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STABILITY AND DUALITY
IN CONVEX MINIMIZATION PROBLEMS (})

by J. L. JOLY(2) and P. J. LAURENT (3)

Abstract. — The purpose of this paper is to show the gênerai relations thaï exist between
the stability of a convex minimization problem and duaiity. Given an initial minimization
problem, we consider a family of perturbed minimization problems (the initial problem
corresponding to the perturbation zero). In this way, using the notion of conjugate functional,
we de fine a dual problem (and also a family of perturbed dual problems).

In the first part, the gênerai relations between different notions of stability, the equatity
of the amounts of the dual and primai problems, the existence of solutions are established.
Several sufficient conditions f or stability are given*

In the second part» three different kinds of perturbations are studied (horizontal pertur»
bâtions, vertical perturbations and mixed type perturbations), Several particular problems
are considered, including spline function problems and best approximation problems.

INTRODUCTION

The purpose of this paper is to show the gênerai relations that exist between
the stability of a convex minimization problem and duaiity. Given an initial
minimization problem, we consider a family of perturbed minimization pro-
blems (the initial problem corresponding to the perturbation zero). In this
way, using the notion of conjugate functional, we define a dual problem (and
also a family of perturbed dual problems). The gênerai relations between
different notions of stability, the equality of the amounts of the dual and
primai problems, the existence of solutions are established. Several sufficient
conditions for stability are given.

Our first motivation for working on this subject was a remarkable paper
by R. T. Rockafellar [23] where the relations between the stability for a parti-
cular kind of perturbation (translation) and duaiity are studied (see § 2.1.
below). In a first (not published) version of the present paper, we expressed
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4 Jf. L. JOLY ET P. J. LAURENT

Rockafellar's results by using the notion of inf-convolution of two convex
functionals. The problem can be essentially reduced to the research of sufficient
conditions for the lower-semi-continuity and sub-differentiability of the func-
tional h = fV g (inf convolution of/and g). We gave several new conditions
which imply these properties (see J. L. Joly [13]). Later we saw that the same
type of conditions can be given for the stability (with respect to quite gênerai
perturbations) of an arbitrary convex minimization problem. These conditions
are weaker than the usual ones (which use the notion of interior) and have
the advantage of giving directly, when the space of the perturbations is finite
dimensional, the conditions using the relative interior and the recession func-
tional (Th, (1.7.9) and (1.8.9)).

The idea of associating a dual problem to a class of perturbations of
the initial problem (in finite or infinité dimensional spaces) is due to
R. T. Rockafellar [28] (we learned of the existence of this paper several
months after the present paper was written).

The case when all spaces are finite dimensional is studied in great detail
(using a different language : the notions of convex and concave bifunctions
are introduced) in the recent and excellent book by R. T. Rockafellar [24].
Except for the theorems (1.7.9) and (1.8.9), we will not study this case specially.

In the first part we will present the theory : définition of the dual problem
which is associated with the family of perturbed problems, different notions
of stability, the relations between these notions, the duality and the existence
of solutions, the characterization of the solutions and some sufficient conditions
for stability.

In the second part, three différent kinds of perturbations are studied
(horizontal perturbations as in [23], vertical perturbations and mixed type
perturbations). Several particular problems are considered, including spline
fimction problems and best approximation problems.

A more detailed version of this paper has been published as a Mathematics
Research Center technical summary report (1090), Madison, Wisconsin.
The properties of convex functionals we will use can be found in this report
or in J. J. Moreau [19].

STABILITY AND DUALITY

1.1. Définitions and notations

Let E and F be real vector spaces, in duality with respect to a bilinear form
< x9 y >, x € E, y € F. We assume that E and F have been assigned locally
convex Hausdorff topologies compatible with this duality.

We dénote by R the set of extended real numbers

( £ : = * U { + OO}U{ — 00},

Revue Française d'Informatique et de Recherche opérationnelle



CONVEX MINIMIZATION PROBLEMS 5

where R is the set of the reals numbers) with the natural order relation. The
opération + in ÏÊ will have the obvious meaning of the addition with the sup-
plementary convention :

(+ oo) + (— oo) = (— oo) + (+ oo) - (+ oo),

(This opération is denoted by -f in [19].) We dénote the effective domain of
r € RE (/is a functional defined in E with values in R) by dom (ƒ) :

(1.1.1) dom(/) = {xçE\fix) < 00}

and the epigraph of ƒ by epi (ƒ) :

(1.1.2) epi (ƒ) - {[x, X] € E x R\ f(x) < X}.

The functional ƒ € RE is said to be proper if it does not take the value + oo
identically and if it never takes the value — oo.

If C is a subset of E> the indicator functional Xc °f C *s defined by

Oifx€C
(1.1.3)

+ 00 if JC I-i
We dénote by conv (E) the set of all functionals ƒ € RE which are convex

(i.e. which have a convex epigraph).

The l.s.c. (lower semi-continuous) huil ƒ of a functional ƒ c RE is the
greatest l.s.c. functional which is a minorant of ƒ :

(1.1.4) ƒ (* )= Hm inf/(jc')
x'-*x

(The epigraph of ƒ is the closure of the epigraph off.)

We shall dénote by T(E) the set of all functionals ƒ €conv (E) which are
the supremum of a family of continuous affine functionals :

(1.1.5) f(x)=sup«x9yt>—rd,
i€I

where yt € Fand r£ 6 R. It will be convenient also to dénote by T0(E) the set of
all ƒ € T(E) which do not take the values + oo or — oo identically. One can
prove that T0(E) is exactly the set of all proper l.s.c. convex functionals.

The conjugate functional/* of a given functional ƒ € RE is defined by

(1.1.6) f*(y) - sup « * , ƒ > - ƒ(*)).
x€E

n° R-2, 1971.



6 J. L. JOLY ET P. J. LAURENT

It is an element of F(F). By the same construction we obtain the conjugate
functional/** of ƒ*. It is an element of T(E).

The F-hull fT of a functional ƒ €RE is the greatest minorant of ƒ which
belongs to T(E). One can prove that / r = ƒ** (and consequently, ƒ = ƒ**
iff/belongs to F(E)).

A functional ƒ € conv (E) is said to be sub-differentiable at x0 € i? if ƒ£%)
is finite and if there exists yo€F such that :

f(x) >f(xo) + < x — x09 y0)y,fov aü x € E.

(i.e. there exists a continuous affine minorant of ƒ which takes at x0 the same
value). Such an element y0 is called a sub-gradient of ƒ at x0. We shall call
subdifferential of ƒ at x0 the (eventually empty) set df(x0) of all sub-gradients
off at x0. It is a closed convex set of F. As the T-hull fT = ƒ ** of/€ conv (E)
is the supremum of all continuous affine minorants of ƒ we have :

(1.1.7) df(xo)^0 implies ƒ(*<,) - /**(xo).

Since ƒ and ƒ** have the same continuous affine minorants we also have :

(1.1.8) f(x0) =/**(x0) implies Bf(x0) = 3/**(x0).

The foliowing inequality always holds for ƒ € conv (E) :

and we have the folio wing characterization of a sub-gradient of ƒ at JC0 :

3̂ o G df(x0) iflf f(x0) + f*(y0) =

This gives the following result in the case where ƒ € T0(E)> ([19], 10-a) :
(1.1.9) If ƒ € ro(is), then the three following statements are equivalent :

(O J>o€3/(*o).

(ü)

(iii)

1.2. The minimization problem

Let X and F be two locally convex Hausdorff linear topological spaces in
duality with respect to the bilinear form O, j>>, x € X, y € 7.

Consider the following minimization problem :

(P) a = Inf f(x)

Revue Française d'Informatique et de Recherche opérationnelle



CONVEX MINIMIZATION PROBLEMS 7

with ƒ 6 T(X). We will dénote by A the (eventually empty) set of the solutions.
If a is finite, we have (cf. [19], 10-b) :

(1.2.1) A = {x € X | a = f(x) } = 3 ƒ *(0).

The space X will be called the space of the variables for the problem (P).

