pk~l =%Pn = G.

Définition 23

The sets TV, P* P* + 1,..., P H ~ r and the map v ; G-+Urepresent an admis-
sible synthesis if the following requirements are fulfilled :

A. (i). The connected components of the sets

are differentiable manifolds in G of dimension / ; we call them /-dimensional
cells. The connected components of the target set 75 = Pk~x are also called
À>dimensional cells.

(ii) The restriction vc = v\c is a C^-map from the cell c to U. Moreover,
there exists a neighborhood c^- G of the closure c of the cell c and a smooth
extension vc : c ~> U of the map yc.

B. Every cell is either of type I or of type II :

(i) The M-dimensional cells are of type I, the ^-dimensional ones of type II.

(ii) If c is a /-dimensional cell of type I then from any point JC € c a unique
solution <px of the differential system (2.5) (for which the right hand side is
discontinuous) starts.

There exists a unique (i-l)-dimensional cell II(c) (of type I or II) such
that the solution <px leaves c after a finite time and reaches EE(c) transversally
(nontangently), that is, in the incidence point x' = 9*0') € II(c), the vector
lim/(<px(0) d o e s n o t belong to the tangent space TxJ[(t).

(iii) If c is a z-dimensional cell of type II and c $ 15 then there exists a
unique (i + l)-dimensional cell S(c) of type I such that from any point JC € c
a unique solution of the system (2.5) entering S(c) and having in c only the
point x starts. Moreover, the set c' = c U 2(c) is a differentiable manifold
possibly with boundary and vt is a C^map.

C. (i) Every solution of the system (2.5) reaches % transversally, in a
finite time and intersects only a finite number of cells.

n° R-2, 1971.



60 S. MIRICA

(ii) From the points in iVmay start several solutions of (2.5). The solutions
of (2.5) starting at points in N do not remain in N but enter a cell of type I.

We call the solution <px of (2.5) marked trajectory through the point x € G.

If x € G\N then <px is unique. If tF is the first moment when the curve <px

reaches *£> and xF — <px(h) then for the point x £ G and for the marked trajec-
tory <px we define the real number :

(2.6) P(x9 9x) = g(xF) + f
Jo

D. The number P(x, 9 )̂ is the same for any marked trajectory starting
at x € N. The function W : G -> i? defined by :

(2.7) »>(*) = ^(*> fc)

is continuous and we call it ?/te wz/we of the synthesis.

Let us enumerate the properties of the admissible synthesis which justify
the opérations of the algorithm for the construction of the optimal synthesis.

1. To obtain differentiability properties for the solutions of the discon-
tinuous differential system (2.5) we use the extensions vt : c ~ * U of the
restrictions vc for all the cells of the admissible synthesis.

Indeed we define the mapsj^ : c -> R" :

(2.8)(c) f£c) - ƒ(*, vç(x))

which defines the differential Systems :

(2.9)(c) S = ^ ( X ) ' Xel

It is easy to show that the solutions of (2.9)(c) that pass through the points
in c coincide with the corresponding marked trajectories.

2. From the définition of the admissible synthesis we deduce that the
marked trajectory enter the cell c of type I in the following two manners :

— either there exists a cell c0 of type II such that from any point in c0

starts a marked trajectory which enters c and hence c = S(c0) ;

— or the marked trajectory reaches c from another cell of type I. In what
follows we dénote by c' the submanifold which is either the cell c of type I
or the union c0 U c if there exists a cell c0 of type II such that c == S(c0).

3. Analising the way that the marked trajectories leave the cell c of type I
we deduce that for any point x € c' there exists a real number T(JC) > 0 such

Revue Française d'Informatique et de Recherche opérationnelle



OPTIMAL SYNTHESIS IN CONTROL PROBLEMS 61

that the curve 9^ reaches the cell II(c) at the moment r(x), that is we have :

(2-10)

and (px(t) € c' for 0 ^ t <

If we dénote fl(c) = ïl(c) D c then we have two maps :

(2.11) T : C ' ~->2* , x : c ' - * I I ( c )

which satisfy the property (2.1Ö).

4. Using the maximal flow $t: Ï>€C R x t-*~t of the differential Sys-
tem (2.9)(c) we may prove that the maps (2.11) are of class C1.

5. Let consider the cells ct = c, C2>... tv of type I through passes every
marked trajectory starting in c' and such that Tl(tq) C 15.

From the définition of the admissible synthesis it follows that every marked
trajectory passes from the cell c^j either directly to the cell ct if II(Cf_i)is of
type I (and hence c£ = Uic^J) or by « crossing » the cell I lfo-i) of type II
and then c* — 2(II(eÈ-i)).

For every such a cell ct we obtain : the submanifold cj (which is the union
Cf U nfo- i ) or even the cell c{) ; the neighborhood ct ; the map ft : \ -*• Rn

(and hence the system (2.9)(i)) and the maps :

(2.11)(l) xiit'^R , X^c'e-

with the properties (2JÖ).

6. On the other hand, for every point x C c' = ci» the marked trajectory <px

reaches the cell U(cj) at the moment T/X), J = 1, 2,... q. If we dénote :

(2.12) Xj(x) = 9X(TJ(X)) , j = 1,2,..., q9

we obtain the maps

(2.13) Tjit'^R 5 a C ^ r c ' ^ n ^ ) , 7 = 1,2,..., q

which satisfy the conditions :

(2.14) Xj(x) - Ç,(T/X)) , 9x(0 € t'j for ^t(x) € t < rjx)

Since the marked trajectory <p* is unique we have :

(2.15) <?x(t) = 9Xf-i(x)(f — xj-i(x)) f o r ' €[T^!(jf), xj(x)]

and j = 2, 3,... q. If we define the maps T0 : c' -> R> Xo : c' —• c'

(2.16) TO(X) = 0 , Xo(x)=x , x € c ' = c î ,

n° R-2, 1971.



62 S. MIRICA

then we have :

f T>
l X/

(2.17)
:/*) = x\Xj(x)) , j = \, 2,...,,

and hence the maps TP XJ are also of class C1.

7. For every cell c of type I the function ƒ ° : c —»• -R given by

(2.18) ƒ?(*) = f°(x, ïc(x)) , x€c

is of class C' and hence the function Hc : c X R" —»• R given by :

(2.19) Ht(x, X) = /c°(x) + X •ƒ«(*) , x € CC G , X € *

is also of class C1.

Since the first « équations of the Hamiltonian system :

dx

(2.20)(c)
dÉt'

do not depend on X and represent a differential system which coincides
with (2.9) (c)) we deduce that at every point (x, À) from c X Rn thereexists
a unique solution OC( (JC?0 = ($Cx? YÎCJJCX) of the System (2.20){() which is defined
on the whole interval of définition (tç(x), /c

+(x)) of the maximal solution $ c ^
of the system (2.9)( y Moreover, the function Ht is a first intégral for the
system (2.20)(c) that is #c0k f :c(0, *îc,*x(O) = constant for f €(^C"(A:), t?(x)).

