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AN ADMISSIBLE SYNTHESIS
FOR GONTROL SYSTEMS

ON DIFFERENTIABLE MANIFOLDS

by Stefan MIRICÂ (!)

Résumé. — It is defined the notion of the admissible synthesis for a control System on a
differentiable manifold and there are studied its properties. The final resuit express a sufficient
condition (which is also necessary) in the form of the dynamic programming équation or in
the form of the maximum principle, for the optimality of the admissible synthesis.

1. INTRODUCTION

For some control Systems the natural phase space are differentiable mani-
folds ([1], [2]). As it is observed in [2] pp. 454 : « it is this (phase space's) topo-
logical complexity that causes the confusion and profusion of switching loei ».

In the present paper we extend the results from [3] to control Systems on
differentiable manifolds.

The study of Such Systems is natural from the point of view of the syn-
thesis namely because in this problem, it is the global dependence on states
of the controls that is pointed out. And to understand what a state is, we
have to consider it as a point on a differentiable manifold as in classical mecha-
nics ([8], [10]). This fact is clear in situations as the one in the example studied
in section 1 of this paper.

But even in the local case — control Systems on Euclidian spaces — in the
définition of the admissible synthesis we deal with differentiable manifolds.

Finally, differentiable manifolds allow us to write coordinate free relations
that express properties of the admissible synthesis. Therefore we deduce that
these properties have a « geometrie » nature and do not depend on the choice
of coordinate Systems.

(1) Universitatea din Bucuresti, Facultatea de Matematica-Mecanica.
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7 4 S. MIRICA

In the first part of the paper we present shortly an example of control
system on two — dimensional cilinder.

Then, using the notions of « piecewise smooth set » and « regular synthe-
sis » introduced by Boltyanskii ([4], [5]), we define an admissible synthesis for
control Systems on differentiable manifolds. Some properties of the trajectories
generated by this admissible synthesis and dual variables are studied using
the methods from [6], [7].

In the second part we prove some properties of the value of the performance
of the admissible synthesis and we give sufficient conditions for optimality of
the admissible synthesis in the form of the functional équation of dynamic
programming and in the form of the maximum principle.

We note that the proposition 7.1 was significantly improved with respect
to the corresponding result from [3] and this allows us to write in a unitary
manner the relations (6.8) and (6.9) that must be satisfied by the dual variables.

The new form of the proposition 7.1 and the fact that dual variables belong
to the cotangent manifold of the phase space made more clear the ideas and
allowed to describe an algorithm for the admissible synthesis that represent a
généralisation and a justification of the R. Isaacs' technique ([17]) for cotrol
Systems and differential games. The description of this algorithm will be
published separately.

2. AN EXAMPLE OF CONTROL SYSTEM ON THE CILINDER

A radar antenna designed to rotate about a vertical axis through its center
of mass leads to the following control problem ([!]) :

Find the control u : [t0, / J —> [— 1, 1] such that the solution of the system :

(2.1) l * ^ * 2

reach the « target set » g = j j - ^ - n? 0 ) tt = 0, ± 1, ± 2,... [ at a

moment ti > t0 and such that the intégral :

(2.2.) f V i + X2(x
2(t))2 + *3 | u(t) | ] dt

is minimal. (/, ï, Xx > 0, A2, X3 > 0).
In [1] the optimal synthesis for this problem is given using the maximum

principle.

Revue Française d'Informatique et de Recherche opérationnelle



CONTROL SYSTEMS ON DIFFERENTIABLE MANIFOLDS 7 5

We shall present shortly this synthesis then we show that the control system
may be described as a control system on the cilinder.

Solve first the problem in the case when the target set is the point (0, 0).

The switching loei for this problem are the following curves (fig. 1) :

t' > o

We consider in the plane the following sets :

= { (i1, x2)\(x\ x2) e rf!\ 0 < < Jf

= 9 (
+

0 )

c+6 is the région in the plane to the left of TJ(+) and above the line t p ^ ;

c(+ ] to the région int he plane to the left of y$\ below the line <p(+ > and
above the curve ty(+} ;

C(+1 is the région in the plane to the left of rf^ and below the curve ty(+ \

To the right of the curve yf+} U 7](i>) we may define symmetrically the sets
cl0?, 1 = 1 , 2 , . . . , 8.

n° R-l, 1971.



76 S. MIRICA

The optimal synthesis in this case is the function defined as follows

— 1 for (x1,

(2.3.) T>m(x\x2) = i 0 for (s1,:

l fo r (x1 , x2) e cL°i U cL°2 U c(_°3 U c(_°£ U

n(o) \ _ T I ( ° ) A

(0,0)

Figure 1

The value of (2.2) for the initial point (x1, x2) and for the trajectory gene-
rated by this synthesis is the function :

\ X2) = '

^ |Ï2 |3 for (x\ U

f o r ( ï 1 , x2) € c(
+°i U c(

+
0^ U c<+°7

- ^ ) ) for

and

X3)(2a(ï1, ï2) - ï2) + y X2(2a3(ï1, - (ï2)3)

^l 2̂  for (ïS
CÏ1 x2)

2X3(X1

Revue Française d'Informatique et de Recherche opérationnelle



CONTROL SYSTEMS ON DIFFERENTIABLE MANIFOLDS 7 7

where a(x!, 3e2) is given by

aV' * 2 ) = w 2 { ^ + 2X> - X2(*x - \(*2)2

- [(x, +2X3- x2^-i(3e2

If (x1, X2) is at the right of the curve 7)^) U T/J0 then (— 3e1, X2) is at the
left of this curve and we take W^Xx1, X2) = W(0\— x\ — *2).

It is easy to see that the sets t(±l 1=1,2 , . . . , 8 and the functions t>(0) and
W(0) represent an optimal synthesis according to the définition from [3] and a
« regular synthesis » as in [4], [5],

We consider now the gênerai case of the control problem (2.1), (2.2). The
switching loei are the curves yf±\ tp^, ̂ ^ n = 0, ± 1, ± 2,... obtained

from rf£\ <p(± >, ̂ (±) by translation along the a^-axis with -^- n.

We define the sets c(±j and the fonctions t)(n)and W(n) as foliows :

W(n\x\ x2) = W(0) ï1 —

For this problem there exist the « indiference curves » :

S(„) = { (ï1, Ï2)i W»\X1, X2) = W«+1\X\ X2) }

To define the optimal synthesis we consider the sets :

Din) - { (3e1, ̂ 2)|^(n-1)(-E1, X2) < W™{X\ X2) < W(n+1\x\ X2) }

and the function v defined as follows :

©(x1, x2) = v(n)(x\ x2) if (x\ x2) € D(n) and *(x\ x2)

is either o ^ ï 1 ' 3e2) or o(n+1) (3e1, 3e2) if (3e1,3e2) is on the indiference curve £(n).

In [1] is proved that the synthesis defined above générâtes optimal trajec-
tories in every point in the plane and the value of the functional (2.2) is given
by the formula :

W(x\ x2) = Ww(x\ x2) if (x1, x2) € Dw U Ç(n)

n°R-l, 1971.



78 S. MIRICA

It is easy to prove that the sets c(±\ ft D(n), Ç(n) n = 0, ± 1, ± 2,... and the
fonctions t) and W represent an optimal synthesis as in [3].