Now, let U and V be two locally convex HausdorfF linear topological
spaces in duality with respect to the bilinear form (w, v), u e U9 v € V. The
space U will be the space of the perturbations for the problem (P). We assume
that we have a convex functional 9 € V0(X X U) such that

(1.2.2) f(x) - <p(x, 0) , for all x € JT.

For the perturbation M € 17, we consider the perturbed problem :

(Pu) A(«)=Inf ?(*>*)'

The initial problem (P) corresponds to the value w = 0 :

a = A(0).

Note that the functional h belongs to conv(C/)but not in gênerai to ro(£/).

Using the définition of the T-hulI and the properties of the conjugate
functional, we have :

(1.2.3) — a = — A(0)< — ***(0) = Inf h*(v).

The spaces X x V and Y x F are two locally convex Hausdorff linear
topological spaces in duality with respect to the bilinear form :

L e t i | ; € r o ( F x PO be the conjugate functional of 9 :

y, v) = Sup « x, y > + (w, u) — cp(x, w)).

Then we obtain for A* the following formulae :

h*(v) - sup du, v) — Inf <p(x, M))
«€1/ x€X

= sup « x, 0 > + (w, i?) — <p(x, M)
x€X
u€C/

i.e. finalïy :

(1.2.4) A*(F) = <j,(0, v).

n* R-2, 1971.



8 J. L. JOLY ET P. J. LAURENT

We shall put :

(1.2.5) g(v) = 4<Ö, v).

The inequality (1.2.3) leads us to consider the following minimization
problem :

(0 P = Inf g(n).
v€V

The problem ( 0 wilt be calted the dual problem of(P) with respect to the
amily of perturbed problems (P) (which is defined by 9).

We will dénote by B the (possibly empty) set of the solutions of ( 0 ;
If p is finite» we have :

(1.2.6) B = { v € V\ p = g(v) } = Bg*(0).

For this problem ( 0 , the space V is the space of the variables and the
space Y will be the space of the perturbations. For the perturbation y € F,
we consider the perturbed dual problem :

(ôy) k(y) = Inf $(y, v)
o€V

Wehave: p = fc(0).

Note that the functional k belongs to conv (F) but not in gênerai to fo(F).
By (1.2.3) the following inequality :

(1.2.7) — P-<«

is always true. We will give in the next paragraphs some conditions which
imply the equality — p = a. It is important to note that this construction is
completely symmetrical with respect to (P) and ( 0 . We have clearly :

(L2.8) — p = — k(0) < — fc**(O) = Inf k*(x)
x€X

and by a direct calculation we obtain :

(1.2.9) **(*) = 9(*><>)=/(x)

hence :
— P < Inf 9(x, 0) = Inf f(x) = oc.

x€X x€X

Thus, applying the same transformation to the probîem (Q) we obtain the
problem (P) : the problem (P) is the dual of(Q) with respect to the f amily of
perturbed problems (Qy) (which is defined by ^).

Revue Française d'Informatique et de Recherche opérationnelle
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REMARKS

1° Without assumption, all possible cases can happen in the inequality
(1.2.7) (including the cases where a = + oo or — oo and (3•= + oo or — oo).
The condition « <p(x, 0) not identically + oo » (i.e. f€.T0(X)) implies a < oo
and, in the same way, the condition « 4>(0, v) not identically + oo » (i.e.
g^T0{y)) implies (3 < oo. Thus, these two conditions together imply that
both a and (3 are finite. The condition « a finite » implies that k has at least
one continuous affine minorant (and of course that [3 > — oo).

2° Usually, the dual of a minimization problem is written in the form of a
maximization problem. As a matter of fact, instead of (£), we could consider
the following problem :

(ö)
v€V

with g = — g and J3 = — (3. This would lead to the inequality J3 ̂  a. But
this way, we would have had to consider concave functionals, conjugate of
concave functionals, etc..., and the présentation would have become slightly
more complicated. Another advantage of our présentation is that the dual
problem (Q) has exactly the same form as the primai problem (P).

1.3. Stability of the minimization problem

We shall give in this paragraph some relations between the stability of the
minimization problem and the fact that the equality — (3 = a holds in the
inequality (1.2.7). First we introducé two notions of stability for a minimiza-
tion problem :

(1.3.1) Définition

The problem (P) will be said stable if h(ö) is finite and if h is continuous
at 0 € U.

It is convenient to introducé another notion of stability which is weaker
than the preceding one :

(1.3.2) Définition

The problem (P) will be said inf-stable if A(0) is finite and if h is l.s.c. at
O € U, i.e. :

Â(0)=liminf*(!i)=A(0).

We could introducé the notion of sup-stability (replace l.s.c. by u.s.c. in
the définition), but in fact, as the functional h is convex, the problem (P)
would be sup-stable iff it is stable. Thus the only two notions we will use are

n°R-2, 1971.



10 J. L. JOLY ET P. J. LAURENT

stability and inf-stability. The inf-stability of (P) (or of ( 0 ) is related to the
duality in the following manner :

(1.3.3) Theorem
The following three statements are equivalent :

(i) the problem (P) is inf-stable,
(ii) the problem ( 0 is inf-stable,

(iii) — p — a = a finite number.

Proof :

As the condition (iii) is symmetrical with respect to (P) and ( 0 , we have
only to prove that (i) and (iii) are equivalent. By (1.2.3), (1.2.4) and (1.2.5)
we have :

(1.3.4) — a = — h(0) < — A**(0) = p.

In the same way, by (1.2.8) and (1.2.9), we have :

(1.3.5) _ p = _ /c(0) ^ — fc**(0) = a.

Thus the condition — a — (3 is equivalent to the condition A(0) = h**(Q)
(or to the condition k(0) = &**(0)). Suppose that (P) is inf-stable ; we have
h(0) = h(0), a finite number. The l.sx. convex functional h, which is finite
at 0, cannot take the value — oo ([19], 2. f) ; hence h € T0(U) and we have
h = hT = k**. Thus we have h(0) = A**(0), a finite number.

Conversely, suppose that A(0) = /z**(0) = a finite number. The inequality
Ar(0) < ^(0) < h(0) implies thenthat h(0) = h(0) = a finite number; hence (P)
is inf-stable.

(1.3.6) REMAKK

If the problems (P) and (g) are inf-stable, by (1.2.1), (1.2.6) and (1.1.8),
the sets of their solutions can be written :

A - at(O) and B = 9A(0).

We will give later conditions which imply the stability or the inf-stability
of the problem (P) (or ( 0 ) .

Revue Française d'Informatique et de Recherche opérationnelle



CONVEX MINIMIZÀTION PROBLEMS 11

1.4. Differential stability of the minimization problem

We dénote by ho(ü) the one-sided directional derivative of A at 0 with
respect to a direction u :

i f N I , / A >t v A(X«) — A ( 0 )

A0(u) = A'(0, «) = Imi ——'- —

(1.4.1) Définition

The problem (P) will be said dif-stable if /t(0) is finite and if h is Gateaux-
differentiable at 0 € 17» i.e. if there exists v0 6 V such that :

Ao (ü) « (tf, v0), for all u € K

As for the stability, we shall introducé another notion which is weaker than
the preceding one :

(1.4.2) Définition

The problem (P) will be said inf-difistable if A(0) is finite and if there exists
#o € F such that :

hö(u) > (u9 vo% for all u € U.

We could introducé the notion of sup-dif-stability (replace ^ by ^ in the
définition). But as the funetional h0 is convex and Ao(0) = 0, the problem (P)
would be sup-dif-stable iff it is dif-stable. Thus we have only two notions :
dif-stability and inf-dif-stability.

(1.4.3) Proposition

The problem (P) is inf<üf«stable iff 3A(0) is non empty.

Proof :

Suppose 8A(0) is non empty (this implies that A(0) is finite). We put
ho(u) « A^O, u). We have (see [19], HM) :

(1.4.4) AJ = Xdhiö), hence :

(1.4.5) A**00= sup («,»).
u€9h(0)

Thus, if v0 € 3A(0), we have :

ho(u) > K*(u) > (u, v0), for all u € U,

Conversefy, suppose that (P) is inf-dif-stable : As A0€conv(C/) has a
continuous aflSne minorant, h% does not take the value + oo identically and
by (1.4.4), 8A(0) is non-empty.

n° R-2» 1971.