8. We consider again the cells c = cl5 c2,... c4> of type I, through which pass
all the marked trajectories starting in cj, the maps T{ : c' -> .R, CC; : c' —* n(Ci)
which satisfy (2.14). Since II(cg) C IS we have /4(x) = tF(x), Xq(x) = xF(x)
for x € c'.

If Iï(cf) (and hence n(c£) is of dimension ki9 k^k, kt < w — 1
ï = 1, 2, . . . #) and if we have the following parametric représentation :

(2.21) x'=Xu)(s
l,s2,...ski)

for x ' in a coordinate neighborhood of the point Xt(x) € II(c$) we may prove :

Proposition

For every marked trajectory <px : [0, tF] —• G which starts from the point
x €G\N there exists a vector X(x) € Ü" and a curve >jA(JC) : [0, /F] —• Rn with
the following properties :

Revue Française d'Informatique et de Recherche opérationnelle
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(i) %(x)(0) = A(x) and for r e C r ^ x ) , Tg(x)) the curve (<px, 7jX(aP) is a
solution ofthe system (2.20)(i) ;

(ii) r^Hxy is continuous to the right hand side and its one sided limits at
the points t = xt(x), XJ = ?)A(X)(T((X) — 0), i = 1, 2,... #, satisfy the following
relations :

(2.22) es3
1 2
, S ,. — —. \S , S , ... S ),J — l, Z, ...

or

(2.23),
0 (s1,s2,... ski) = Xî ̂  (51, *2,... /*
J 3 J

(0

where / = 1,2,... ^—-1 and h(s1
9s

2
9...s

k) is the local représentative ofthe
function g in the considered neighborhood of the point Xq(x) = xF(x) € IS
and x+(*) = 7jA(x)(Tf(x)), i = 1, 2,... « — 1,

In particular we have Jï^x, X(x)) = ƒ °(x» v(x)) + H*) • /<>> »W) = 0.
9. For every x € G W the value of the functional to minimize along the

marked trajectory <px is given by :

(2.24) I jT iw m (t))dt

and it is proved that the restriction Wt = W\t is of class C1 and vérifies the
relation :

(2.25)
Si-7

for j = 1, 2,... r, where r is the dimension ofthe cell c and x' = x(c)(s \ s2,... / )
is the parametric représentation of in a coordinate neighborhood of the point
x = 5£/0\£o,... SQ) 6 C.

In particular, when e C G \ Af, M = j U Pl\UN, that is c is a cell of

the maximum dimension », then we obtain :

(2.26) ~ = X(x)

and X(x) is uniquely determined. From 8. it follows that :

clW
(2.27) ~ (x) • f(x, v(x)) + f°(x, v(x)) =0 !x?G

n° R-2, 1971.
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10. If we dénote

gi = w | n ( e 0 = wmi), t = i, 2,... ç _ i, g f =

then from 9. we obtain :

for / = 1, 2,... &£5 where hi(sx
9 s

2,... sfei) is the local représentative of the func-
tion gt in a neighborhood of the point Xt(x) on n(Ci). Hence the formulae (2.22),,
(2.23) from 8. may be written in a unitary mariner :

(2.28) Xr % (s\ s2, .../<) = ^ ! ( / , 52,... s"')
dsJ osJ

for Ï = 1, 2,... q where hq = h and g€ = g.

IL Using the Boîtyanskii's lemmas and the properties of the admissible
synthesis we may prove the following necessary ans sufficient condition for
optimality of the admissible synthesis in the form of dynamic programming
principle :

Theorem 1

The marked trajectories (the controls generated by the admissible synthesis)
are optimals if and only if for every point x € G\M the following inequality
holds :

(2.29) ~(x) . ƒ(%, u) + f° (x, u) ^ ~(x) • f(x, v(x)) + ƒ°(x, v(x)) = 0

for any u€U.

12. The same condition may be stated in a certain form of the maximum
(minimum) principle of Pontryagin : if we define the function

X : G x U x Rn -> R by :

(2.30) 36(x, ii, X) - ƒ %x, u) + X. ƒ (x, u),

we observe that 3t(x, v(x), X) = Hc(x, X) *br x € c. Using 2.26 and (2.27)
and the theorem from 11. we obtain :

Theorem 2

The marked trajectories are optimal if and only if for every marked tra-
tectory <px : [05 *F] -> G, x € G W , we have for every t € [0, tF] :

X(<p*(0, u9 73X(JC)(O) > 36(9^0. K9x(0)s %(,)(0 = 0

for any uç.U.

Revue Française d"*Informatique et de Recherche opérationnelle
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3.. THE ALGORITHM FOR THE CONSTRUCTION
OF THE OPTIMAL SYNTHESIS

The algorithm proposed in this section contains three « steps » every step
on his side containing several « opérations ».

The first step contains preliminary opérations which deal with the whoîe
phase space G.

The second step which is « the main routine » is worked many times for
different « data » of the problem. This step contains two « cycles » and repre-
sent what usually is called a routine.

The third step contains the opérations to verify some conditions that
must be satisfied by synthesis obtained.

Some of the opérations of the aîgorithm (even in the step I or II) cannot
be worked if some conditions are not satisfied. These opérations were labeled
with small latine letters a, b,... Some of these conditions are very strong : if
they are not satisfied then algorithm does not work for our problem. The
other are less strong in the sensé that they are satisfied if we restrict the phase
space to a subset of (7.

The passage from an opération to another is made either nonconditioned,
in the natural order of the opérations, or conditioned, that is we must pass to
an opération or to another if a condition or another is satisfied.

THE ALGORITHM

The step I

a) M. We define the map 3t : G x Ü X Rn-»R:

36(x, «, X) =f°(x9 il) + X .f(x, u)
or

3t(x\ x\... JC", u\ u\... w> Xls... XJ = ƒ V , . » *n, u\... «0

For every (x, X) € G X Rn we are looking for min 3E(x, u, X).

Condition (a). There exists a map ü : G X Rn -+ rS(U) (where $(U) is
the family of ail subsets of U) such that :

xs w> X) = J6(x, w(x, X), X) = H(x, X) for every (x, X)(3.

in

n°

1)

G x

R-2,

min
u€ü

R\

1971.
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If U is a compact subset of Rp
$ condition (à) is satisfied.

If there exist points in G for which u(x, X) C U with the property (3.1) does
not exist then we may restrict our problem to an open subset Gf C G for
which the condition (a) is satisfied.

If there is no such G' we stop : the algorithm does not work for our pro-
blem ; otherwise we pass to the next opération.

b) 1-2

Condition (A). We verify that function H : G x Rn -> R obtained by the
opération 1-1 is a piecewise smooth function (of class C1) that is5 there exist

the open sets t/*, U*2, ...» U*tCG x Rn such that ( j ((ƒ*) - G x Rn and

ffj = H | i;* is of class C1 forj = 1, 2,... m.