Let us show that this control system may be considered on the cilinder.
Since the cilinder may be obtained from the plane by identification of the

points (s1 , x2) and I x1 + -^- n, x2 j , n = 0, ± 1, ± 2 , . . . it follows that the

right hand side of the system (2.1) (that is the vector (x2, u)) may be considered
as a parametric vector field on the cilinder.

Similarly, the function f0^1, x2, u) = \ t + X2(s
2)2 + X3 |u| from the

intégral (2.2) does not depend on x1, hence it is a function on the cilinder.

The target set = { (^r n > °) ln = °> ± l> ± 2> - } represents

target point on the cilinder.
Moreover, the synthesis defined above, o, is also a function defined on the

cilinder. Indeed, the switching curves T)^, cpg0, ^ and the indiference curves
Ç(n)S it = 0, ± 1, ± 2, ... define respectiveïy the curves r\±, cp±, ^±, \ on
the cilinder, as follows :

-Ü

-m <P (
±

n

n

(
±
n) n

-ff)-)}

"T'Y XR )

For example, the set 7]+ is a curve on the cilinder, because for

we have I -j- » 3e2 that is 7] + is obtained by « patching » the pièces

of the curves yffl.
The curves YJ±, tp±, ^ ± , Ç détermine on the cilinder the sets :

ci,-U{A.,ncï.n([-f,f)x,)}
Revue Française d'Informatique et de Recherche opérationnelle



CONTROL SYSTEMS ON DIFFERENTIABLE MANIFOLDS 79

By définition, the functions t) and W are periodics on x1 with period —-
and therefore are functions on the cilinder.

Moreover, the trajectories of the system :

i2 = «(ï1, ï2)

become on the cilinder intégral curves of the vector field determined by the
local représentative (x2, v(xl, x2)). Therefore, the function v(xl, X2) is a syn-
thesis for the control problem on the cilinder and W(xl, X2) is the value of the
functional (2.2) along the trajectories generated by this synthesis.

REMARK 2.1. The motion of the forced pendulum leads in [2] to the follo-
wing time optimal control problem :
(2.4)

+
M-,
[ 3 = — sin 0 — <

where |u| ^ B, B > 0, a ^ 0

The target set is g = {(2nn, 0) | n = 0, ± 1,... } and the criterion :

(2.5) f ldt = min
Jto

In [2] the optimal synthesis is given using the maximum principle and it is
pointed out that the phase pace of this problem is the cilinder.

3. CONTROL SYSTEMS ON MANIFOLDS.
THE BOLTYANSKIFS LEMMAS

In what follows, by differentiable manifold we mean a C\r ^ 2), Hausdorff,
finite-dimensional manifold, which admits the partition of unity and without
boundary if we do not specify otherwise.

We shal call « Cp-morphism » a Cp-map from a manifold to another ([8],
[% [10], [11]) and Cp-function » a Cp-morphism from a manifold to R.

A nonautonomous vector field on the differentiable manifold Zis a map i; :
X x I-+T(X), such that for any t€l<^R9 the partial map lt :X-+T(X)
is a vector field on X(that is, lt(x) = £(s, t) € TtXfor any x € Xor Tx o £t = id
whereTx : T(X) —>X is the tangent bundie («id» means the «identity »)).

A map c : I± C ƒ ~>X is an intégral curve of £ at the point x0 € X and the
moment to t0 € It if c(t0) = x0 and TtcA = Ç(c(t), t) for any
t € h(Tc ; T(I^ -> T(X) is the tangent of the map c).

n<> R - l , 1971.



80 S. MIRICA

Let us consider X a n-dimensional differentiatie manifoîd called the phase
space, Q a p-dimensional compact manifoîd^ possibly with boundary3 called the
control space and ^ : I x ü ~ > T{X) a parametrized C1-vector field on X ([9])
called as in [12], controtlable family of vector fields on X.

Therefore, £ is a C^morphism from I x ü t o T(X) and for any CÙ çQ
the partial map ^ : X -> T(X) h a C^vector field an X.

We consider $ C X a closed, k-dimensional submanifold (0 < k ^ n — 1)
possibly with boundary, called the terminal manifoîd and we consider also the
Ci-functions, f°:Xx Q. -> R and g : g ~>R.

Définition 3.1

Let XÇ.X and ƒ„ C Ran interval The map u : Iu —>Q is called an admissible
control corresponding to the point x if :

(i) VL is a piecewise continuous map ;

(ii) the map lu : X x In -*T(X) defined by the formula :

(3.1) ^ ( Ï , t) - Çfe U(t)) for (x, t )€JTx /u

IJ fl nonautonomous vector field on X with the following property : there exists
a point t0 € In so that the intégral curve <p(tOiI) of ^ at the point x and the
moment to> intersects 5 in afinite time, that is, there exists a moment tx > t0,
t i € Iu such that <p(tott)(t) € JTXgf / o r t € [to, tA) ö«rf 3ex - cpcto^^ti) € 5

The curve 9 ( t 0 ) ï ) ^ ca/7erf admissible trajectory through the p o i n t x e X
(corresponding to the admissible c o n t r o l u ) .

Let SJLj dénote the set of ail admissible controls corresponding to the point
X € X and ^ - U °IW

.2) P(x, u) = P{x, 9(t0 A) = fldO + f 'f°(9(to,*)(t), u(t)) dt

For every admissible control u € ̂ ^ (hence for every admissible trajectory
through 3e € X) we define the real number :

(3

called the performance of the control u É * ! ^ (or the performance of the tra-

jectory <p<«o.«))-

The map P : X x ^ -+R is called the performance.

Définition 3.2

S = (Xy £1, Ç, g , ^ P ) is a preferential control System on X.

Définition 3.3

The admissible control ü € ^ ^ is an optimal control corresponding to XGX
if we have.

P(x, ü) < P(x, u) for ail u ç U j

Revue Française d*Informatique et de Recherche opérationnelle



CONTROL SYSTEMS ON DIFFERENTIABLE MANIFOLDS 8 1

The controlproblem for the System S is to find an optimal control for any
point x € X (or to find an optimal control for a given point x0 € X).

Modifing in a suitable manner the notions of « curvilinear polyhedron » and
« piecewise smooth set » the main lemma from [4] ([5]) is also true for the con-
trol system on differentiable manifold.

Définition 34

Let Ü5 be the real euclidian s-dimensional space, KC Rs a convex, bounded,
closed, s-dimensional polyhedron, V C Rs an open neighborhood of K and 9 :
V -+X a Cl-injective immersion on K, Then, the set (p{K) C X is a s-dimensional
curvilinear polyhedron in X.

Définition 3.5

M C X is a piecewise smooth set of dimension s if the following conditions
hold :

(i) M is a union of curvilinear polyhedra in X;

(ii) Every compact subset of X intersects only afinite number ofsuch poly-
hedra;

(iii) There exists in M a s-dimensional curvilinear polyhedron and the others
are of dimension < s.

Using the theorems on vector fields from [11], the theorem on smooth maps
of differentiable manifolds from [14] and the classical theorems on differential
équations from [15] and [16] we can prove the following lemmas (3.1-3.4) —
the Bolthyankii's lemmas—as in [4] or [5],

Lemma 3.1.

Let V : X -^Rbe a Cl-function such thatfor every x € JSTthe following ine-
quality holds :

(3.3) TtV • Ux, to) + f°(S, o>) ^ 0 for ail 0 € Q

Then,for every admissible control u €€\L3É the following inequality holds :

(3.4) V(x) ^ P(x, u)

Lemma 3.2.