12 J. L. JOLY ET P. J. LAURENT

(1.4.6) Proposition [23]

The problem (P) is inf-dif-stable iff h(0) is finite and there exists a neigh-
borhood'UL of 0 € E/and a number M € R such that :

ho(u) ^ M,forall«€clJL.

Instead of the words «inf-stable» and «inf-dif-stable» R. T. Rockafellar [23],
in the case where the perturbations are translations,uses «normal» and« stably
set » (note that we always suppose in our définitions that h(0) is finite). In
fact, in order to define a stably set problem this author takes the property
of the proposition (1.4.6) and then proves that it is equivalent to « dh(Ö) non
empty »; (this équivalence is true for every convex functional h and thus the
proposition is quite independant of the perturbations).

REMARKS

(1.4.7) If the problem (P) is stable, then it is also inf-dif-stable.
(If the functional h € conv (U) is finite and continuous at 0 € U> then the

sub-differential 3A(0) is non-empty; See [19], lO.c.)
(1.4.8) If the problem (P) is stable and if 3ft(0) consists of just one element,
then the problem (P) is dif-stable. (If h € conv (U) is finite continuous at
0 € U, then the formula (1.4.5) becomes (See [19], lO.f) :

ho(ü) = max (w, v)

which gives exactly (1.4.1) in the case where 3/z(0) consists of just one element).

1.5. Stability and duality

The theorem (1.3.3) shows that the inf-stability of (P) (or of ( 0 ) is equi-
valent to the fact that the equality — p = a holds (with a finite amount).
The next theorem gives the relation between inf-stability and inf-dif-stability.
By (1.2.1) and (1.2.9), if a is finite, the set of solutions of (P) can be written :

(1.5.1) A = 3/*(0) - 8£**(0).

In the same way, by (1.2.6), (1.2.4) and (1.2.5), if p is finite the set of solu-
tions of ( 0 can be written :

(1.5.2) B = 3g*(0) = 3A**(0).

(1.5.3) Theorem

The following two statements are equivalent :
(i) The problem (P) is inf-dif-stable,

(ii) The problem (P) is inf-stable and the problem (Q) has solutions.

Revue Française d'Informatique et de Recherche opérationnelle



CONVEX MINIMIZATION PROBLEMS 13

Proof :
Suppose that (P) is inf-dif-stable, i.e. by proposition (1.4.3) that 3/z(0) ^ 0 .

By (1.1.7), we have h(0) = A**(0), hence — (3 = a (see the proof of theorem
(1.3.3)). Further, by (1.1.8), 3A(0) = 3/i**(0), hence B = 3A**(0) is non-
empty. Conversely, suppose (P) to be inf-stable (i.e. h(0) = A**(0) = a finite
number) and B = 3/i**(0) to be non-empty. By (1.1.8), 3A(0) is equal to 3A**(0),
hence is non-empty, and (P) is inf-dif-stable.

(1.5.4) Corollary

The following three statements are equivalent :
(i) The problems (P) and (Q) are inf-stable and have solutions,

(ii) The problems (P) and (g) are inf-dif-stable,
(iii) The problem (P) is inf-dif-stable and has solutions.

Proof :

It is a direct conséquence of theorems (1.3.3) and (1.5.3).

(1.5.5) REMARK

The notion of stability (for the problem (P)) dépends on the topology
which has been assigned to the space U. But the two notions of inf-stability
and inf-dif-stability do not depend on this topology. They only depend on
the duality between U and V : If (P) is inf-stable (inf-dif-stable) then it has
still this property for every other locally convex topology on U which is
compatible with the duality (for example, the weak topology a(U, V) or the
Mackey topology T(W, V)) (It is clear that the equality — (3 = a and the
existence of solutions for the problem (Q) do not depend on the topology).

1.6. Characterization of the solutions

The sets of solutions A and B of the problems (P) and (Q) are given by
the formulae (1.5.1) and (1.5.2) which are true without any assumption.

With the assumption that (P) is inf-dif-stable we will obtain a characteri-
zation of the solutions which is very important for the applications. But
first we give a sufficient condition for which we need no assumption.

(1.6.1) Theorem

If x € X and v € V satisfy one of the three (equivalent) conditions :

(iü) [0, «0 € aqpÇc, 0),

then x is solution of (P) and v is solution of (Q).

n° R-2, 1971.



14 J, L. JOLY ET P. J. LAURENT

Proof :

Suppose that 3c € X and v € V satisfy (i).

We have
a < <p(x, 0) , for all,

and
p < <K0, v) , for all v € K

Further we have 0 < oc + p < <p(x, 0) + tf/(O, *;), for all x € JT and all

If 3c € T̂ and v€V satisfy :

they necessarily satisfy :

a = 9(3c5 0), P = ^(^> ^) wïth 0 = a + P,

i.e. 3c is a solution of (P), ï? a solution of (Q) and the equality — p = a holds.
The three conditions are equivalent by (1.1.9).

(1.6.2) Theorem

If the problem (P) is inf-dif-stable, then x € X is a solution of (P) iff
there exists v € V satisfying one of the three (equivalent) conditions of
theorem (1.6.1) ; such an element v is then necessarily a solution of the
problem (g).

Proof :

We know (th. (1.6.1)) that the condition is sufficient.

Conversely, suppose that 3c € X is a solution of (P) ; we have a = <p(3c, 0).
As the problem (P) is inf-dif-stable, by theorem (1.5.3), we have a + p = 0
and the problem (g) has solutions. Let v be a solution of (g) ; we have

we have <p(3c, 0) + ^(0, v) = a + p = 0.

We can obtain equivalent characterisation theorems by using a notion of
generalized Lagrangian.

(1.6.3) Définition

We shall call Lagrangian of(P) the foliowing functional defined on X X V
with values in R.

I(x9 v) = Sup ((«, v) — 9(x, w)).
wei;

For a fixed x, the functional t; —> /(x, Ü) is convex and belongs to Y{V).

Revue Française d'Informatique et de Recherche opérationnelle



CONVEX MINIMIZATCON PROBLEMS 1 5

lf we dénote by <px the functional defined by : <px(u) = cp(x, u), for all u € U9

we have in fact :

For a fixed i?, the functional x —> — /(JC, v) is convex but in gênerai, it does
not belong to T0(X). We have obviously :

(1.6.4) ^(y,v)^sup«x,y}+l(x,v)).
x€X

Hence, for y =s 0 :

(1.6.5) p = Inf Sup /(JC, v).
v€V x€X

On the other hand, as l(x, v) = <p*(v) and cpx € I\£7),

<1.6.6) 9(x, il) = 9x(ü) = 9**(«) - Sup ((«, ») - /(x, v)).
v€V

Hence, for u = 0 :

or equivalently,

a = Inf Sup (— l(x, v)\
x€X v€V

(1.6.7) — a = Sup Inf /(JC, i;).
x€X v€V

Then the equality — a = (î corresponds to the equality :

Inf Sup /(JC, «?) = Sup Inf l(x, v)
v€V x€X x€X v€V

We have the following characterization theorems, which are equivalent to
the theorems (1.6.1) and (1.6.2) :

(1.6.8) Theorem

If x e Z a n d v € Ksatisfy :

l(x, v) ^ /(JC, V) < /(JC, I>), for all JC € X and all y € F,
then JC is a solution of (P) and v is a solution of (g).

The condition of the theorem is equivalent to :

Sup /(*, Ü) =l(x9v)= Inf /(JC,
x€X v€V
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Now, by (1.6.4) and (1.6.6) we have :

x€X

I n f / ( * , » ) = — q<3ë,O).
v€V

Thxis the condition of the theorem implies :

<p(x, 0) + t(/(0, v) = 0, which is the condition (i) of theorem (1.6.1).