If this condition is not satisfied we stop ; the algorithm does not work ;
otherwise we pass to the next opération.

We dénote by Hj the extension of class C1 of the map Hs to a neighbo-
rhood U*j of the closure Ü*,j ~ 1, 2,..., m.

The step II

We take by définition *&$> = t5, g{
0

0) =g,k0 =k = dim (^0 ); .

We suppose that we have determined by récurrence : (a) the nonnegative
integers kt > k5 mt ^ 0, for / = 0, 1, 2,... I — 15 and for i = 0, 1,... I, the
integers mitt. ^ 1, nir > 1 where r = 0s 1,... mi9 when z" = 0, 1,... l — 1, and
r = 0, 1,... g— 1 when î = l; ((3) the differentiable manifolds €6JI) C G of
dimension Arâ for r = 0, 1,... mi when * = 0, 1,... I — 1 and for r = 0, 1,... ^
when i = l ; (y) the Ci-functions g™ : ^ ° -v i? for y = 0? 1,... mL when
i = 0, 1,... I — 1, and for r = 0,1,.. . , q when i = I;

We suppose that for every pair (75*°, gl°) we have determined :

(i) the differentiable manifolds S^pfi c G of dimension ^ -f 1 possibly
with boundary 3SJJJ;* ;

(ii) the differentiable manifolds S^fp^ C G of dimension ^f such that the
union S*0/* ==©r

(5fï U S / J ' Ï i s a differentiable manifold with boundary

(iii) the maps î;r
(;>^ : Slf; a-> U of class C1 ;

(iv) the functions W™** : Slf / ; -> î  of class C1, where oc = 1, 23... nijr9

= 1,2,... mijr.

Revue Française d%Informatique et de Recherche opérationnelle
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The routine ÇSq
l\gq

ï})

We shall describe the opérations to obtain the numbers mx q, nx q and the
éléments &?,&, &$;% vff, W{

q
1^ for /> = 1, 2,. . . mhq and a = l', 2, . . . « M .

n -1 . We take nlq = the number of the connected components of the
manifold TS(J and we dénote TSj*'* a = 1, 2,..., wï(9 these connected compo-
nents. We take by définition gq

l)>a = g f | ^> ' a

In order to avoid still more complicated notations we shall cónsider that
the connected differential manifold TSj)>a admits a global parametric repré-
sentation :

(3.2) x = x?'V,*2,....^1)

If not, we have to répète the construction for every coordinate neigh-
borhood.

We dénote hf'*(sl, s2,..., / O the local représentative of the function gq
l)>*

with respect to the parametrisation (3.2).

We take a — 1 and we pass to :

The subroutine

n-2. For every set U*, j = 1, 2,..., m, we define the following set : TS*^** =
the set of ail points (x, X) € Î7* which satisfy the following three conditions :

1, ^2,..., / l ) is given by the system :

(,S s2,..., s"i) p = I, 2,.... *,

3. (The condition of transversal intersection.) For every (s1, s2, ..., s*1) the
set iZf 'a of all the points M in the set « ( x ? ' V , ^2,..., A>, X^-^ j 1 , ^2

?..., Z1))

for which the matrix with columns -^—(s\ ..., skl), j = 1, ..., kh and
8 J

''(X?^*^1» •••> ̂ 0^ w) ^ a s the maximum rank kx + 1, is nonempty.

If the boundary of the control space Uis piecewise smooth then this condi-
tion assure also the application of the implicite functions theorem to give
Xl9 X2)... Xn from the system (3.3).
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ff all the sets TS Ĵ'*» J = *> ̂ * •**» m a r e emP ty w e P a s s t 0 ^ e opération II-8.
ff there exists a set ¥>*£)** ^ €> we pass to the next opération.

n-3. Let (xfj*(- ; x, X), X<V(* ; x, X)) the solution defined for t ^ 0 of
the system :

with the initial conditions :

l X«/«(0; x, X) = X

for every point (x, X) € 13*(^>a.

For every such point (JC, X), we defibie T£/*(X, X) < 0 as follows :

(i) if (x%j«(t ; x, X), X<<>f (/ ; x, X)) e Ü] for all

t ^ 0 then xff (x9 X) = — oo ;

(ii) if for every t < 0 there exists f' < 0, f' > / such that

( ^ , J V ; *> X), x£/tt(/' ; x, X)) « t?; then xff(x, X) = 0 ;

(iii) if neither (i) nor (ii) occur, then T^ja(x9 X) is the négative number
which satisfies the conditions :

(x%ja(t ; x, X), X<£f {t ;x, X)) 6 Ü] for T®-«(X, X) ^ f < 0 and

(x^>/a(^ ; X), tyf (t ; x, X)) i O] for f < ^f(x, X).

We define now the sets (*) :

(3.5) Sgft = { x (^a(ï ; x, X) I T^a(x, X) < f < 0, (x, X) e «$•«}

(3.6)

®(^2 = { x$\-$f(x, X) ; x, X) I (x, X) € T5#-« - oo < T^a(x, X) < 0 }

for every y = 1, 2,... m.

If all the sets S^/Ji, &1]}%J = 1» 2,..., m are empty we pass to the opéra-
tion II-8 ; otherwise we pass to the next opération.

(1) With the natural convention that a set is empty if its définition is meaningless.
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c) n-4. We delate the sets S £ $ , Sfj% s u c h t h a t ®«!/,°i i s contained in
2!îîf" o r ®«3'ï *s n o t a differentiable manifold (possibly with boundary) of

dimension kt + 1 or if S{ Ĵ% *s n o t empty or a differentiable manifold of
dimension kt.

If there not exist some sets Sfjfi, &^j% that satisfy the condition (c) we
pass to the opération H-8 ; otherwise we pass to the next opération.

d) n-5. For every x € S f f = 6 $ ; " U S$;S w e consider the point
(*o» xo) € TSjJ'" and ̂  < 0 such that :

(3.7) x=xff(ti;x0^Q).

Condition (rf). For every x e Sff we may take a point t?^'a(x) in the
union of all the sets u(x, X(<Jja(*i ; ̂ o3 ̂ o)) where tu x0, Xo satisfies the condi-
tion (3.7) such that the following conditions hold :

(i) the map vff : Sff -> U so defined is of class C1 ;

(ii) there exists an open neighborhood S^/ a of the closure &£]* and
a C^extension v(£/a to S(^ja of the map vfj*. *

Again we retain ordy the sets S^/fi, &qj% a î ld ^ e corresponding maps v^f*
for which this condition is verified. If there exists such a set we pass to the
next opération ; otherwise we pass to the opération H-8.

We notice that for a set ®^/a we may obtain two or more maps v^f*
and hence we may obtain more than one optimal synthesis. In what follows
we work with one of these maps.

e) n-6. Let x € &fj* and tt < 0, x0, Xo? with the condition (3.7). Then
we define the map tpff(. ; x) : [05 — tt] ~> S£}/a by :

(3.8) 9?f(t ; x) = xff(t + tt ; x09 Xo) for / € [0, — tt].