(i) Let V:X ->R be a C°-function, MCX be a closed set such that the
map Vx = V \ X\M is a Cl-function and for every x€X\M we have :

(3.5) TtVxl{x, o>) + f (x, co) ^ 0 for all o € Q

(ii) Ifu C ^ s is an admissible control such that the corresponding admissible
trajectory 9(to(ï) intersects M only in afinite number of points, then (3.4) holds.

n° R-I, 1971.



82 S. MIRICA

Lemma 3.3.

Let V : X -^Rbe a C°-function and M C X be a subset satisfing the condi-
tion (ï) from lemma (3.2).

(i) Let u ç ^ s be an admissible control with the following property : for
every neighborhood G C X of x, there exists a point x^G such that, there exists
an intégral curve cp(t0 %x) of the nonautonomous vector field £tt (3.1) such that
¥(to,t\ ) ' J defined on [t0, t j and intersects M only in afinite number of points,

Then (3.4) holds.

Lemma 3.4.

Let V : X —>R be a C°-function, MC- X be a closedpiecewise smooth set.
If the condition (i) from lemma (3.2) holds then the condition (i) from

lemma (3.3) and hence the inequality (3.4) holds.

4. THE DEFINITION OF THE ADMISSIBLE SYNTHESLS

The following définition is obtained from the définition of the « regular
synthesis » ([4], [5]) by omitting the condition that the « marked trajectories »
satisfy the maximum principle.

Let JV, Pk, Pk+1,.... P n - 1 C J b e piecewise smooth sets such that

is of dimension /, TV is of dimension smaller than n and such that

jjcpfcc pk+1 c... c p""1 c x

We dénote Pk~x = g, Pn == X

The sets N, P\ ... P n - 1 and a map t> :JT->Q represent an admissible
synthesis for the control System S if the following requirements are fulfilled :

A.QTheconnectedcomponentsofthesetsiA (P i~1UN) i = fc, k + 1,... n
are diiferentiable submanifolds of X9 of dimension i; we call them f-dimen-
sional cells. The connected components of the target set fÇ = Pk~l are also
fc-dimensionnal cells.

(ii) The restriction vc = t)|c is a C^morphism from the cell c to the mani-
fold Ü. Moreover, there exists a neighborhood c C I o f the closure c of the
cell c and a smooth extension £c : c ->Q of the map vc (that is 5C is a C^mor-
phism such that vc(x) = vc(x) for x € c);

B. Every cell is either of type I or of type IL
(i) The w-dimensional cells are of type I, the fc-dimensional ones of type IL

Revue Française d'Informatique et de Recherche opérationnelle



CONTROL SYSTEMS ON DIFFERENTIABLE MANIFOLDS 83

(ii) If c is an z-dimensional cell of type I then, through any point x € c
there passes a unique intégral curve of the piecewise smooth vector field

(4.1) !(*) = 5(*, »(*)) f o r x € *

There exists a unique (i — l)-dimensional cell II(c) (of type I or II) such
that the intégral curve çx of £ starting at x € c, leaves c after a finite time and
reaches II(c) transversally (that is in the incidence point 9a(t') = x' € IT(c)
we have lim I(<p,(t)) $ T3(TX> ÏT(c)) where 3 : II(c) -^Xis the inclusion map,

and Tr II(c) is the tangent space at x' to the submanifold II(c);

(iii) If c is an /-dimensional cell of type II and c et 3 , then there exists a
unique (i + l)-dimensional cell 2(c) of type I such that from any point x € C
there starts a unique intégral curve of the vector field \ entering 2(c) and ha ving
in c only the start point.

Moreover the set c' = c U S(c) is a differentiable submanifold, possibly
with boundary and x> \e> is a C^-morphism.

C. (i). Every intégral curve of the vector field | reaches 2f, transversally,
in a finite time and intersects only a finite number of cells.

(ii). From the points in N may start several intégral curves of f. The inté-
gral curves of | starting at points in AT do not remain in N but enter in a cell
of type I.

We dénote by cp̂  an intégral curve of | starting at x € X and we call it mar-
ked trajectory ([5]). If x € X\ N then 9̂  is unique.

If tF is the first moment when the trajectory 9, reaches 5 and xF =
then for the point x € X and for the marked trajectory 9^ we may define the
real number :

(4.2) P(x, 9u) = f f °(ft(t)
Jo

D. The number P(ae, 9^ is the same for any marked trajectory starting
at x € N.

The function W : X —>R defined by W(x) = P(x, 9̂ ) is continuous and
we call it the value of the synthesis.

REMARK 4.1. The map ü = 009^ is an admissible control corresponding
to the point x € Zaccording to the définition (3.1) and the marked trajectory <ç>%

is the corresponding admissible trajectory for ü. It follows that the admissible
synthesis générâtes admissible controls at every point of X.

n° R-l, 1971.
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REMARK 4.2. It is easy to show that according to this définition, the synthesis
defined in the example from the section 2 on the cilinder is an admissible
synthesis.

Indeed, the sets

i=l

are piecewise smooth sets and the cells are c ± i, t = 1, 2, ... 8. The restric-
tions n |c±f aie C^morphisms and may be extended to the C!-morphisms of
some neighborhoods of the cells c±{. The points c+ l 5c_! and the curves
c+5, c_5 are the cells of type II and the curves c±2) c±3, c±4 and the « pièces »
of the cilinder c±6, c±7, c±8 are the cells of type I. The value Wof the synthesis
is continuous on the cilinder and hence we have an admissible synthesis.

In the same way it can be proved that the synthesis given in [2] for the
example from the Remark 2.1 is an admissible synthesis.

5. MARKED TRAJECTORIES

We consider a cell c C X of type I of the admissible synthesis defined in the
section 4.

Since from every point x € c there starts a unique marked trajectory <px

staying in c during a time interval it foliows that | defined by (4.1) is a tangent
vector field to the submanifold c C X and hence from the proposition 6.7,
chap. III from [10] it follows that there exists a unique vector field on c

such that :
(5.1) T3C o lc = X o 3C where 3 : c -> X is the inclusion map and
T3C : T(t) - • T(X) is its tangent map.

Therefore, every intégral curve of the vector field | c is a pièce of a marked
trajectory and conversely, every marked trajectory which passes through any
point of c is an intégral curve of the vector field £c.

We say that \t is the vector field defined by | on the submanifold c.
From the property A. (ii) of the admissible synthesis we know that there

exists a neighborhood c of c c X and a C^-extension Bc : c — f̂i of the C^-mor-
phism t>c = v | c.

Since the set c C X is an open submanifold and ? : Z x £ î ^ T(X) is a
parametrized C^vector field, the map %t : c —>T(X) given by :

(5.2) &*) = « ï , »,(*)) for Ï € C

is a O-vector field on c.

Revue Française d'Informatique et de Recherche opérationnelle



CONTROL SYSTEMS ON DIFFERENTIABLE MANIFOLDS 85

Moreover, f is equal to | on c and hence | is tangent to the submanifold
c C c and defines on c the same vector field f c as | .

Therefore, every intégral curve of the vector field %t which starts from a
point of c coincides « locally » with a pièce of a marked trajectory.

From the définition of the admissible synthesis we deduce :

— either there exists a cell c0 of type II such that from every point of c0

starts a marked trajectory which enters c and hence c = S(c0),

— or the marked trajectories reach c from another cell of type I.