(1.6.9) Theorem

If the problem (P) is inf-dif-stable, then x e X is a solution of (P) iff
there exists v G F such that :

/(*, v) < l(x, v) ^ /(3c, i?), for all x € X and all y € V,
(such an element ï? is necessarily a solution of (Q).

Prew?/ ;

See the proofs of theorems (1.6.2) and (1.6.8).

REMARK :

The family of perturbed problems (Pu) is completely defined by the func-
tional 9. This functional defines a unique Lagrangian /. Conversely, using (1.6.6),
to a given Lagrangian / corresponds a unique functional <p, i.e. a unique family
of perturbed problems (Pu).

1.7. Conditions for the stability of a minimization problem

In this paragraph we will give several conditions which imply the inf-dif-
stability (and sometimes the stability) of the problem (P).

(1.7.1) Theorem

If h(Q) is finite and if there exists x0 € X such that the functional
<pXo :u€U^> <p(x0> u) is finite and continuous at 0 € U9 then the problem (P)
is stable (hence also inf-dif-stable).

Proof :

As the functional <pxo is finite and continuous at 0 € U, there exist M €R
and a neighborhood ^ of 0 € U such that :

) ?(o> ) ^ , for ail u

Thus, we have :

h(u) = Inf <p(x, u) < <p(x09 u) < M9 for ail u

Revue Française d*Informatique et de Recherche opérationnelle



CONVEX MINIMIZATION PROBLEMS 17

As A € conv (£/) is bounded on a neighborhood of 0, h is continuous at
every point of the interior of its effective domain (See [19], 5a\ in particular
at 0.

REMARK :

As the notion of inf-dif-stability only dépends on the duality (cf. (1.5.5)),
if h(0) is finite and if there exists x0 € X such that the functional

9xo : u e U-> y(x0, u)

is finite and T(£/, F)-continuous at 0 € U9 then the problem (P) is still inf-dif-
stable (but of course stable for this T(£/, F)-topology only).

In order to obtain weaker sufficient conditions for stability of (P) we will
need the following two définitions :

(1.7.2) Définition

A functional h € conv (U) is said to be quasi-continuous at u0 if its effec-
tive domain contains u0 and spans a non-empty closed flat Lh of finite co-
dimension, and if the restriction of h to Lh is continuous at w0.

(1.7.3) Définition

A functional h Cconv (U) is said to be quasi-continuous if its effective
domain spans a non-empty closed flat Lh of finite co-dimension and if the res-
triction of h to Lh is continuous at every point of the (non-empty) relative
interior of dom (h) in Lh.

We shall prove several intermediate propositions before we state the main
theorem (1.7.7) :

(1.7.4) Proposition

If there exists x0 € X such that the convex functional :

<pXo : u € ü -> <p(x0, w)

is quasi-continuous, then h is also quasi-continuous.

Proof ;

Let Lo and L be respectively the flats spanned by dom (<pxo) and dom (/*).
By the définition of h, we have dom (h) 3 dom (<pxo), epi (h) 3 epi (cp )̂ and
L D Lo (hence L is finite-co-dimensional). A convex functional is continuous
at every point of the (non-empty) interior of its effective domain iff its epigraph
has a non-empty interior. Thus to prove that h is quasi-continuous, we have
only to prove that epi (h) has a non-empty interior in L x R. The set epi (<pxo)
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has a non-empty interior in Lo. lfL= Lo, the property is obvious. Suppose now
that L D Lo. There exists z1^U x R such that zt € epi (h) and zt $ epi (9^).

The set co (z± U epi (cp̂ 0)) is contained in epi (h) and has a non-empty interior
in the flat Vt spanned by epi (cp̂ ) and zu which is contained in L. Thus,
epi (h) H Vt has a non-empty interior in Vx. We can do the same construction
until we have Vk = L (since Z,o is a finite co-dimensional flat).

(1.7.5) Définition

Two convex subsets Ci and C2 are said to be united if they cannot be pro-
perly separated, i.e. if all closed hyperplane which separate Cx and C2 contain
both of them. In the same way, the convex functionals ft and f2 are said to be
united if dom ( ƒ x) and dom ( f2) are united.

(1.7.6) Proposition

If h is quasi-continuous and if {0} and dom (h) are united, then h is quasi-
continuous at 0 € U.

Proof ;

Let us dénote by L the flat which is spanned by dom (A). First we remark
that 0 € L (If we had 0 $ L we could strictly separate {0} and L, i.e. find a
closed hyperplane which séparâtes {0}and L but does not intersect them and
this would contradict the assumption « {0} and dom (h) are united »). Now,
we shall prove that 0 € U belongs to the relative interior Ü. of dom (h) in the
flat L (i.e. that the restriction of h to L is continuous at 0).

Suppose that 0 $ O. Then, there exists a closed hyperplane H 'm L which
séparâtes 0 and £1 and we have Q, <£ H. Let N be a supplementary (necessarily
finite-dimensional) linear space of L in U. The flat H + Nis a closed hyperplane
in U and séparâtes 0 and dom (/z). However, we have dom (h) ^ H + JV.
This contradicts the assumption that 0 and dom (h) are united. Hence, h is
quasi-continuous at 0.

(1.7.7) Theorem

If the following three conditions are satisfied :

(a) there exists x0 € X such that the convex functional :

cpxo : u € U-> <p(x0, u) is quasi-continuous,

(b) {0} and dom (A) are united,
(c) A(0) is finite,

then the problem (P) is inf-dif-stable.

Revue Française d'Informatique et de Recherche opérationnelle



CONVEX MINIMIZATION PROBLEMS 19

Proof :

By proposition (1.7.4), h is quasi-continuous. Then, by proposition (1.7.6),
h is quasi-continuous at 0. Let L be the flat which is spanned by dom (/z). As
the restriction of h to L is finite and continuous at 0, it is subdifferentiable at
this point, i.e. there exists a continuous linear functional v on L such that

h(u) ^ A(0) + v(u), for all u € L (See [19], 10. c).

Every continuous linear functional v € F which is an extension of ? to C/
will be clearly an element of 8/*(0). Hence (P) is inf-dif-stable.

(1.7.8) REMARK

If {0} and dom (h) are united for a particular topology in U, then they
are still united for all topologies which are compatible with the duality (since
the closed hyperplans are the same). As the inf-dif-stability only dépends on
the duality, we can give a weaker condition in the theorem (1.7.7) : The condi-
tion (à) can be replaced by : « there exists x0 € X such that the convex func-
tional MG U-+<p(xo,u) is quasi-continuous for the T(£/, F)-topology ». The
functional h will be quasi-continuous at 0 for this r(U9 F)-topology, but the
problem (P) will still be inf-dif-stable.

In the case where the space U of the perturbations is finite dimensional,
the theorem (1.7.7) can be simplified :

(1.7.9) Theorem

Assume that U is a finite dimensional space. If A(0) is finite and if 0 e ri
(dom (h))9 then the problem (P) is inf-dif-stable.

Proof :

The functional h is convex on a finite dimensional space U and its effective
domain is non-empty. This domain spans a flat L which is obviously finite
co-dimensional and the restriction of h to L is continuous (at every point of
ri (dom (/z)) ; see [24], p. 82). Hence, h is quasi-continuous. Further, {0} and
dom (h) are united iff 0 € ri (dom (h)) ; See [24], p. 97).

1.8 Dual conditions for the stability of the minimization problem

Using duality theorems we will give some equivalent conditions for the
inf-dif-stability of the problem (P). We recaü that a functional q € Rv is said
to be inf-compact (See [19], 4.d) if for all r € R the set :

{v € V\q(v) ̂  r}

is compact (eventually empty).
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We dénote again by 9^ and ixo the following functionals :

<pxo :u€U^<p(xo,u),

lx,:v€V^i(x0,v).

We have :

(1.8.1) Theorem

If k(0) is finite and if there exists x0 € X such that the functional lxo is
inf-compact, then the problem (P) is inf-dif-stable (and stable for the
r(U, F)-topology).