Condition (e). We verify that <$]]*(• ; x) defined in this way is a solution
of the differential System :

(3.9) ^ = ƒ(*,<;'*(*))

with the initial condition :

(3.10) 9<5*(0;x)=;c

We note that in this case we have :

(3.11) 9?J"(-ti',x) = x0.
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REMARK 3.1

We notice that this condition is verified if we have :

(3.12) ^ ( x , X) = f(x, vff(x)), x 6 êff

and (3.12) is satisfied if the boxindary of Uis piecewise smooth.
We retain only the sets &*]f and the maps v£/a for that the condition (e)

is verified. If such éléments do not exist we pass to the opération II-8 ; other-
wise we pass to the next opération.

f) n-7. We define the map w£f'a : &?f ->Rby:

(3.13)

Condition (ƒ). We verify that the map w£)** is of class C1.

We retain the sets S i V (and hence the maps vQ*a
9 W

()Y) for that the
condition (ƒ) is verified and pass to the next opération.

We notice that at this moment the subroutine Ç&(*ha, gqlha) is finished.
Now we répète this subroutine for all pairs (ï>il)'a, giI)>a) for a = 1, 2,... nx r

n-8. If a < nlq then we take a + 1 instead of a and pass to the subrou-
tine (S£l)>% g^'*) (to the opération II-2).

If a — niq (hence we have considered all connected components ^
of the manifold *B̂ }) we pass to the next opération.

II-9. We continue the routine (G%\ g®*). For all indeces i, a, r, /?, y and
l> ps g, h S for that &r\l>* (1 S ^ l ^ 9 we define the sets :

(3.14) Ng£$fqJ,8) = { x e S<;>;« H 6 ? J 5 | W%<%X) ^ Wf/ (x)

(3.15) S^^t;,S)=(S^^^)

u { x € sr
(;>;Y

a n

(3.16) Œ^Y)K

u { x € s<;>-Y n & J | % Ï ) f ^ { ) }

If all the above intersections are empty then we pass to the opération H-l 1 ;
otherwise we continue.

Revue Française d'Informatique et de Recherche opérationnelle



OPTIMAL SYNTHESIS IN CONTROL PROBLEMS 71

n-10. We write the sets &\l]£y)!(qj& above determined in the form &r%%
by changing the integers mh mitT, «i#r, for / < I, r < ?, and the routine ÇG^, gfy
is finished. We pass to the next opération.

ïï-11. We define the set :
MIT j "1,3

(3.17) T 5 « i = U U (6ÏÏS U

If -6^ , ^ O w e define the map g$t : ̂ +1 -* R by :
(3.18) gf+1(x) = W $ (x) for x € 6<fr". We put q + 1 instead of ç and
pass to the routine (&^\ gf}) (to the opération II-1).

If 13$.i = O and kx+ 1 < n we take mj = q, kl+i = fcj -f- 1 and we
define the set :

(3.19) •S?*" - U u" "u ( i n t C S ^ i ) ) and the map ;
r = 0 p~ 1 <x=l

(3.20) rf+1} (x) = WlY{x) if x €int ( S ^ )

We take ï + 1 instead of I, 0 instead of q and pass to the routine (TS^,

If TSJJ.J = (I> and Arf + 1 = n we pass to the step III.

The step m

g) m-1. We define the cells of the optimal synthesis :
(i) the A;rdimensional cells of type I are the connected components of the

sets S ^ O T5™ and

(ii) the A:rdimensional cells of type II are the sets Sj/^2-

Condition (g). We retain only the cells that verify the conditions B-(ii)
and B-(iii) from the définition of the admissible synthesis.

If such cells do not exist we stop : the algorithm does not work for our
problem ; otherwise we pass to the next opération.

h) m-2. We define the sets N,P\Pk+\...Pn~\Pn of the admissible
synthesis :

(i) N is the union of all the sets in the form N$£$qfJ9B) defined in the
opération II-9 ;

(ii) Pl is the union of all the cells of dimension less or equal to i, i = £,
k + 1,... n, and we define the set G' = int (N U Pn) which is the new phase
space of our problem in which the optimal synthesis exists.

We notice that in this opération the set Pn is not the same as in the définition
of the admissible synthesis.
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Condition (h). We verify that the set N is a piecewise smooth set of
dimension less than n and Pl is a piecewise smooth set of dimension
i (f = fc, fc + 1,... IÏ). If it is not the case we stop : the algorithm does not
apply for our problem ; otherwise we continue.

ï) m-3. We verify the fact that every solution of the differential System :

(3.21) j£ = f(x, v(x))

reaches transversally and in a finite time the terminal manifold 15 and inter-
sects only a finite number of cells.

We may retain onîy an open subset G" C G' such that the points in G"
have this property. If such a set G" does not exists we stop : the algorithm
does not work for our problem ; otherwise we continue.

j) m-4. We verify that the function W : G" - • R defined by the functions
Wr^'a on every cell is a continuous one.

We may retain only an open subset Gm of G" for which this condition is
satisfied. If such a set G"1 does not exists we stop : the algorithm does not
work for our problem ; otherwise we continue.

m-5. The sets N, P\ Pk+\... Pn and the map v : G" -> U represent an
optimal synthesis. STOP.

REMARK 3.2

In certain cases we may apply the algorithm even if some of the numbers mh
mi,n nur a r e n o t finite.

Indeed, if the fact that such a number is infinité is caused by the fact that G
is non-bounded, then we may restrict our considérations to a bounded open
subdomain G' C G and we deal with finite numbers mh mijn nir.

In other cases there are some gênerai formulae or some récurrence relations
that allow to work with infinité numbers mî9 mUr.

To justify the statement of opération III-5 of the algorithm (that is the fact
that the sets N9 P\..Pn~1 Pn anf the map v : G" -> U represent an optimal
synthesis) we observe that every condition of the définition 2.1 of the admissible
synthesis is implied by a corresponding condition in the algorithm. Hence we
have obtained an admissible synthesis.

Moreover, from the opérations 1-1 and II-5 we deduce that the maps
v : G" -> U and fö : G" x U x R -> Rn verify the condition ;

for every u € U> t € [0, tF] where, (9XG), TQXC^O)) is the solution of the Hamiltonian
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System (3.4) with the initial condition (x, X(x)) and which satisfies the rela-
tions (3.3). From the theorem 2.2 in section 2 it follows that the obtained
synthesis is optimal. Therefore we may state :

Theorem 3.1

If all the opérations of the algorithm may be accomplished (that is we arrive
to the opération 111-5) then an optimal synthesis is obtained.

REMARK

Conversely, if there exists an optimal synthesis and if the conditions (a)
and (b) are verified then the algorithm is working.

A proof of this statement will be given separately.