In the first case we have c0
 c c and hence the submanifold (possibly with

boundary) c' = c0 U c is also a submanifold of c.

Since o|c, is of class C1 we deduce that £c(at) = \{x) for x € c0 and hence
the intégral curve of | c passing through any point of c' = Co U C coincides
« locally » with the marked trajectory.

I what follows we shall consider the submanifold c' Cl X which is either the
cell c of type I if does not exist a cell c0 of type II such that c = £(c0) or the
union c0 U c if there exists a cell c0 of type II such that c = 2(c0).

From the condition B. (iii) of the définition of the admissible synthesis it
follows that for any point x € c' there exists a number T(X) > 0 such that the
marked trajectory q>x reaches the cell Iï(c) at the moment T(X), that is we have
X(*) = ?*(<*)) € n(c) and <p,(t) e e' for 0 ^ t < x(x).

Since II(c) C X is a submanifold and c ^ I i s an open submanifold, the
set ft(c) = n(c) H c is a submanifold both for X and for c and an open
submanifold for II(c).

Therefore, there exist the maps :

(5.3) T : c' -+R and x
 : C ->fi(c)

such that ¥X(T(X)) = X(JE)) for any x € c' and <pt(t) 6 c' for 0 < t <

Proposition 5,1

The maps (5.3) are Cl-morphisms.

Proof. We shall use the C1-vector field | c : c —>T(c) which defines a
C^-maximal flow ([10], [11]), tyc:Dc^c where DcClRxc is an open
subset

For any x € c', the partial map ty€t9 : (t~(x), t*(x)) ->c is the maximal inté-
gral curve in x of the vector field |c . Moreover, if Dct — { x € c | (t, x) € Dt }
then the partial map $c t : Dci ->c is a local diffeomorphism in every point

n° R-l, 1971.
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According to the above mentioned properties the intégral curve tyct

coincides « locally » with the marked trajectory <pï? that is we have :

(5.4) 4>c ̂ (t) = cpsCt) for any t for which cp t̂) € c' and in particular for
t€[0 , «*)].'

We shall show first that for t = T(Ï) (5.4) holds; it is sufficient to prove

Since 9, is continuons cpn([O, T(S)]) C c is a compact subset and from
f) — $c t(t) for t € [0, i(x)] it follows that tycx does not leave the compact

<3E)Î) for t € [0, ( )

Hence, from the theorem 4 chap. IV in [11] it follows that

(t-(x),t+(s))D[

Therefore (T(X), X), (T(S), *(*)) € Dc and

To prove that the maps % : c' —*ft(c), T : c' —>R are C^-morphisms we
must prove that at every point x0 6 t' there exist the charts (U9 a), (U', a7)
on c, the chart (F, p) at x(^) on II(c) and there exists the interval Jl0 9 T(3£0)
such that P(£/) C }/, T(£/') C /JO and the local représentatives of the maps %
and T, p o x o a " 1 : a(E/) ̂ -3(K), TO (a7)"1 : «'(^0 -*" 4> respectively are
C^morphisms.

Since the flow !̂ c : Dt —>~t is a Cl-morphism it follows that there exists a
chart (72 X U29 td X a2) at (T(Ï0), X0) G Â (where (*72, a2) is a chart at x0

on c) and there exists a chart (K2, p2) at the point x&o) = $c(T(^o)s ïo) o n C
such that $C(I2 x 272) C V2 and the map

p2 o $ o (W x a,"1) : 72 x a2(ü) -> p2(F2)
is of class C1.

On the other hand, since c' C c is a submanifold (possibly with boundary)
say of dimension r (k + 1 < r < n) and II (c) = II(c) H c is a (A- — l)-dimen-
sional submanifold, it follows that there exists a chart (Uu 04) at x0 € c' with
the submanifold property for c' ([11]) and there exists a chart {Vu $t) at the
point x(*o) o n C with the submanifold property for II(c).

That means that if the local coordinates in U± C c are a = (a1, a2,..., an)
and in F t C c the local coordinates are p = (p1,..., pn) then the local coordi-
nates in JJ1 H c' are (a1, ... a*, 0,... 0) where ar ̂  0 and the local coordinates
inFinïî(c)are(p1

)...?pï-1
3Oî...5O).
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We consider now the charts (J3 X U3, id X a3) and (V3, p3) instead of the
charts (I2 X U2, id X a2) and (V2, p2) respectively, where

U3 = Ux H U2, a3 = a2 | t /3 , F3 = Fx fl F2 , p3 = P 2 |F 3 ,

We dénote by ^c = (<(£ ĉ
2, ..., <]>*) = p3 o $c o (W x a3 *) the local repré-

sentative of $c with respect to the charts (I3 x £/3, id X a3) and (F 3 , (33)
(^5 i = 1, 2, . . . n are real functions of class C1 on I3 x a3(£/3)).

Then, for any (t; OL\ ...5 a
n) € / 3 X a3(i73) we have

* e( t ; a1,..., an) = (4iJ(t; a \ ...5 a
11),..., ^?(t . a1, ..., a11)) €

but 4;c(t ; OL\ ..., an) e p3(F3 H fî(c)) means that

(We have chosen the charts (73 X U3i id x a3) and (F 3 , |33) having the sub-
manifolds properties for the local représentative of $c).

It is obvious that to prove the proposition (5.1.) it is sufficient to prove
that there exists a neighborhood U" C Rr of the point (0,0,..., 0) e Rr and there
exist the real functions t : U" ^ / 3 , ft : U" -+R, i = 1, 2, ...? r — 1> such
that the following conditions hold :

(5.5) { t (°' °s •"' 0) = <Xo)

{ ^ l ' "•' ar) ; *X> "" *r> ° ' "" 0) = Pi(al' "*' ar) l = 1? 2' "•' " ~ !
(5 6) {

1 , .„, aO ; a\ ..., a" ; 05..., 0) = 0 j = r, r + 1, ...? n

for any point (a1,..., ar) € i/"

Therefore, we must prove that the functions :

(5.7) tót ; a1,..., a ' ; 05 ...5 0) - p!, ̂ ( t ; a1,..-, ar, 05 ... 0),

i = 1,2, . . . r — 1 ; j = r , r + 1, ..., n

satisfy the conditions of the implicit fonction theorem at the point
t = T(3E0)5 a

1 = a2 - . . . = ar = 0, p1 = f = ... = pr - 0

The functions (5.7) vanish at this point because we can take the charts
(I3 x U3, id x oc3) and (V3, p3) such that

*3(So) = (0,. . . , 0), p3(x(£0)) = ( 0 , . . . 0)

and we have $ (T(S 0 ) , £O) == x(3Eo)
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To prove that the Jacobi matrix of the functions

$ ( t ;OL\ .„, a1*, 0,..., 0) — p1, i = 1, 2,..., r — l, $(t ; a1,... ar, 0,..., 0),

I = r , r + 1, ...n

with respect to the variables t, p1,..., p1""1 at the point t = t(Xo), a1 = 0,
pl =s 0, i = 1, 2,... r, i = 1, 2,..., r — 1 has the maximum rank r, we must

prove that the vectors -~ (T(X0) ; 0,... 0), e l s... tr~i are linearly independant
dt

where 7 .

and ti = - ( i )

The chart (F3? p3) at the point x(x0) on the open submanifold c C X induces
a linear topological isomorphism p3ïX(I0) : Tx(tQ)t ~+Rn between the tangent
space Txmc and Rn ([11]).