Proof :

As Ixo is inf-compact, it is not identically — 00, and 9^ belongs to F0(C/).
The functional lXQ is a fortiori inf-compact for the o(V9 £/)-topology* Now,
it is a fundamental resuit (See [19]) that 9J0 is inf-compact for the a(F, U)
topology iif 9̂ 0 is finite and continuous at 0 for the T(C/5 F)-topology.

Now we have h(0) < <?x0(0) < 00 and the condition « k(0) finite » implies
that h(0) > — 00 ; hence h(0) is finite. Thus, by theorem (1.7.1), the problem (P)
is stable for the <£/, F)-topology and consequently is inf-dif-stable (for ail
topologies compatible with the duality ; cf. (1.5.5)).

In the same way, the property of quasi-continuity has an equivalent pro-
perty in the dual space. We shall need the following définition :

(1.8.2) Définition

A functional q € Rv is said to be inf-locally compact if for ail r € R the set :

is locally compact.

(One can prove that q is locally compact iif its epigraph is locally compact
in F X R.)

Then we have the following property :

(1.8.3) Proposition

The following two statements are equivalent :

(i) The functional 9 ^ is quasi-continuous for the T(£7, V) topology.

(ii) The functional lXQ is inf-locally compact for the a(V, LO-topology
(and is not identically — 00).
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Proof :

This result is a direct conséquence of the foliowing theorem (Joly [13]) :
ïï p € TQ(U) and q = p*, then the functional q is inf-locally compact for the
a(F, f/)-topology iffp is quasi-continuous fot the T(U, F)-topology.

We have cpx0 € F(£/) and lXQ = <p*0. So, we have only to show that (i) or (ii)
implies that cpx0 €F0(U)9 i.e. actually is not identically + oo. If <px0 is quasi-
continuous, dom(<pxf) is non-empty. On the other hand, if (ii) is satisfied,
lx0 is not identically — oo, hence <px0 is not identically + oo.

Now we will give conditions in the dual space V which are equivalent to :
« {0} and dom (A) are united ». We need first the folio wing proposition :

(1.8.4) Proposition
If ^(0, v) is not identically + oo, the following two conditions are equi-

valent :
(i) {0} and dom (A) are united,

(ii) {0} and dom (A**) are united.

Proof :

Let C be a convex set. ThenO and C are united iff 0 and C are united (as a
matter of fact, a closed hyperplane P séparâtes 0 and Ciffit séparâtes 0 and C,
and C is contained in P iff C is contained in P). Thus we have only to prove
that dom (h**) = dom (A).

As tp(O, v) = g(v) = A*(i?) is not identically + oo, A has at least one conti-
nuous affine minorant and we have A**=A (See [19], 5.e). Then by (1.1.4)
we have :

epi (A**) = epi (*) - epi (A).

Using the continuity of the projection p of U X R onto U, we have :

dom (A**) = p (epi (A**)) = p (epi (A)) C p (epi (A)) = dom(A).

Obviously, we have also dom (h) C dom (A**).

Hence we have dom (A) = dom (A**).
We recall the définitions of the recession cone and of the recession func-

tional : Given a non empty closed convex subset C of V, we dénote by C&
the recession cone of C, i.e. the set of all y e V such that x + *ky € C, for
all x € C and all X > 0. It is a closed convex cone with vertex 0. We have
also :

Cco = H X(C — c) , with c € C.

A>0

(This intersection does not depend on the particular element c € C)
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Given g € r o ( F ) , we will dénote by gm the recession functional of g,
i.e. the functional defined by :

gJp) = Sup gfo+*»>-**> with
A>0 A

(The définition does not depend on the particular choice of v0 € dom

The functional gm belongs to F0(F). The preceding two notions are strongly
related : The epigraph of the recession functional g^ of g€F0(V) is equal
to the recession cone of the epigraph of g.

We will use the following property :

(L8.5) Proposition

If g € ro(F), the following two statements are equivalent :
(i) {0} and dom (g*) are united,

(ü) goo(v) ^ 0, for all v € V and
goo(v) = 0 implies £<*>(— v) = 0.

Proef :

We will use the following fundamental formulae ([19], 8.k)

gjp) = Sup (M, V).
u€dom (g*)

The condition (ii) is equivalent to

gjp) < 0 implies g9(— v) = gjp) = 0» i.e.

Sup (u, v) ^ 0 implies Sup (w, — i?) = Sup («, u) = 0.

In other words, if the closed half space {u€ll\ (u, v) < 0} contains
dom (g*), then dom (g*) is contained in the hyperplane {u € U | (w, Ü) = 0},
i.e. {0} and dom (f*) are united.

(1.8.6) REMARKS

(i) The condition « gm(v) > 0, for all v € V» is equivalent to « 0 € dom (g*) ».

(ii) We have here g(v) = ^(03 Ü). If ^(0? v) is not identically + oo, then
g*>(p) = ôoCO? v)9 where ^^ is the recession functional of ^ T 0 ( 7 x F),
i.e. with respect to the two variables.

The preceding équivalences lead to the following theorem :
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(1.8.7) Theorem

If the following three conditions are satisfied :
(a) There exists x0 € X such that the functional

lX0:veV-+l(xo,v)

is inf-locally compact,
(b) The set {v € V j gjiv) = 0} is a linear subspace,
(c) k(0) is finite,
then the problem (P) is inf-dif-stable.

Proof :

As£(0) = —/i**(0) > — oo(See (1.3.4) and (13.5)), we have 0 € dom (A**),
and by the remark (1.8.6.i), the condition « gjjj) ^ 0, for all v 6 V» is satis-
fied. As fc(0) < + oo, i>(0,v)^g(v) is not identically + oo(i.e. g^To(V))
and using proposition (1.8.5), {0} and dom(g*) are united. Finally, using
proposition (1.8.4) and the fact that g* = A**, we see that {0} and dom (h)
are united.

The functional lxo is a fortiori inf-locally compact for the G(V, £/)-topology.
Then? by proposition (1.8.3), the functional

is quasi-contimious for the *c(U9 F)-topology.

By proposition (1.7.6), h is quasi-continuous at 0 € U, hence h(0) < oo.
The condition k(Q) < oo (i.e. g = h* non identically + oo) is equivalent to
the fact that h has at least one continuous affine minorant, hence h(0) > — oo.
Finally we have « #(0) finite ». By theorem (1.7.7), the problem (P) is inf-dif-
stable for the T(U, F)-topology, hence (See remark (1.5.5)) inf-dif-stable for
all topologies on U which are compatible with the duality,

Obviously, we can mix the preceding conditions to obtain other theorems
for the inf-dif-stability of (P). For example the following theorem is certainly
very useful for the applications :

(1.8.8) Corollary

If the following three conditions are satisfied
(a) there exists xo€X such that the convex functional

is quasi-continuous,
(b) the set {v 6 V \ gjp) = 0} is a iinear subspace,
(c) k(0) is finite,
then the problem (P) is inf-dif-stable.
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In the case where U is a finite dimensional space, we obtain the following
theorem :

(1.8.9) Theorem

Assume that U is finite dimensional. If k(0) is finite and if the set
{v € V | goo(y) = 0} is a linear subspace, then the problem (P) is inf-dif-
stable.

APPLICATIONS

In this second part, we will study several types of perturbations for different
problems in optimization and approximation theory.

2.1. Horizontal perturbations

The first example was our starting point for writing the gênerai approach.
In fact we obtained the results, in a first version, by using the properties of
the inf-convolution of two convex functionals. This example was studied
directly (in a slightly different form, using concave functionals and a linear
transformation) by R. T. Rockafellar [23] ; see also [24] for the case of finite
dimensional spaces.

Consider the following minimization problem :

(P) oc = Inf (a(x) + b(x))

with a, b e ro(T). We have ƒ = a + b in the notation of § 1.2. This formulation
includes the classical problem of the minimization of a convex functional
on a convex set : If b = Xc> where C is a closed convex set (see (1.1.3)), then
we have :

a = Inf a{x).
x€C

For the family of perturbed problems, we take :

(Pu) h(u) = Inf (a(x) + b(x - ii))
x€X

where u€U= X. We have :

(2.1.1) y(x, u) - a(x) + b{x — u).