4. EXAMPLES

Example I : the forced pendulum ([9])

The control System is the following :

éz
__ = — sin 0 — OLZ + w. where \u\ < 1, a > 2,
dt ' '

The terminal manifold is T5 = {(2 rai, 0) | » = 0, + 1, ± 2, ... }. The
functional to minimize is defined by g == 0 , / ° = 1.

The step I

a) 1-1. We define the map 3Ê(8, z, u, X1; X2) = 1 + Xxz + X2 (w —sin 8 + OLZ)
and we find : min 3E(8, z, w, Xl9 X2) = ^ (8 , z, Xl9 X2) where :

{ 1 +X 1 z + X 2 ( l—sin8 —az) for X2 < 0
) - l 1 + X i Z _ À 2 ( 1 + s i n 6 + a z ) f o r À2 > 0

b) 1-2. We take

U* - { (6, z, Xlf X2) i X2 < 0 }, U} - { (6, z, Xls X2) | X2 > 0 }

and we observe that the function Hj ^= H \ V*-J = 1,2, are of class C1, hence
the condition (b) is verified.
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The step II

We take by définition -G<0
0) = 15, ̂ 0 ) = g = 0, k0 = dim (13(

0
0)) = 0 and

we pass to

The routine ÇG{
0°\ g(

0
0))

H-I. The connected components of the terminal manifold t6{)
0) are the-

points '6[>0)'n = { (2TC«, 0) } , n = 0, ± 1, ± 2,... , which are 0-dimensionat
manifolds with the parametrisations :

f 6 = xltWt"(s) = 2nn
( 4 J ) [ z = XS'(0) '"(J) = 0 for j = 0, n = 0, ± 1, ± 2,...

The local représentative of the function g{®} corresponding to this parame-
trisation is :
(4.2) h(ohn(s) - 0 for s = 0.

We note that we are in the situation from the remark 3.2 since the num-
ber n00 of the connected components of T^0* is infinité, but in this case eG^0)ï'1

are regularly disposed on the 0-axis. This regularity allows us to obtain the
results for 75[,O) translating the results for eÇiQ)-° along the 0-axis. Therefore
we shall effect the subroutine (T5[,0)'0, h(oh°) and translate its results with 2nn
along the 0-axis and obtain the results of the subroutine (T5[>O)'B, h(o}'n). Hence
we take oc *= 0 and pass to

The subroutine CS(
0

0 ) ' °
n-2 . We define the sets TSffi^j = 1,2:

For y = 1 the System (3.3) becomes :

H^O, 0, -k°u 7?2) - 1 + X°2 = 0 and hence X° = — 1. Therefore

For j = 2 we have :

H2(0, 0, X?, Xf) = 1 — X° = 0 and hence T5$>-° = { (0, 0, X° 1) | X^e R }

n - 3 . We integrate the differential Systems :
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where x = (6, z) and X = (Xls X2), with the initial conditions from the sets
*(0),0

For j = î we have :

(4.4)
—-= — on — sin 6
dt

and the initial conditions : 6(0) = 0, z(0) = 0, X^O) = X? € R, X2(0) = — 1.
The first two équations do not depend on Xx, X2 and in the right hand side
verify the conditions for existence and uniqueness of the solutions on the
whole plane (6, z) ([7], [12]).

It follows that there exists a solution (Ô^A-), 4?i f°0) o f t h e System :

(4.5)

dÔ

dz
at = — s m Q —

which satisfies the conditions : OgJ^O) = 0, z^Qd) = 0 and which is defined
for ail / € R. It is easy to show that this solution is monotonically decreasing
to — oo for t —> — oo and that it does not intersect the 0-axis for any point
t < 0 (fig. ï).

Figure l
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The other two équations of the system (4.4) form the linear differential
system :

(4.6)

with the initial conditions : X^O) = X° € j? , X2(0) = — 1.

To define the sets So°i*,y3 y = 1, 2, we need only the second component X2(0
of the solution of this system. Hence we consider the second order differentiial
équation :

at ai

with the initial conditions : X2(0) = — 1, —- (0) = — X? — a which is eaqui-

valent with the system (4.6).

To find the set of all t < 0 for which the solution

belong to the set ü/f = { (8, z, Xl5 X2) | X2 < 0 } we use the change ([9]) :

at

(4.8) X2(/) = e 2

and obtain the differential équations :

a2

Si nee we have a > 2 it follows that cos 8^ i0(f) < 0 and if we apply
* 4

a comparison theorem ([7] chap. VIII) we deduce that any solution of the
équation (4.9) changes the sign at most once. From (4.8) it follows that any
solution \2{t ; X?) changes the sign also at most once. Now it is easy to show
that there exists a X? € R such that X2(f ; X?) < 0 for any t' < 0, that is we
have :

sEtt - {(CAo, <1'°W) | / < o}, &$% = o.
F o r ; = 2 w e must integrate the differential system :
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de
= z

11

(4.10)

df

— — — sin 0 — OLZ — 1
dr

dXa a
—L = X2 COS Ö
at

dX2 ., . .

with the initial conditions : 6(0) = 0, z(0) = 0, X^O) - X°, X2(0) = 1. In the
same manner as above we obtain :

fô), 41V°(0) | » < 0 } , Sfôfa = *
is the solution of the differential system :

(4.11)

de

— — — sin 0 — az — 1
Qt

which satisfies the initial conditions 0^2'
O(O) = 0, z(

0°?2>°(0) = 0

c) n-4. It is clear that &ojfu j = 1, 2 are k0 + 1 = 1-dimensional mani-
folds without boundary (hence 8SoS;? = *» 7 = 1» 2) and the condition (c)
is verified.

d) n-5. Since for every point (0, z, Xls X2) € t/f we have M(0, Z, Xl5 X2) = 1
and for every (0, z, Xls X2) e Ü% we have ü(0, z, X1; X2) = — 1, we define the
functions : v$-° : S ^ ' j - • [— 1, 1]J = 1, 2, as follows :

and hence the condition (d) is verified.

e) H-o. Let us consider the point (0, z) €

We define now the function <pf,0V°(» : (0, z

(4.1^)^ cpoj v* s iP* z)) -

;° such that :

r{<0(j=l ,2)

o, — ;{] -+ s(oYi:

1 + ?x)) for t € [0, — fj

Since the condition from the remark 3.1 is satisfied the condition (e) is
also satisfied.
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ƒ) n-7. We define the maps W$'°J = 1 , 2 : W{
0°]>°{% z) = — t{ where

t{ < 0 is given by (4.12)œ.
For every z ^ 0 the first relation (4.12)O) defines t[ < 0 as an implicite

function of Ö and hence W^y°(j =1 ,2 ) are C^functions on S{$;?. The condi-
tion (ƒ) is verified.

n-8. Instead of change a by a + 1 (or by a — 1) and pass to the same
subroutine with the new data we use the remark from the opération II-1
and deduce that the results of any subroutine 0S(

0°
hn, f$h")(n = ± 1, ± 2,...)

may be obtained by translating corresponding results of the subroutine
C6kO)'°, h(

0
0)>°) with 2nn along the 6-axis.