The vector -^- (r(x0) ; 0,..., 0) is the immage by this isomorphism of the
öt

rx(ï0)c but the vectors e1?..., c r - ! are^the

î
vector Tr(m$Ci%0 - 1 = ^
immages by the same isomorphism of a basis of the space r3n(c)(ry(t0)îl(c)
where 3g(c) : fl(c) ->c the inclusion map.

The condition B. (ii) from the définition of the admissible synthesis states

that Hm Itejjt)) i raS(0(rX(«o)fl(c)) a n d h e n c e 10t(*o) i ^
because from the définition we have

S f $ = lim f(<p,0(

This implies that the vectors - J ^ ( T ( I 0 ) ; 0 — 0), ei. . . tr-i
 a r e

independent and the proposition (5.1) is completely proved.

Let us consider now the cells of type I, ct = c, c2,..., c€ through which
passes every marked trajectory starting in c' and such that II(cg) C g.

From the définition of the admissible synthesis it foUows that every marked
trajectory passes from the cell q- i either directly to the cell q if Il(q-i) is
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of type I (and hence q = ü(q_1) or by «crossing» the type n cell II(q_1)
whenc =

For every cell of type I, q, the submanifold cj is either the cell q (if ü(q) is
of type T) or the submanifold q U II(q) if II(q) is of type II.

For every cell q we obtain the neighborhood ei of the closure q, the vec-
tor field | t of class C1 on q, the maximal flow ^ : bi C R x q —• q and the
C^morphisms T* : q' ->R, x* ' c{ —•ft(q) such that

(5.8) z
f (x) = W(*l *) for any x € c{.

Moreover, the set IT(q) = II(q) O q is a submanifold for q, an open
submanifold for II(q) and also a submanifold for q+i because if ü(q) is of
type II we have U(q) C ëj+1 C q+i and if II(q) is of type I we have

From the définition of the admissible synthesis it follows that for any
point x € c' the marked trajectory ç, reaches I I^) at a moment Tt(x) and let
dénote Xj(£) = 9»(TJ(£)) (we note that z-v X\ are not the same as T \ X1 defined
above). In particular we have tF = Tq(x), xF = Xq(x).

Since the marked trajectory <px is uniquely determined we have :

for t

and t = 2,..., r̂. If we define the maps T0 : c' ->-R, Xo : c ' ^

(5.10) TO(Ï) = 0, XoW = 3e

for any 3E € c' then (5.9) holds also for t = 1.

From the définition of the maps xl, ^, TV X\ w e obtain :

(5.11) t*(xi-i(aO) + **-&) = ^(i), x!

for 3E € c' and t == l, 2,..., #.

The formulae (5.11) represent récurrence relations for T^ Xr Since r0) Xo
and T*, x̂  are C^morphisms (see proposition 5.1) we deduce that the maps
Ti' Xr z = 1> ̂ 5 •••> ̂  a r e a^so C^morphisms.

We dénote by Jfa) = (tr(xi-i(ï))5 ti
+(Xt-iW)) the interval of définition

of the maximal intégral curve ${, x
 (3E) of the vector field | t at the point

q
Let Â = { (t, X) | X € c', t - T^JC

Since TO(X) —Ti_1(at) = T i(xi-i(ï))and[O,T i(xi-1(^)]C/ t(^) it follows

that (t, ï) € ̂ i for any x € c' and t C [0, T{(S) — T ^
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We define the maps $% : Dx -> ct by :

(5.12) Ut x) = $f(t —Tt.^ï) , Xi-itoX t = 1, 2,... q

In particular, from (5.11) we deduce that Dx = Dt and ̂  = ij^.

Since every marked trajectory coincides « locally » with and intégral curve
of the vector field | we have

?«(t) = $i(t — Ti_ iCae), Xi- i00) = 9xi_i(^* ~~ Tt-1(*))

for t € (Tf-! (ï), Tt(a0) and hence

(5.13) ? ï(t) = $,(t, ae) for Ï € c' and t € bi-l(x), Tt(i)]

In particular, for t = T|_!(x) and for t = T{(3E) we obtain respectively :

(5.14) Xi-i(z) = $f(-*-i(*), «), Xi(Ö = $I(T (Ö. Ö. i = Is 2,..., g

Proposition 5.2.

The subsets Dx C i? x c', i = 1, 2,. . . , ^ öre ope/z ö/26f //?e mö/)5 ̂  : Öf —> Cf
defined by (5.12) öre C1-morphisms.

Moreover^ the following relations hold :

(5.15) Tfo, • 1 = UUt ï)) for (t, X) € Â

(5.16) 7;$, ,^,) • v = — (T,T • v) - Uxi-i00) +

(5.17) 7;iplfT|(I). p = — (r,T, • o)li(xi(ï))

for every v € Txc' and every x e c', where

3(,_i) :fl(Cf-i)-^c. 3(„ : ftfo)-«-c

are //ze inclusion maps.

Proof

We shall prove first that for any point (t0, Xo) € Â there exists a real num-
ber s > 0 and a neighborhood U C. t' of the point s0 such that

- | ' t o + | ) X UCDi

If J4( ï o) = (tr(Xi-i(^o))» t{
+(x(3t0))) is the interval of définition of the

maximal intégral curve $i,xUi(*o)> we have seen that if (t0, Xo) € Â
t — T^^aco) e Ji(x0)-

 W e dénote

= tT(»-i(ïo)) and t ^ o ) = i>+(xi-i(Xo))
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Since Ji(x0) is an open interval, there exists an s > 0 such that :

(5.18) tf-iÖo) < t0 — T | - I ( Ï 0 ) —2e < t0 + W ï o ) + 2e < +

Since the map T{_t : c' —>R is continuons, the set

Ui = *f-i(Tf-i(*o) — e, T|-i(*o) + e)

is an open neighborhood of the point ae0 in c'.

Let St — t0 — Tf-i(Xo) ~ £ a n d S2 = t0 — Tf-iteo) + e.

For any point (t, j) € 110 — | » t0 + 11 X t^ we have t — x{„ ̂ s) € (8^ 82)

because for x€Uu T(X) € ( T ^ ^ O ) — e, T ^ ^ Ï O ) + s)-

Moreover, from (5.18) it follows that [8U 82] C ( tf(ïo)» V (

From the corollary of the theorem 6 chap. IV in [11] it follows that if
[8U 82] C (ti~(r)o), ti+(g0)) there exists a neighborhood FC^Ci of t)0 such that
[Sx, S2] C (tf(9), tt

+(î))) for any r, € V.

If we take t)0 = Xi-i(^o) then, by using the continuity of the map
Xi-i : e' —•ft(Ci_1) we obtain a neighborhood U2 C c' of the point x0 such

It is obvious that if U = «7t fl C/2 we have (t0 — e/2, t0 + e/2) X ÜC£>;
and hence ^ is open.

From the relation (5.11) and the fact that ri^1, Xi-u $i a r e C^morphisms
it follows immediately that ^ Is a C^morphism.

Using the functorial properties of the tangent of a C^morphism ([11]),
from (5.12) we obtain (5.15) if we observe that

To prove the relations (5.16) and (5.17) we observe that the relations (5.14)
may be written

( 5 19) $t o (Ti-i, tdr) == 3 ( i . 1 } o Xi-i

h o (TI, tdc0 = 3 ( i ) o Xi

where 3^^ : TC(CJ-I) ->C{5 3(i> : rcfe) - > q are the inclusion maps.
Considering the tangent to the maps in (5.19) and using the relations (5.15)

proved above, we obtain immediatly the relations (5.16) and (5.17).
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6. DUAL VARIABLES

In this section we shall use as above, some notations from [9] and [11] and
also some results on symplectic manifolds from [8] and [10].