For example, if b = Xc> ^ e n Ku) is tite minimum of a over Cu which is
obtained by translating C of u. A very simple calculation shows that :

(2.1.2) <Ky, t;) - ö*(f? + y) + &*(— v).

Revue Française d'Informatique et de Recherche opérationnelle



CONVEX MINIMIZATION PROBLEMS 2 5

Thus the dual problem of (P), (relatively to the type of perturbations we
ïntroduced) is :

(6) P = lnf(a*(v) + b*(-v))
v€V

and the perturbed dual problem (for the perturbation y € Y) is :

iQy) k(y) - Inf {a*(y + t;) + * * ( - o)).

(Wehavehere F = F.)

(2.1.3) REMARK

Given two convex functionals a, p 6 TQ(X), it is classical (see
J. J. Moreau [19]) to consider the functional :

Y(x) = Inf (a(xt) + pfo)) = Inf (afo) + p(* —xj).
x\€X

We dénote y = a Vp, the inf-convolution of a and p. The functional y
as convex, but in gênerai it does belong to F0(Z). We have (see [19], 3.b) :

dom (y) = dom (oc) + dom (f3).

If we dénote by b the functional defined by b(x) = b(— x), we have :

In the same way we have :
k = a* V6*.

Thus, some of the results we will give (proposition (2.1.4) for example)
could be deduced from the properties of the inf-convolution.

We will rather use the genera! theory. The theorem (2.6.1) gives the follow-
ing condition for the stability of the problem (P) :

(2.L4) Proposition (Rockafellar [20])

If a = h(0) is finite and if there exists x0 € X such that a is inite at xö

and b is finite and continuous at x0, then (P) is stable (hence inf-dif-stable).

(2.1.5) REMARK

As h(ü) can be written

h(u) = Inf (b(x) + a(x + «))
x€X

îf a = h(0) is finite and if there exists x0 € X such that a is finite and continuous
at x0 and b is finite at x0> then the problem (P) is stable.
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The convex functional b will be said continuous if it is continuous at every
point of the (non-empty) interior of its effective domain (It is well known
that b is continuous iff it is continuous at one point JC0 of its effective domain).
Thus the conditions of the proposition (2.1.4) can be written in the foliowing
form :

If (a) b is continuous,
(P) dom (a) fi int (dom (b)) ̂  0 ,
(y) a = h(0) is finite,

then (P) is stable.
We will apply theorem (1.7.7) in order to obtain weaker conditions of the

same form :

(2.1.6) Proposition

If the folio wing three conditions are satisfied :
(a) b is quasi-continuous,
(P) dom (à) and dom (b) are united,
(y) a = h(ö) is finite,

then the problem (P) is inf-dif-stable.

Proof :

We have only to prove that the conditions (a), (|3) and (Y) imply the
conditions of theorem (1.7.7) :

If b is quasi-continuous, obviously u -> b(xö — u) is quasi-continuous
and if x0 e dom (a), u -> a(x0) + b(x0 — u) is also quasi-continuous.

By the remark (2.1.3), we have :
A

dom (h) = dom (a) + dom (b) = dom (a) — dom (b).

Let us consider a closed hyperplane Ho which séparâtes 0 and dom(A)
(the condition (Y) implies that Ho contains 0). Thus we have :

Ho = {u € U j <II, v> - 0}
and

<w, v) ^ 0, for all u € dom (a) — dom (b).

Therefore, there exists c such that :

Sup < ul9 v > ^ c < Inf < u2, v >.
u\€ dom (a) «26 dom (b)

Thus the closed hyperplane :
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séparâtes dom (a) and dom (è). The condition (P) implies that H contains
both dom (a) and dom (b), hence that Ho contains dom (h). We have proved
that { 0 } and dom (h) are united.

The following characterization theorem can be easily deduced from
theorem (1.6.2) :

(2.L7) Proposition (Rockafellar [20])

If the problem (P) is inf-dif-stable, then an element x € X is a solution
of (P) iff there exists v € V such that v € Ba(x) and — v € db(x). (Such an
element v is necessarily a solution of ( 0 ) .

P/w/ ;

An element x £ X is a solution of (P) iff there exists v € V such that :

<p(3c, 0) + <K0, 5) = 0

/.e. a(x) + 6(x) + a*(S) + b*( — v) = 0. As we have always :

this is equivalent to :

(2.1.8) REMARK

The same theorem could be obtained with the Lagrangian of (P) :

[

&*(— v) + <x, v} — a(x) if x € dom (a)

— oo if x^dom(a).

If (P) is inf-dif-stable, an element x € dom (a) is a solution of (P) iff there
exists v e V such that :

**( — 5) + < * , 5 > — 4*) < **( — »)

for all x € dom (Ö) and all v € F.

The first inequality implies that v € 3a(3c) and the second inequality implies
that x € 3è*( — 5), f.e. — v € 3é(3c).

n° R-2S1971.



28 J. L. JOLY ET P. J. LAURENT

Existence of spline fu net ions

Given a minimization problem (P), if one of its dual problems ( 0 is
inf-dif-stable, then the problem (P) has solutions. Thus the sufficient conditions
for the inf-dif-stability of (Q) give conditions for the existence of solutions
for (P). We will use this method for the problem of spline functions. Let X
and Z be two real Hilbert spaces and T be a continuous linear operator of X
onto Z with a finite dimensional null space N = ÇJfT).

If we take Y — X, the spaces X and Y are in duality with respect to the
inner product (x | j>. Let C be a non empty closed convex set of X. We
consider the following minimization problem which includes most of the
problems related to spline functions (see [2], [16]) :

(PO a = I n f ||7Tx)||.
x€C

A solution of (P') is called a spline function (relatively to T and C). The
perturbed problem we consider is the minimization of || T(x) || over a translate
of C. The spaces U and V are taken both equal to X with the duality defined
by the inner product.

The function cp is :
f || IXx) || if x - « € C f

<p(x, u) = l
[ + oo elsewhere.

This problem is obviously a particular case of the problem we studied
above :

a(x) = || T(x) ||,

9(x,u)=\\T(x)\\+lc(x-u).

In this case we obtain for the conjugate functionals of a and b the following
expressions :

!

Oify€iVxand Hr'^OOll < 1,

+ oo elsewhere,

where T' dénotes the adjoint operator of T, and :
|

x€C

Thus the functional ^ is equal to :

f Sup<*|— v} if y + v ZN'-and WT'-'iy + v)\\ < 1,

[ + oo elsewhere.
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The dual problem is :

(G') P = Inf (Sup<*|—1>
ueiV"1" x€C

\\T>-Hv)\\<l

and the perturbée dual problem :

; |
y + v€N x€C

H T'-1o»+»)H<i

As the functional a(x) = || !T(JC) || is eontinuous, using the theorem (2.6.1),
we see that the problem (P') is stable. Hence we have a = — (3 and the pro-
blem (g') has solutions.

In order to obtain existence of solutions for (P') we will give sufficient condi-
tions for the inf-dif-stability of (g') (using theorem (2.7.8)) in which we per-
mute the roles of (P) and (g)).

(2.1.9) Proposition

If the subset C» fl Nis a linear subspace, then the problem (g') is inf-dif-
stable (and consequently (P7) has solutions).

Proof :

We will use the theorem (1.8.8), but thistime for the problem (g')< The
number a = — pis finite, hence the condition (iii) is already satisfied. We have
to show that there exists v0 such that the functional

is quasi-continuous.

This functional is equal to the constant Sup < x | — v0 > if
X€C

y + v0 €iVxand Wr'^y + vo)\\ < 1.

The restriction of 4»P0 to — v0 + iV"1 (which is a finite codimensional flat)
is continuous : actually it is constant on a convex set which has a non-empty
(relative) interior.

Now, we have to show that the set

is a linear subspace.