Hence we obtain :

(i) the solutions (6£}'B(0, z£)>n(-)) of the differential system (4.5) for j = 1,
and of the System (4.11) if y = 2, with the initial conditions

eg»J'-(O) = 2TOI, 4°J1"(0) = OJ = 1, 2 ;

(ii) the sets 6<°J:; = {(eg>j--(0,4°J""W) | « < 0 } , S(
0°>;"2 = <t> and ©g>J:;

are difTerentiable manifolds of dimension k0 + 1 = 1 ;

(iii) the maps i><°>-" : S(
0^;ï - • [— 1, 1],7 - 1, 2, defined by :

„(0),n _ 1 „(O),II _ t .
vo,\ = l •> voa — — i »

(iv) the functions Wg]'n : &$'n^>R,j = 1, 2, given by :
Wo?j'"(6, ^) = — KïB where t{n satisfies the relations :
8 = Q$ï"(t['") > * - 4y(tjïn) for y = 1, 2 respectively.
We are now in the situation a = n00 (we have considered all the connected

components of the terminal manifold lS(oO)) and we pass to the next opération.

n-9. For every two sets we have S^kr n ®«'iv* = ® anc* hence we must
pass to the opération 11-11.

n-11. We have ^(
x

0) = ( J U ( S ^ S U SS(
O°3;"2) - O and £0 + 1 <

R = - œ y = 2
+ oo 2

< 2 = and hence we must define TS^ = ( J ( J Sojj;" and the function

-* R : g i 1 ^ , z) = W^j-"(0, z) if (6, z) €

We pass now to
The routine OB̂ 1', gi")

n-1. The new terminal manifold 'Sj,1' has also infinitely many connected
components TS^"* 0 = Sg^.'J, n = 0, ± 1, ± 2, ...7 = 1, 2. We dénote
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U),(«j) a n c j w e take the parametrisations :

l 2 — Xo w — ̂ o,y w» s < y

The local représentative of the fonction gol)^nJ) is :

h(
o
lhinJ)(s) = — j for 5 < 0. We take a — (0, 1) and we pass to.

The subroutine

ïï-2. To define the sets t 6^ ( / ) l ( 0 ï l ) , . / = 1, 2 we must solve the linear alge-
braic System :

o
1

(4.17)

For j = 1 we have :

f X?Z<0°>-0W + X$[ - sin e{,°l'0(j) - «z{,°,V°(j) + 1] = - 1

l 1 + A°AT(s) + X°[ - sin e{,°>» - « (oTW + 1] = 0

where the condition of transversal intersection is not verified (the rank of the
matrix of this system with respect to X°, A£ is equal to 1 < kt + 1 = 2).

For j = 2 the system (4.17) becomes :

^As) - az^V°W — 1) = 0

and hence X2(J) = 0, XÎ(s) = — (0) 0 ' It follows that :
z o i ' W

'0,2

n-3 . We must integrate the differential system (4.10) with the initial
conditions from the set TSJ^'*0 '^. Then for every s < 0 we obtain the solu-
tion ( Ô ^ / 0 ' 1 ^ • ; s), z^2 '(CM) '(. ; s)) of the system (4.11) defined for ail t € R
and which satisfies the conditions :

(4.18) (o,i) < ' '
f (i),(o,I)/A . \ (O)ftV \
t ^0,2 v̂  ) S) == ^Qti \S)
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If we integrate now the other two équations of the system (4.10) with the

initial conditions ~At(0) = — " (0))0 > Â2(0) = 0 then we obtain the solution
zo,i W

(kt( - ; s), X2( • ; s)) for which we have X2(t ; s) > 0 for ail t < 0, s < 0 (we
apply again the comparison theorem from [7]).

Therefore we have :

- 1 ^ ; s), z^'^Kt ; ,)) | * < 0, s < 0

c) n-4. Since the set So1,^!4) is a 2-dimensional manifold without boun-
dary the condition (c) is verified.

d) H-5. For every (6, z) € S ^ i ' ^ w© have Ü ^ 0 ' 1 ^ , z) = — 1 and the
condition (rf) is verified.

e) n-6. Let us consider the point (8, z)€Sol
f2*,(?'1) and tusx < 0 such

that

(4.19) e =

We define now :

for t € [0, — ̂ ] . As in the preceeding routine the condition (é) is verified.

ƒ) n-7. Fort every (6, z) € S ^ î ? ' ^ we define :

(4.20) ^ ^ " ( e , z) = fftw^isO + ! dr - - Ji — rt
Jo

where 5X < 0, tt < 0 are given by (4.19). From the implicite functions theorem
it follows that flP^'(0>1) is a C^function on

n-8. We take a == (0, 2) and pass to

T h e s u b r o u t i n e Ç & Q
l ™ 0 ' 2 # )

Since ï^1^0 '^ and TSy)>(Ofl) are symmetrics, the results ofthis subroutine
may be writen directly from the results of the preceeding subroutine chan-
ging the system (4.10) with the system (4.4).

As in the preceeding routine we apply the remark 3.2 and deduce that the
results of any subrou+ine (lo{o)'inJ\ h{oUntS)),j = 1» 2, n = ± 1, ± 2,... may
be written from the corresponding results of the subroutines ÇG(

o
i)>{OJ\ h(Q}X0J))9

j = 1,2 translating with 2nn along the 8-axis (fig. 2).

We have considered all the connected components of the manifold TS<
0
1)

and hence we may pass to the next opération to continue the routine ÇG(
o
l\ jfô )*
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n-9. We observe that for every n = 05 ± 1, ± 2, ... the foliowing inter-
sections are nonempty (fig. 2) :

n
ni

Figure 2

Therefore we must define the new sets S and the sets of type N. It is easy
to show that for every n — 0, ± 1, ± 2, ... we have

Sa).(.+M) D 6(i),(-.2) a n d ^<i).-+M)(e> z)

for ail (6, z) € S^i îî'2) and ik = 1, 2,...
It follows that ArU)>(«>2),(i)((«+fc,2) _ . rf> (ff(i).(«+*,2),(i),(B,2) _p-( i ) , (« + Jt,2) \i i ioiiows m a i JV ( 0 ) 1 1 ) j ( 0 > l j l ) — **s «(o,i,i),(o,i fi) ™ ^ o , i , i \

l),(ft,2) j g(l),(B,2),(l)f(B + ki2) __ g(l),(B,2) fo k— \ 2

,1,1 a n a ®(o,iJi),(o,i,i) ~ ®o,i,i ior every/c—i, z, . . .

Similarîy, for the intersections (ii) we have :
(),( , ) ,() ,
(0,2,l)f(0f2,l)

However, the sets
) . ( . ) ï ( ) f ( ,

0,1,1),(0,2,1)

from the intersections (iii) are nonempty for k — 1 and empty for/: = 2, 3 ...