We shall dénote (£/, a) a chart an X at the point x € X where OL{U) C Rn

and ax : TXX —>Rn the toplinear isomorphism induced by the chart (U, a)
between the tangent space TnX and Rn

The natural projection Tx : T(X) —̂  Xis the tangent bundie and the natural

charts an T(X) are the pairs (T(U), Ta) where T(U) = [J T%X and Ta :

T(U) -+<x(U) X Rn is the diffeomorphism given by the relation

7oc(i) = (<x(x), a (i)) for any i € '

That means that of on {ƒ C A" we have the local coordinates a = (a1,..., att)
(that is oc(aO = (a1, ..., att) € a(*7) for x € U) then i € T^Z has the local coordi-
nates (a1,..., an

3 vls .„, vn) where v = (vl9..., vn) = a„(i).

We write v = V vn r— and say that v is the coordinate expression of the
i O«Î

vector i
If T%X is the dual space of the vector space T%X (that is the space of the

linear continuous functionals on TtX) then, the set T*(X) = U T%X is the

cotangent manifold and the natural projection T* ' T*(X) —>X is the cotan-
gent bundle.

The natural charts an T*(X) are the pairs (T*(U), T*a) where
T*(U) = U 7?JSrand T*a : T (U) -+<x(U) X (7?n)* is defined by :

X€U

T*a(g) = Kat), X) for

where X € (iîtt)* is given by X = X) o a,"1

The map a^ : T£X -+(Rn)* given by

is a toplinear isomorphism.

If the local coordonates in C / o n I are (a1, ..., att) = a then (a1, ..., an,
X1; ..., Xn) are the local coordinates in T*(U) on T*(X).

n
We write X — ^ X| doc1 and say that this is the coordinate expression of

i=i

the linear form x) € T£X if <x£(t)) = X = (Xl5 ..„ X,,)
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We shall use the well known fact that the manifold T*(X) with the second
canonic differential form on X represent a symplectic manifold.

It is known (see [8], [10]) that for every CMunction H : T*(X) -+R there
exists a unique C*-vector field on r*(X) : (dH) * = lH : T*(X) - * T(T*(X)
such that the corresponding principal part with respect to the natural charts
on T*(X) and T{T*{X)) has the following coordinate expression :

n

(6.D E Kl 8a1 8a 8

where Ha = H o (T*^)'1 is the local représentative of the function H with
respect to the chart (T*(U), T*OL).

Therefore, the local représentative of an intégral curve of the vector field £>H

is a solution of the differential system :

da* 5Ha j n

fr ~. dt 8Xf
(6.2)

dX1 8ffg j ^n ^
dt 8a*

Moreover, the function ^ i s a first intégral for the vector field £H that is H
is constant along to any intégral curve of £#.

For the admissible synthesis defined in section 4 we shall define a func-
tion H of class C1 on every cell and we shall study the intégral curves of the
vector field ÇH. As we shall see in this section these intégral curves which are
curves in the cotangent manifold are in a certain connection with the marked
trajectories.

Let us consider as in the preceeding section the cell c of type I, the neigh-
borhood c C X of the closure c, the Ci-extension 5C : c —>Q of the restric-
tion rjc = t)|c and the vector field Çc on c (5.2).

For the given C^function f° : X x Q -+R we define the C^-function

(6.3) fc°(̂ ) - f°(3E, vM) for any xec

We define now the the function Hc : T*~t ~>R by :

(6.4) Hfy) = f C°(Ï) + t) • lc(x) for X) e T*c and x € c

Using the local représentative it follows immediatly that the function Ht is
of class C1.

Indeed, if (U, a) is a chart on c at x € c where the local coordinates are
(a1, ...5 a

n) = a and if (T*(t/)5 T*a) is the corresponding natural chart on T* c
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where the local coordinates are (a*,..., an, Xt, ..., Xtt) then, the local représen-
tative of the function H0 Êta = Ht o (î^a)""1 is given by :

(6.5) fl^a1, ...s a", \ u .... Xtt) = f£a(a\. . . , oc") + £ X{~fc,a(a\ .... ocn)

where f° a = fc° o a"1 is the local représentative of the function |c° and
fcf« = (Te,1»* •••> fc!a) *s Ae principal part of the local représentative of the
vector field Çc with respect to the charts (U9 a) and (T(U), Toc).

Hence we may associate a unique vector field ££ = (dHc)^ on T*1 which
has the principal part

with respect to the charts (r*(t/), T*oc), (T(T*(U))} T(T*OL)).

Therefore, the local représentative of an intégral curve of the vector field ££
is a solution of the differential system :

^ = _ j ( a f „., a ) - f *i % («S .... - ) i = 1. %.... n.

Since the first équations are independent and since the right hand side of
this subsystem is the principal part of the vector field \c we deduce :

— at every point g e r*(c) there exists a unique intégral curve i>c^of the
vector field Ç^ ;

— the projection of the intégral curve #c>9 an the manifold c by the cotan-
gent bundie T* : 2"*(c) —>c is the intégral curve $C(Ï of the vector field %c if

Moreover, the intégral curve 3>Ct9 is defined on the whole interval of défi-
nition (t^(x), tc

+(3e)) of the maximal intégral curve !pc^ of Ic ;

— Hc(<S>eti(t)) is constant for any t in the interval of définition of the
curve <ï>c>1j.

We consider again the submanifold c' which is either the cell c of type I
or the union c0 U c if there exists a cell of type II c0 such that c = S(c0) and
we consider the cells of type I ix = c, c2, ». c2 through which pass the marked
trajectories starting in c' and ü(c€) C gf.

For every cell q we consider as above the neighborhood cff the func-
tion Hi = HH and the vector field ^ : T*(td -^T(T%)
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Proposition 6.L

For every marked trajectory cp̂  : [0, tF] —>X which starts at the points
X e X\N there exists afunctional\){x) € T£X and a curve O9( ï ) : [0, tF] ->T*X
with the following properties :

(O « W O ) = X)(x\ %(x)(t) € I* i t )X for t € [0, tF]

(ii) ow every interval [T{_1(X), T{(3t)] the function ®90E) ẑ  an intégral curve
of the vector field £g .

(iii) O ^ ) ÏJ continuous to the right and its one sided limits at the points

satisfy the following relations :

(6.8)
!

9« ° rx?(ï)3^

for 1 = 1,2,...,*— 1

>cl « ^ ^ e inclusion maps and qt
+ =

As we have observed above, for every point t) € ^*(C|) there exists an
intégral curve O i o of the vector field %£ and if g €*ï?(Ci) where x € ct then
the projection of the curve <&i()J by the cotangent bundie T*. is a pièce of the
marked trajectory <pr

The « dual » trajectory ^{n) will be obtained by « sticking » such intégrai
curves which corresponds to the cells cl9 c25 ».s cr

Let us suppose that there exist the cotangent vectors X)q9T)q-u*:9t)ï
which satisfy the relations (6.8) and (6.9) when X)^u ...,1)^ are given.