As the functional x€X—> || T(x) || is positively homogeneous, we have

and E = N 0 Cm ; this gives the condition of our theorem.
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2.2. Vertical perturbations

In this section, X and Y still dénote two local convex Hausdorff linear
topological spaces in duality. We dénote by w a function defined o n l x O
with values in R, where O is a compact set. We suppose that for all t € Û,
the functional wt belongs to T0(X) (where wt(x) = w(x, t)) and for all x € X
the functional wx is continuous (where wx(t) = w(x} t)). Let us consider the
following minimization problem :

(P) a -

with/0 € T0(X) and C = { x € X \ wt(x) < 0, for all t € O }.
According to the notations of § 1.2, we have iere :

f fö(x) if wt(x) ^ 0, for all t € Û,
f(x) - ]

l^+oo elsewhere.

We take U = C(O), the space of continuous functions on O with the
norm :

t€Q

For each u € C(Q) we consider the perturbed problem :

(Pu) h(u) = Inf Mx),
x€Cu

with Cu = { x € X | wt(x) < w(̂ ), for all r € O }. This corresponds to the
following functional cp :

( fo(x) if wt(x) ^ u(t% for all t € O,

oo elsewhere.
As space F take for example the dual C(Qy of C(û) with the weak topo-

logy a(C(Q)\ C(Q)).
We will say that v € Fis positive if :

{% v) > 05 for all u € C(O) satisfying u(t) ^ 0, for all t € O.

We dénote by K+ the set of all positive v € V (and in the same way
by K~ = — JST+ the set of all négative v € F). Then we obtain :

r o o elsewhere.
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Thus the dual problem of (P) is :

(8) P = Inf (Sup ( —fo(x) + (wx, v))).
v€K~ x€X

The perturbed dual problem is :

(6,) *Ö0 = Inf (Sup « x, y > -ƒ<,(*) + (wx, v))).
v€K~ x€X

As an example we will apply theorem (2.6.1) to obtain a condition for
the inf-dif-stability of (P) :

(2.2.1) Proposition

If a = h(0) is finite, and if there exists x0 € X such that fo(xo) is finite
and wX0(0 < 0 for all / e O then the problem (P) is stable (hence inf-dif-
stable).

Proof :
Let — e = max wxo(t). We have e > 0.

For every M in the following neighborhood of 0 :

we have wxo(/) = w(x0, /) < w(0, for all t € O, i.e., JC0 € Cu, hence

9(x05 ü) = /0(x0).

Thus there exists x0 € Xsuch that the functional u€ U—> <p(x0} u) is finite and
continuous at 0 € U. We can apply theorem (1.7.1).

We have the following characterization of a solution of the problem (P) :

(2.2.2) Proposition

If the problem (P) is inf-dif-stable, then an element 3c € C is a solution
of (P) iff there exists v € K~ such that :

fo(x) — (wx> v) = min (fo(x) — (wx, v)) and (w& v) = 0.
x€X

(such an element v is necessarily a solution of (g)).

Using the theorem (1.6.2), x € C is a solution of (P) iff there exists g" € K~
such that :

(0 /o(x) + Sup ( —/o(x) + (w„ u)) = 0.
x€X
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As w$ € C(Q) is négative, we have (w^ v) ^ 0 and thus :

—fo(x) + (wx, v)).
x€X

The équation (i) then implies :

—fo(x) + (w-g, v) = max ( — /0(x) + (wx, v)) and (wg, ü) = 0.
x€X

(2.2.3) REMARK

We could obtain the same theorem by using the Lagrangian of (P) which
is :

' —ƒ<>(*) + (wx, v) if v € K~ and x € dom ( ƒ„),

H-oo if Ü $ UT" and x € dom (/0),

— oo if x i dom (/0).

If (P) is inf-dif-stable, then x € dom ( ƒ 0) is a solution of (P) iff :

—ƒ(>(*) + (wx, v) < —ƒ<>(*) + (Wx> ^) < —ƒ<>(*) + (wâ» ü)5

for ail x € dom (/0) and ail v € Â™. The first inequality is equivalent to :

fo(x) — (w£, v) = min (fo(x) — (wx, v)).
x€X

The second inequality is equivalent to :

(Wjg, v — v) ^ 0, for ail v € K"

which is equivalent to

(w£, v) = 0 and x € C.

EXEMPLE 1 :

Now, let us consider the case where Q consists of just m éléments tl9..., tm.
We dénote :

ft(x) = wti(x) , / = 1,..., m.

In that case we have :

If we put w; = u(tt), i ~ 1,..., W2? a perturbation is now an element
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We have :

, x f fo(x) if fi{x) ^ ut, i = 1, ..., m,

l + oo elsewhere
m

Sup « x, y > — ƒ„(*) + X »! / i to) if Ü< < O, i = 1, ..., w,

+ oo elsewhere.

and the problems (P) and (g) become :

(PO a = Inf /0(jc)
JC€C

(60 P= Inf (Sup(-/0(x)+ J»,/**)))
<0 € X i l

The propostion (2.2.1) becomes :
If a = h(0) is finite, and if there exists x0 € X such that fo(xo) is finite

and/|(JC0) < O, i = 1>..., m then the problem (P) is stable.
But in the present case, as the space U is finite dimensional, we can apply

the theorems (1.7.9) or (1.8.9). This last theorem gives the foUowing condition
for the inf-dif-stability of (P).

(2.2.4) Proposition

If p = k(0) is finite and if there exists X such that the subset :

\vt^ O, i = 1,..., m, Sup [— fö(x) + ^ ©i/i(*)]
x€X ( = 1

is non-empty and bounded, then the problem (P') is inf-dif-stabie.

As k(0) is finite, we have 0€dom(A**) and by the remark (1.8.6. i),
gao(v) ^ O, for all v € V.

Thus, we have :

{veV\ga>(v) = O}={v€V\g„(v)^ 0}.

This set, which is called the recession cone of g, is equal to the recession
cone of all sets :

which are non-empty (see [24], Th. 8.7). If there exists X such that Kx is non-
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empty and bounded, then (K^ = { v € V \ g^{v) = 0 } is equal to { 0 } and
by theorem (1.8.9), the problem (PO is inf-dif-stable.

(2.2.5) REMARKS

(i) As Kx C { v € Rm | vt < 0, i = 1,..., m }, if the recession cone of Kx

is a linear subspace, it is actually reduced to { 0 } and Kx is bounded (cf. [24],
p. 64).

(ii) There are several simple conditions which imply that k(0) is finite.
For example if <p(x, 0) and ^(0, v) are both non identically + oo, then a = h(Q)
and p = k(0) are both finite.

The proposition (2.2.2) becomes for the problem (PO :

(2.2.6) Proposition

If the problem (P') is inf-dif-stable, then an element 3c € C is a solution
of (P') iff there exists v G Rm, v( < 0, i = 1,..., m such that

fo(x) — £ Vifi(x) = min (fo(x) — £ ^/((x)) and,
i = l x€X i = l

^ / • ( i ) = 0 , / = 1,..., m.

Spline functions

As a practical example of problem (P') we take again the problem of spline
functions (cf. M. Attéia [1], K. Ritter [20]) but with a different kind of per-
turbation.

We take the notation of § 2.1 but we shall define the convex C more expli-
citely : Given m éléments ku ..., km € X, and 2m real numbers

«i» PiOt < Pi)»i = h...» w),

we consider the convex set :

and the minimization problem :

(P') a = Inf
xec

We take Y = Z and the duality defined by the inner product. The space of
the perturbations will be RZm. Given a perturbation
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we consider the perturbed convex subset

and the perturbed minimization problem :

(PD h(u) = Inf \\T(x)\\.
x€Cu

In the notation of this paragraph, we have :

!

||T(^)|| if a£ — a( ^ (jkt \ x} ^ p£ + bi9 i = 1,..., m,

+ oo elsewhere.