11-10. In this case it is not necessary to change the indeces of the new sets S
obtained in the opération II-9. We may change only the définitions of the
sets 6£}i\(i"f2)> S^i"'1* that is we take :

n^ R-2, 1971.
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+ 00

11-11. We have ^ = \J \J (S$;(
2
n''> U

n=-» (t\j) = (l,2),(2,l)

and fct + 1 = 2 — n and hence we must pass to the step lu,

The step Dl

g) ni-1* We define the cells of the optimal synthesis :

(1) the O-dimensional cells (of type II) are :

ei0) = { (2TOI, 0) }, a = O, ± 1, ± 2 ...

(the connected components of the terminal manifold *E&0))

(2) the 1-dimensional cells of type I are : ej£)4 = S$J;Ï f o r •/ = l> 2 a n d

n = 0, ± 1, ± 2,... ;

(3) there not exist 1-dimensional cells of type II ;

(4) the 2-dimensional cells (of type I) are the following :

forw = 0, ± 1, ± 2,...

It is obvioüs that all the above defined cells verify the conditions B-(ii)
and B-(iii) of the définition of the admissible synthesis.

h) m-2. We define the sets N9 P°, P1, P2 :
+ <o +oo / +00 2 \

N= U iv..i , P°= U e?> , P ^ I ^ U U LJciy
n=-oo n=—GO \n--coj—1 ƒ

U Uc

We note that P2 U iV = JR2 and hence G' = G = R2 is the phase space
of our control problem.

Since every smooth surface of an Euclidian space is a piecewise smooth
set ([4D it foUows that the sets N9 P°, P1, P2 are piecewise smooth sets and the
condition (h) is verified.

i) IBt-3. It is clear that every solution of the system :

— = — sin 8 — CLZ + v(Q, z)
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where the map v : R2 -*• [— 1,1] is given by :

+ 1 for (0, z) e U (C?)) U Cft-1 U Cft)

83

+ 00

lfor(Ô,z)€

reaches the terminal manifold *6 = { (2im, 0) | « = 0, ± 1, ± 2,... } trans-
versally, in a finite time and intersects only a finite number of cells (at most
two cells).

j) ni-4. It is easy to show using the définitions of the functions WJ>0Jtn,
W^y{njy that the function W: R2-+R which represent the value of the
synthesis v defined above is continuous on R2.

ni-5. The sets N, P°, Pl
9 P2 and the map v above defined represent an

admissible synthesis. STOP.

Example II ([6]).

We apply the algorithm to the time optimal control problem studied by
Boltyanskii in [6] as an interesting example in which the phase space that the
optimal synthesis exists does not coincides with the domain of controllability.

The control problem is the following :

(4.21) .

dxx _ 2

ét ~X

and the terminal manifold is the point T5 = { (0, 0) }.

The step I

a) 1-1. We define the map 3e : R2 X U x R2 -> R :

and we find :

(4.22) H(x\ x2, \u X2) =

\ x2, u9 Xlf X2) = 1 + X^2 + X2 . 1 u. e(x2)3

min 3£(xx, x2, u, Xl9 X2) = H(xx, x2, X1? X2) where

1 + Xi*2 + X2 ̂  e(x2)2 for X2 < 0

for X2 > 0
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b) 1-2. If we dénote

tó2
5XlsX2)6i?4|X2 < 0 } ,

then it is clear that Hj9j = 1,2 are C^-functions and hence the condition (b)
is verified.

The step II

We dénote "B^ - Î5, ̂ 0 ) = g = 0, k0 = dim ÇS^) = 0 and we pass to

The routine Ç&£\g$>)

n-1. The terminal manifold 13[>
0) = IS = { (0, 0) } has only one connected

component TS^ = { (05 0) } (hence n0t0 = 1) which is a 0-dimensional mani-
fold with the parametrisation :

{x2=xo'(0)>1(*)=0 for * = 0.

Corresponding to this parametrisation we have :

'\s) = 0 for 5 = 0.

We take a = 1 and pass to

The subroutine

n-2. To define the set "GJJ^'î we must solve the équation

^ ( 0 , 0, X0!, X°2) = 1 + X°2 = 0

and we obtain :

In the same way we obtain :

•6S.(iOM-{(0,0,X1
0,l)|X°1€il}

n-3. For y = 1 the Hamiltonian system (3.5)O) is :
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dx1
 2

- r - =X

85

(4.23)
(

"dT~2e

àt
±=0

with the initial conditions x'(0) = 0, x2(0) = 0, Xt(0) = X1°e/î,X2(0) = — 1.
We integrate the first two équations of this system and we obtain the solu-
tion (4:(iOM(-)*o:(i°M0) where ^;(

1
0)>1(0 is given by

(4.24)

(4.25)

- 2 f
Jo

- s 2

as and •M0)4(r)*o.i

We note that the curve (4;(i°M(-), •
cite form :

(4.26) x1 - 1 -

may be written in the impli-

From the third équation of the system (4.23) we obtain:
for t € R and from the last équation :

(4.27) X2(f ; X») = - (1 + 2Xo
1x0

2;1
(0M (0) e-

We must define now ^^(X?) < 0 such that for t € [^^(X?), 0] we have

tó.f''1», xïT'Ht), A, xS(r ; x?)) € Û*
From (4.23) it foliows that xlfxhl is an increasing function and hence

for every X? 6 R there exists at most one t1 € R such that X2(*i ; X?) = 0,
namelyif X? > 0 then we have X2(f ; X̂ ) < 0 for ail ^€i^butforX? < 0, X2(* ; X?)
chages the sign at

==2 f
Jo

It follows that

To,i i/-iJ ~
— oo if

0 if

n° R-2, 1971.
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and hence

m-A = {(^:i0M (0,4?y>\t)) 11 < o >. 68?A = <D
Similarly, for ƒ = 2, we obtain :

sfô-A = {(4:(20)'1(0, ̂ - ' ( O ) | * < o}, eg^'i = o

where JCo;20)fl(0 is given by the relation :

(4.28) f = — 2

(4.29) 4;(20)>1(0 = f x2f>>\s)ds
Jo

As for j = 1, the curve (JCJ;^*^.), iôS^1 (•)) m ay b e written in the impli-
cite form :

(4.30) x^e-^-1

c) n-4. From (4.26) and (4.30) it follows that Sg3;i,j==l,2 are
&0 + l = 1-dimensional manifolds without boundary.

d) n-5. We define :

v{&\x\ x2) = 1 for (x\ x2) € Sg|Vi,

W , ^2) = - 1 for (x1, x2) € 6o(3;î

and we see that v^'1 : So°3',i -*• U,y = 1,2 are C'-functions which may be
extended to C'-functions on some open neighborhoods of the closures

^Â» &$& respectively.

é) n-6. Let us consider the point (x1, x2) € ®o°};î and ï{ < 0 such that :

(4.31)w x' = xfr^-1^), i = 1,2, for every j = 1,2.