For the points r)f e Tx.(x)ti x = 1, 2,. . . , ^ there exist the intégral curves

ifr^r of the vector fields Ç .̂, t = 1, 2,..., * respectively, which are defined on

the intervals (tfiXiOO)* tC&iQO)) °? ^ e maximal intégral curve $

According to (5.7) we have <p,(+) = ?Xi_l(3e)(t — T J . ^ ) ) , t € [Ti-

and according to (5.4) and (5.9), we have 9Xi_l(x)(t) = $i,X|-x(x)(t) f o r

t € [0, Tt(x) — Tt-iOO] hence, it foliows that

(6.10) 9 ,(t) = k,Xi_ l0O(t - T , - ^ ) ) for t € [Tf_!(*),
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s i n c e &,xi-i(*)(T (*) — *i - i (*) ) = Xi(3E) we have

ÎLXI-IOOW) = $ i . W t — *i(*) + ^i-iW) for"tP€ [0, T,(Ï) — Ti.x

and from (6.10) we obtain :

(6.11) <p,(t) = $ltX|(Ij(t - T,(X)) for t € [T,_ !<*), T,(Ï)]

Therefore the intégral curve $iA? is defined on the interval

(as the intégral curve $f,xi(»)) and we dénote t)j+ = Oi^iC^-iOO— T|(3E)) for
t = 1, 2,..., 9 — 1 and $

It is obvious that the map OQ(ï) defined by

< W t ) - *i,^(t - T ( Ï ) ) for t € [TÏ_^X), T,(3E)),

satisfies the conditions from the proposition.

We must prove now that there exist the points

1)*" € r* (I)c; = T*WX and gf € r* (ï)

which satisfy the relations (6.8) and (6.9) respectively.

Let us dénote by |{(3e) the one-dimensional subspace of TXi(x)C\ generated
by the vector ^(xiU) From the hypothesis, we have |i(xf(x)) # 0 and
EiGüw) * r3jT{Ci)(rxin((3t)Ci))andhence ^(x) + TSn(c0(TiX(t)U(cd) is(fct + 1)-
dimensional subspace of TXii%)ïx if n(c{) is kx-dimensional.

On the other hand the relations (6.8) and (6.9) mean that we must find
the functional tli" : Tx{t^ti —> R when we know its action on the (Art + ^-dimen-
sional vector subspace ^(j) + T3-(({)(rxi(I)II(Ci)) of the n-dimensional vector
space

Since 0 ^ kx ^ n — 1, hence 1 ^ kx + 1 < n, it is well known that such a
functional exists always, moreover, the set of these functionals represent
a (n — kx — l)-dimensional vector space. (In fact to find such a functional
is to find a solution of a linear, n X (kx + 1) algebraic system with matrix of
the maximum rank kx + 1.)

REMARK 6.1.

Since j ^ is a first intégral from ££ and from (6.8), (6.9) we obtain that

== 0 for t 6 [-*_!&), Tt(ï)]
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REMARK 6.2.

If the dimension of the terminal manifold 5 *s & = tt—1, then
X)q, t)^"-i, -.., t)T a r e uniquely determined and hence the point K)(x) is also uni-
qualy determined. When 0 ^ k < n — 1 the one-sided limit s x)î~ (t — 1, 2, „., q)
are not unique and we may deduce that the point t)(x) is not unique. However,
in the next section we shall prove that when x belongs to a n-dimensional cell*
X)(x) is uniquely determined even if the dimension of g is 0 < fc < n — 1.

7. THE VALUE OF THE ADMISSIBLE SYNTHESES
AND SUFE1CIENT CONDITIONS OF OPHMAUTY

For any x € X\N there exists a submanifold c ' C J which is either a cell
of type I c or the union c 0 U c where c0 is a cell of type II such that c = S(c0)
and such that x € c'. Therefore, there exist the cells of type I d = c, C2> »•> Cq

such that U(cq) C g and the marked trajectory <pt passes through cu c2,.»? tr

Then, the value of the admissible synthesis at the point x is :

m*) = 9GC(*)) + f Xq(X)f(9*(ï), t)(9,(t)))d/
Jo

(7.1)

where the maps f|°, ^ are given by (6.3) and (6.10) respectively.

( n-i \

U Pl ) then, the set X\M is the union of the all

n-dimensional cells and hence an open submanifold of X (generally X\M is
not connected).

Proposition 7.L

(i) For every above defined submanifold c ' C I the restriction W\t* is a
Cx-function.

(ii) For every x € c' we have :

(7.2) ^ = 5 ( 1 ) 0 % .

where K)(x) is the functional defined in the proposition 6.1. It foliows that for
xeX\M, Vj(x) is unique (TtW =

n» R-l , 1971.
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Proof

If we dénote

(7.3) /,(*)= fi(t>*)dt j = 1,2, ...,

where
(7.4) f?(t, X) = fiiUt, *)) for ( t , ï )€Â

then, (7.1) becomes :

(7.5) W(x) =
i = i

for every x € c'.

Since the maps f̂ , Tj_ l5 TJ are of class C1 it is immediatly seen (using the
local représentatives) that the intégral 7j given by (7.3) is a C1 map and

(7.6) T&. *; = ( 7 ^ . lOÏfafc), 3E) -

Hence, the first part of the proposition is proved.

To prove the second part of the proposition we need the following lemma :

Lemma 7.1

The map defined for every x € c' and v € Txt' by : t ->$9 ( ï )( t ) * (TJ\)it • v)
for every t € ( T J _ 1 ( Ï ) , T^S)) is a Cl-function and the following relation holds :

(7.7) ^ (O,w(t) • (r,$ i i t . »» + r.fgt .0 = 0

/or every t G ^ - ^ ï ) , Tt(3e)) where ^ t, f° t are rte partial maps of $t, f° re5-
pectively andQ)^x) is the curve from the proposition (6.1).

Proof of the lemma 7.1.

We shall use the local représentative $i)Otj{â — p o y% o (id x oc'1) of the
map 4i{ : D\ —> C\ with respect to the charts (/ X U, td X a) at (t0, XQ) € Di
and (F, p) at ^ ( t 0 , x0) € cj ((P, oc) is a chart at 3e0 e c' on c').

Then the local représentative of the tangent x l-> 7 ^ ^ for X € c' and
t €(T i_1(x), T{(3E)) fixed, is the derivative

(a1, a2, .„, att) I-> Dz\a#(t ; a1, ..., att)

On the other hand we have €>0(3e)(t) € 7?j(tyAT for every t € [0, Ta(^)] and

since we have <p,(t) = $f(t, s) f° r e v e r y t ^ ( T I , ^ ) , Tf(3e)) it follows that
* ( t ) € T ^ ( ^
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From the proposition (6.1) since the local représentative of the curve ^^xy
with respect to the chart (T*(V), T*p) an r*(c{) is :

t I - r*P(G,w(t)) = ($,.a>p(t ; oc',.... a ), X(t)) € p(F) X (*«)•

the map t !->• ($t,«fp(t ; oc', ..., an), X(t)) is a solution of the differential system :

^ « ^ ; a l ' a2' - att) " * = f«.3(+f.-.&(t ; «S ..., an))(7.8) I
1 m ( t ) • 1 = - D2~^(t ; a1, ..., an) - X(t) o Z>2fi(3(t ; oc1, ..., an)

where

fi°.e(t ; a
1,..., a") = ?,0,B($,,8.3(t ; a \ .... an))

and

fw(t ; oc1, ..., an) = fi.pOh.^Ct ; a1, .„, an))

fii3 being the principal part of the vector field f t with respect to the chart s
(V, p), (T(V), rp) and f£3 the local représentative of the map f° with respect
to the chat (F, |3).