We obtain for the functional

i f p i ^ O, lLt ^ O, i = 1, . . . , lf|,
, t?) =

( = 1

. + oo elsewhere,

with v = [pi,..., pm, \il9 ...5 fxj € iï2m.
As the conjugate functional off0(x) = \\T(x)\\ is (cf. § 2.1) :

s *r \ \OifyeN'L and || y ^00 H ̂  1»
/o (y) ==z \

[ + oo elsewhere,

we obtain finally :

YJ Pia« — YJ Vifii iïy + Yi (Pi — 9i)ki € N\

and

+ oo elsewhere.

The dual problem of (P') is :

(2') = Inf
Pi<0

Pi < O, [Xi ^ O, ï = 1 , . . . , m

( £ pfoti_

R-2, 1971.



36 J. L. JOLY ET P. J. LAURENT

Applying proposition (2.2.1), we see that (P') is stable, hence inf-dif-stable.
We can apply proposition (2.1.9) to deduce the existence of solutions for the
problem (P'). Here C^ is a linear subspace. Hence the problem (Pf) has solu-
tions.

Thus by corollary (1.5.4), we obtain :

(2.2.7) Proposition

The preceding spline-function problem (P') and its dual (Q') are both
inf-dif-stable.

EXEMPLE 2 :

Let us consider now the case where space Xis finite dimensional (X — R})
and the functional w has the following form :

— co(0

where the ct are continuous functions on Q.

Suppose that fo(x) = < y | x > = £ Yi**- T h e d u a l Problem becomes :

(Q") p = Inf — (co,v).
V<0

(chv) —yi9i = 1,...,«.

The space Y of the perturbations for (Qff) is then «-dimensional. The
perturbed dual problem is the following :

(Ql) k(y)=Inf-(co,v)

(Ct,v) =yi — yi,i = ls...,/7.

We can apply theorem (1.8.9) to find conditions for the inf-dif-stability
of (6") :

(2.2.7) Proposition

If{*€Jl"| É Yi*i = 0} n {x€Rn\ É jc(c,(/)<0,foraU/eu}
i l i l

is a linear subspace, and if a is finite then the problem (g") is inf-dif-stable
(consequently a = — p and the problem (P) has solutions).
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Proof :

By theorem (1.8.9) (applied to the problem (Qf% iïh(0) = a is finite and if
{ x € X | fm(x) = 0 } is a linear subspaee, then (Qrt) is inf-dif-stâble. But we
have here :

g n n

f M J E fixi i f E * A(0 < °> f o r afl f € Û
/00W — 1 i ii n

+ «
+ 00 elsewhere.

2.3. Mixed perturbations

We will consider a gênerai problem of approximation with constraints
in a normed space.

Let X be a normed space and Y be its dual space (with the a(Y9 X) topo-
logy). We dénote by W a closed linear subspace of X We consider the follo-
wing closed convex subset :

C = { x € XI (x — xl9 h} ^ 0, for all h € H }

where H is a compact convex set of Y and xt € X is fixed. If we dénote

q(x) = max < x9 h )»

the convex set C can be written

C^{x€X\q(x — xj)< 0}.

We put
^(x) = max <(x,ky,

where Â"is a symmetrical compact convex set of F. The functional p is a con-
tinuous semi norm on X

We will study the following problem :

(P) oc = Inf p(x — x0),
x€C(\W

where x0 € Xis fixed.
As the space of perturbations, we will take : U = X X X X i t
Associated with a perturbation « = [&0, wl5 |i]? we have the perturbed

problem :

(Pu) A(»)= Inf />(* — (*o

where Cttli/l = { x € X | q(x — (xt — %)) < |i }.
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Thus the functional 9 is :

1 p{x — (x0 — w0)) if q(x — (xt — ut)) ^ p and x € W,

+ 00 elsewhere,

where u = [u0, ul9\i]€X x X x R. The dual of U is F = Y x Y X R.
A direct computation gives for ty the following expression :

< # , \ [ / \ "f* —• JW- "\ K tm l~ TT

X ̂  0 and j — v0 — vx € W\
+ 00 elsewhere,

where v = [yOï Ï?I? X] € F x 7 x i?.

The dual problem is the following one :

(Ô) P = löf «^Os 0̂ > + <*1Ï ^l))

A < 0

This kind of dual is yery useful for the computation of the solution. It is
the basis for a generalization of the Remes' Algorithm (see [14]).

The perturbed dual problem is

(Qy) k(y)= Inf «*o,*o>+ <*!,*!».
VQ€K

vi = — A/ii
hi€H
A<0 A

y — VQ — VI€ W

The theorem (2.6.1) gives the following conditions for the inf-dif-stability
ofOP);

(2.3.1) Proposition

If there exists x € W such that q(x — xx) < O, then the problem (P) is
stable (hence inf-dif-stable).

Proof

The function u0 -+p(x — (̂ :0 — u0)) is continuous. Put — s = q(x — x j .
If |(JL| < I and q(ut) < ~, then we have
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Thus there exists a neighborhood SJL of 0 € Jf such that for all u± € ̂  and all
[JL€] — | , + | [ , we have :

<p(5c, w) = p(x — (x0 — w0)),

(where M = [u0, uu [x])} which is continuous with respect to u.

Let us write the corresponding characterization theorem using theorem
(2.5.2) :

(2.3.2) Proposition

If the problem (P) is inf-dif-stable, then an element x € C f) W is a
solution of (P)_iff there exist v = [vOi vl9 X] € y x 7 x i? such that
»o € £» ï?i = — Â/ÏJ with At € H and X ̂  0,
£o + vx e w\
(x — xo,voy =p(x — x0)
and X < x — xu hx > = 0 . (This element v is a solution of the problem 0 .

Proof :

An element x ç Z i s a solution of (P) iff there exists v € V such that
<p(x, 0) + <K0, Ï?) = 0. In our case, x € C f\ W is a solution iff there exist
v0> vu X (satisfying voeK,vt = — XAl5 X ̂  0, Ai € #> tT0 + "̂ï € W x ) such
that :

/?(x — ^o) + < ̂ o, ^o > + < xl9Vi > = 0

i.e. since v0 + vx € PF"1

(i) /?(x — JC0) — < 5 — x0, v0 > — < x — xl9 Vj_ > = 0.

As we have :

< x — xQ9 v0 > ^ p(x — x0),

hence :

p(^ — x0) — < x — x09 v0 > ^ 0,

— < x — xu vx > ) > 0.

these two inequalities imply that (i) is equivalent to :

p(x — xo) — <(x — xo,voy= 0,

X <x — x^hx} - 0 .
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(2.3.3) REMARK

The same theorem could be obtained by using the Lagrangian of (P) which is :

1 — (x — x0, voy — <x — xl9 vty if v0 € K9 vt = — Wil9

hi eHyX < 0
+ oo elsewhere,

if x$ W : — oo.

If (P) is inf-dif-stable, then an element x € W is a solution of (P) iff there
exists v = [v0, vu X] e F satisfying voç.Kiv1 = — 7Jiu hx € //, X ̂  0 such
that :

^ — \ x — XQ, VQ y — \ x — X\9 Vi y

for all x e W, v0 € K, vx = — \hu X < 0, ht € H. The first inequality is equi-
valent to v0 + vx € PFx.The second inequality is equivalent to :

q(x — xt) < 0, < x — x0, ü0 > =p(x — xQ y and X < x — xu ht > = 0.

(2.3.4) Proposition

Assume that W is finite-dimensional. If there exists x € W such that
(̂3c — JCJ) < 0 and if the set { x € ̂ f | x € FF, />(x) = 0 and <JC, A> < 0, for all

hÇ.H} is a linear subspace then, both problems (P) and ( 0 are inf-dif-
stable (consequently — (3 = a and (P) and (g) have solutions).

By (2.3.1), (P) is inf-dif-stable. Hence k(Ö) is also finite. We shall apply
corollory (1.8.8) for the problem (Q). The functiona] tyB:y€Y-* ty(y9TJ) is
clearly quasi-continuous. The subset { x € X \ / œ (x) = 0 } have to be a linear
subspace. But we have :

ƒ .(*) = \
[ + oo elsewhere

with C^ = {xeJ^I <^, hy < 0, for all heH}. This gives the condition
of the proposition.
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