Then, for every j = 1, 2, the map q ^ . ; (x\ x2)) : [0x —1{]
given by ^ . 1 ( / . ( ^ ^ = ^ ,(0)>1(f +

is the solution of the diflFerential System :

_ £ „<O),1/Vl „2x_(xV

with the initial condition «pg^O ; (x1, x2)) = (x1, A:2),y = 1,2,
1 Française d'Informatique et de Recherche opérationnelle
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We note that the condition from the Remark 3.1 is satisfied andhence the
condition (e) is automatically satisfied.

ƒ) n-7. We define the maps Wg)'1 : S^j'1 - • RJ = 1, 2, by :

(4.32) W<Y(x\ x2) = f ~\t = - t{
Jo

where t{ < Ois given by (4.31)O). Therefore W^;1/— 1, 2 are C^functions
and the condition (ƒ) is verified.

The subroutine (*6^0), h^hl) is finished and we continue the routine

II-8, We have a = 1 = w00, and hence we must pass to the next opération
to continue the same routine.

n-9. We have Sgjl1,1! n &$ji = Os hence we pass to 11-11.

n-11. We have

Û
and k0 + 1 = 1 < 2 = «.

Therefore we define :

= Ü (int (683;i)) - &oVÔ U

We pass now to the new routine :

The routine

and g»): Jl using (3.17),

(3.18)

H-I. We have nXt0 = 2 because tB^1) has two connected components
M ^ t h e parametrisations :

(4.34)

!

Y1 _ V 1 , ( 1 ) , 1 M 1 «-s2
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The local représentatives of the functions g{
o
l)>a — ;

are :
^h" «==1,2,

(4.35)

(4.36)
-

'2cU, s < 0

t, s>0

We take a = 1 and pass to.

The subroutine (#0
1) f\ h(

o
lhl)

n-2. For y = 1 the System (3.4) has the following form :

and from (4.33), (4.35) we obtain :

• ( * )

Since the rank of the matrix of this system with respect to xj, x£ is
equal to 1 for every s < 0, the condition of transversal intersection is not
satisfied.

For j = 2 the system to be considered for the définition of the set XïJ^'1

is the following :
2 2

Therefore we have :

n-3. We integrate the system :
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(4.37)

âx1 _ ,
1F~X

dt 2

with initial conditions from the set TS*,(2)fl a nd obtain the solution

o # M 0 ; *), *o,i1M (• ; *), - -? > 2̂ (• ; J)) where xg^^'1 (/; 5) is given by :

(4.38)

(4.39)

s

t = — 2 e" rd/ ,

Jo

and X2(/; s) by :

(4.40) Xa<* ; 5) = ( - 2 + ? xl:P-\t ; s) j e" «tf**»»'

We notice that the curve (xj;^1)fl(» ; J), ̂ 5;(2
1)flO ; s)) may be written as

follows :

(4.41) - 2 e

For every 5 < 0 we have Xo;(2
1M(* ; ̂ ) > ^ for ^ < 0 and hence A2(/; 5) > 0

for every / < 0.

Therefore we have :

sfôA = {<*è:(21MC ; s), x2
oy-\t • s)) \ t < 0, s < 0 = o

We notice that according to (4.41) the set So^'a maY >̂e written as
follows :

"s2So'i'A ={(e" t 2 — 2e" s2 + 1, 5) | s < 0,t> s}

c) ïï-4. It is clear that So '̂A ^s a 2-dimensional difFerentiable manifold
without boundary that looks as in fig. 3 ([6]),
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d) H-5. For every (x1, x2) € SföA we take
verify the condition (d).

1, *2) = 1 and we

é) n-6. Since the condition from the remark 3.1 is verifîed, the condi-
tion (é) is also verified. Moreover, since the function f° (equal to 1) does not
contain neither x1 nor x2 we need not the function tpo1 '̂1 f° r passing to the
opération.

Figure 3

ƒ) n-7. According to (3.13) for every (x1, x2) € So&î a n d 'i> *i < 0 such
that :

(4.42) x1 = Xo,2lhl(ti ; ̂ t) , x2 =Xofi
1)il(/i ; *i) we have :

Hy{l)»l/-y.l -y.2\ lï(*)»l/'e>iJL I H/ 7 I A " ' rï/ /
" ' 0 , 2 v ^ » •* / — ' ' 0 , 2 V " l / » I u * — A i e u * t j

Jo Jo
and using (4.38) and (4.39) we obtain :

(4.43) rV^ltX(x\ x2) = — 2 e~' dr + 2 e"' d?

where st is given by :

(4.44) *! = -

Now it is obvious that Wj)]'1 is a C'-function.
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II-8, We have a — 1 < n1A — 2 and hence we take a = 1 + 1 = 2 and
pass to :

The subroutine ( t ^ '

By symétrie reasons the results of this subroutine may be written immedia-
tely from the corresponding results of the subroutine (TS^'1, A&1)fi).

n-8. We have a == 2 = nltl and we pass to the next opération.

n-9. All the intersections Sj*$ n S^p*Y are empty and hence we pass
directly to the opération 11-11.

n-11. We have

Û Û
and k1 + 1 = 2 — «. Therefore we must pass to the step lu.

The step m

g) DM. We define the cells of the admissible synthesis :
(1) the O-dimensional cells (of type n) are : C1

{0)= TSg» = { (0, 0) }
(2) the 1-dimensional cells of type I are : C ^ 1 = i
(3) there not exist 1-dimensional cells of type H;
(4) the 2-dimensional cells (of type ï) are : &Q = S^>^, &£\ = S^V
(The meaning of the upper and lower indeces of the cells is the following :
the left upper index shows the dimension of the cell; the right upper one

the type of the cell (we note that we need not show the type of the O-dimensional
or 2-dimensional cells) ; the left lower index is a order number and the right
lower one shows the « type » of the trajectories that the cell contains (in our
problem we have trajectories of two sorts : the solutions of the System (4.23)
and the solutions of the system (4.37),

It is clear that the above defined cells verify the conditions B-(ii) and B-(iii)
from the définition 2.3.

h) m-2. We define the sets :

N = o, p° = e r , p1 = P° u e[y u e^i'1, P2 = P1 U e[2
3\ u eg> = G.

As in the preceeding example the sets N, P°9 P
1, P1 are piecewise smooth

sets and the condition (A) is verified.

0 m-3. If we define :

i - i for (x\
n° R-2, 1971.
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then from the above results it follows that every solution of the System :

d 2
df

— = - Ü(JC\ x ) e( '

reaches TS transversally, in a finite time and intersects only a finite number
of cells (at most two cells).

j) m-4. From the définition of the fractions W£H'* it follows that the
functions W : G-> R that coïncides on every set S^*" with W}^'9 is conti-
nuous and the condition (J) is verified.

III-5. The sets P°, Pl, P2 and the map v represent an optimal synthesis
for the control problem (4.21). STOP.
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