In particular we deduce that the map t —*X(t) is of class C1.

We may observe that the system (7.8) is the same with (6.7).

If the submanifold c' is r-dimensional, 1 < r ^ n and oĉ  : Txt' —>• Rr is
the toplinear isomorphism induced by the chart (U, a) between the tangent
space Tnt' and Rr and if v € T^c', u = OLJD then the following relation may be
immediately proved :

(7.9) * ^ ( t ) • (T^ifi • v) = X(t) • D2$i>af3(t ; a1, ...5 a ) . u

Therefore, we must prove that the map

t l-> X(t)D2^t,a,3(t ; a) • u is of class C1

Since the C^morphism ${ is defined by (5.10) with the flow ïp of the
C^vector field | t it follows ([14]) that the local représentative $e,aj3 is a
C^function with respect to the variables t and a and its mixed second ordre
partial derivatives exist and are equal, that is :

(7.10) DiD2$i,«.p(t, ot) • U • s - Z>2Z>r4w(t, «) • J • U

for every ^ € i£ and u € Rr

Since the maps t l-> X(t), t l->- Da+i.a.pö, oc) are of class C1 it immediatly
follows that the map t !-• X(t) • £>2$t,a,p(t, a) • u is also of class C1. Hence
the first part of the lemma 7.1. is proved.
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To prove the relation (7.7) we observe that from (7.9) and (7.10) it follows

(<Wt) (ZVP ))

i,«,p(t, a) • U) + X(t) • ̂ l A ^ p C t , a) • U •

= (Z)X(t) • lX^>a+i,«.s(t. «)*«) + *(t)2>2£>Â,a,3(t, a) • 1 •U

From (7.8) we deduce :

A^i^ .a .e t t a) • 1 • U = Z>afif3(t, «) • U
where

fi.ptt, a) = f,,BOk,a>s(t, a))
and :

DX(t) • 1 = - D2f,
o,0(t, a) - X(t) • Df,,B(t, a)

Therefore, we have :

51 («««(t) • r,$,. t. p) = - DX,(t, a). u

Using the local représentative of the tangent Tf^ that is

and the fact that OL~1 • u = v we obtain the relation (7.7) and lemma (7.1)
is proved.

To prove the relation (7.2) let us suppose the marked trajectory <p, passes
through the cells of type I cis c2, »•> tq where

From (7.5) we have :

(7.11) TXWC, • v = rx,(ï)g . Ta, ' v + J TtIx • »

for any v e Txt\ where 7 ^ • v is given by the formula (7.6).
To compute the intégral from (7.6) we use the relation (7.7) and we obtain :

(iX-iOdt
J T|-l(»)

= O^CTi-iM + 0). T^ifTi_l(t). o — «KoCitfaO — 0)7i $f>^(t) . v

From (5.15) and (5.16) we have :
/•T|(3E)
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From (6.8) and (6.9) it follows that :
+ V — t)f • rxi(*Ai)7;Xi. v = 0 1 = 1,2, ..., q _ x

, at) + 9 r • li(Xi(^))] = 0, 1 = 1 , 2 , . . . , 9

, x) + i)i+Ci+i(xi(3t))] = o t = i, 2,..., ?_!

r = 0

since OW(T0(X)) = %(x)(0) = g(i) and 7;$1>0 - r . v f r o m (7.11) we
obtain (7.2) and the proposition (7.1) is completely proved.

Theorem 7.1

If at every point x € X\M the following inequality holds :

(7.12) TUW- Z(Z, CD) + f°(3C, CD) > 0 /or <m>> co € Q

the marked trajectories are optimal

Proof

( tt~1( -\
Since M = ÂU U P l I is a pricewise smooth set and X\M is an open

submanifold (generally non connected) we may apply the lemma 3.4 and we
deduce that for every admissible control u ,̂ the following inequality holds :

W(x) < P(X, il,) = ( j )

where cp<to ̂  is the admissible trajectory corresponding to the control u^.
Since for the marked trajectory q>j (or for the admissible control

ü(t) = o(<ps(t)) we have :

W(x) - P(x, ü) = P(x, 9,)

it follows that the marked trajectories are optimal.

We define the map H : T*X x £1 -+R by :

(7.13) H(X), co) = ï) . Ç(Ï, co) + fo(3es co)
for r) € TfX, co € Û and Ï e X.

From (6.4) it is obvious that Hty, t)(T^(t)))) = Hc{x)) if TJ(9) = 3e € c
where c is a cell of the admissible synthesis.
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Therefore, from the Remark 6.1 it follows that H(&m(t), X>(<?%(t) = 0)
for t € [0, Tq(x)] in particular H($(t)9 x>(x)) = 0 for any x € X\M.

Theorem 7.2

Ify)(x)€ T£X is the functional defined in the proposition 6.1 and f or every
X £X\M the foïlowing inequality holds :

(7.14) H(j)(x% to) ^ H(T)(x), v(x)) = 0 for

then the marked trajectories are optimal.

Proof
From (7.13), the inequality (7.14) becomes :

X)(x) • 5(i, co) + f o(x, CÙ) ^ 0

and using (7.2) we obtain :

7; JF- 5(x, o)) + f°(s, o>) ^ 0 for any

The theorem follows from the theorem 7.1.

REMARK 7.1.

The condition (7.12) which may be written :

min [TtW- l{x, co) + f f e <*)] = 0 for every x € X\ M
wen

represents the functional équation of the dynamic programming for the control
system on a manifold.

The condition (7.14) may be also written as a special form of the maximum
principle if we observe that it is contained in the stronger condition :

min H(%(x)(ï)9 <o) = 0 for every x € X\M and for every t € [0, tF]
en

REMARK 7.2.

Analogous results may be obtained for the « non autonomous » control
system S = (J, X, Q, £, g, c l l ) P) (définition 3.2) where :

ICLR is an open interval, X a n-dimensional differentiable manifold;
5 : / x X x Q —>T(X) a « nonautonomous parametrized C^vector field on X
(that is, for every t € / , co €Ü the partial map 5 tû) : X-*T(X) is a C1-vector
field on X, the partial map ^ : I x f l -+T(X) is C1 and for every x€X, the
partial map 5(I((Ü) : / —>T(X) is continuous); % C ƒ x X is a A>dimensional
(0 < &< n + 1) closed submanifold; *\L and P are defined as in the défini-
tion (3.1) and the relation (3.2) where f° : ƒ x U X Q ->R is a C!-function
in fcwjelxû and a C°-function in t € / .
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The changes in the analogous formulae (and in their proofs) appear due
to the « nonautonomous » vector field % (5.2) which is C1 in x and only conti-
nuons in t.

Since from classical theorems on differential équations ([14], [16]) and
using « globalization » techniques from [11] we may deduce the existence and
uniquness of the C^-flow for this vector field, then, we may reduce the « nonau-
tonomous » control system to the « autonomous » one by an evident change
of the phase space.

In the « local case » (that is, the case when the phase space is an open
subset of the Euclidian space) the nonautonomous » control system is studied
in [3].

In this paper, the autonomous control system was preffered because of
the simplicity of the notations and the formulae.

It is useful to remark that a control system with fixed time duration has to
be considered as a « nonautonomous » control system even if the parametrized
vector field is an « autonomous » one.
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