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The distribution of the values of a rational

function modulo a big prime

par ALEXANDRU ZAHARESCU

RÉSUMÉ. Étant donnés un grand nombre premier p et une fonc-
tion rationelle r(X) définie sur Fp = Z/pZ, on évalue la grandeur
de l’ensemble {x ~ Fp : &#x3E; + 1)}, où et + 1) sont
les plus petits représentants de r(x) et r(x + 1) dans Z modulo
pZ.

ABSTRACT. Given a large prime number p and a rational function
r(X) defined over Fp = Z/pZ, we investigate the size of the set
{x ~ Fp : &#x3E; +1)}, where and + 1) denote the
least positive representatives of r(x) and r(x+1) in Z modulo pZ.

1. Introduction

Several problems on the distribution of points satisfying various con-
gruence constraints have been investigated recently. Given a large prime
number p, for any a E {1, 2, ... , p -1} let a E {1,2,... p -1} be such that
a a - 1 (mod P). A question raised by D.H. Lehmer (see Guy [4, Problem
F12]) asks to say something nontrivial about the number, call it N(~), of
those a for which a and a are of opposite parity. The problem was studied
by Wenpeng Zhang in [8], [9] and [10] who proved that

and then generalized (1) to the case when p is replaced by any odd number
q. In [2] it is obtained a generalization of (1), in which the pair (a, a) is

replaced by a point lying on a more general irreducible curve defined mod
p. Zhang also studied the problem of the distribution of distances la - aj,
where a, a run over the set of integers in 11, ... , n -1 ~ which are relatively
prime to n. He proved in [11] that for any integer n &#x3E; 2 and any 0  J  1

one has
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where cp(n) is the Euler function and d(n) denotes the number of divisors of
n. In [12] Zhiyong Zheng investigated the same problem, with (a, a) replaced
by a pair (x, y) satisfying a more general congruence. Precisely, let p be a
prime number and let f (x, y) be a polynomial with integer coefficients of
total degree d &#x3E; 2, absolutely irreducible modulo p. Then it is proved in
[12] that for any 0  8  1 one has:

A generalization of this problem, where the pair (x, y) is replaced by a
point lying on an irreducible curve in a higher dimensional affine space over
the field Fp = Z/pZ, has been obtained in [3].

There are different ways to measure the randomness of the distribu-
tion of a given set. B. Z. Moroz showed in [5] that the squares (or the
l-th powers, if 1 divides p - 1) are randomly distributed among the values
{ip( f (0)), ... , 1))} of a fixed irreducible polynomial f (X) in Z[X]
modulo a prime p, as p - oo (here ip stands for the reduction modulo p).

In the present paper we study what happens with the order of residue
classes mod p when they are transformed through a rational function r(X) E

. IFp (X ). For any y E Fp denote by j (y) the least positive representative of y
in Z modulo pZ. To any rational function r(X) E 1Fp(X) we associate the
map f : Fp ~ {0,1, ... , p - 1} given by r(x) = j (r (x)) if x E Fp is not a
pole of r(X), and r(x) = 0 if x is a pole of r(X). As the degree of r(X)
will be assumed to be small in terms of p in what follows, the contribu-
tion of the poles of r(X) in our asymptotic results will be negligible. If
we count those x E IF~ for which r(a? + 1)  T(x), respectively those x for
which r(x + 1) &#x3E; r(x), there should be no bias towards any one of these
inequalities. In other words one would expect that for about half of the
elements x E Fp, r(x + 1) is larger than r(x) and for about half of the
elements x E Fp, T(x + 1) is smaller than 

In order to handle the above problem, we fix nonzero positive integers a, b
and study the distribution of the set E For any real
number t consider the set M (a, b, p, r, t) _ {~ E IFp :  p}
and denote by D(a, b, p, r, t) the number of elements of M (a, r, t). Our
aim is to provide an asymptotic formula for D(a, b, p, r, t).
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We now introduce a function G(t, a, b) which will play an important role
in the estimation of D (a, b, p, r, t) .

where W = min{0, b - a} and Z = max{0, b - a}. We will prove the

following

Theorem 1.1. For any positive integers a, b, d, any prime number p, any
real number t and arcy rational function r(X) = 9 X~ which is not a linear
polynomial, with f,g E deg f,degg  d, one has

As a consequence of Theorem 1.1 we show that the inequality f (x) &#x3E;

f (x + 1) holds indeed for about half of the values of x in Fp.

Corollary 1.2. Let p be a prime number, d a positive integer and let

r(X) = be a rational function which is not a linear polynomial, with

f , g E and deg f , deg g  d. Then one has

As another application of Theorem 1.1 we obtain an asymptotic result
for all the even moments of the distance between r(x + 1) and r(x).

Corollary 1.3. Let k be a positive integer and let p, d, r(X) be as in the
statements of Corollary 1. Then we have

In particular, for k = 1 one has

This says that in quadratic average
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2. Proof of Theorem 1.1

We will need the following lemma, which is a consequence of the Riemann
Hypothesis for curves defined over a finite field (see [7], [6], [1]).
Lemma 2.1. Let p be a prime number and IFp the field with p elements.
Let o be a nontrivial character of the additive group of IEP and let R(X) be
a nonconstant rdtional function. Then

--r

where the poles of R(X) are excluded from the summation, and the im-
plicit O-constaret depends at most on the degrees of the numerator and
denominator of F(X).

Let now p be a prime number, let a, b, d be positive integers less than p, let
t be a real number and let r(X) = 9 X , r(X) not a linear polynomial, with
f (X), g(X) E Fp [X] , deg f (X), degg(X)  d. For any y, z E {0,1,... ,~ -
1 } we set

Then we may write D (a, b, p, r, t) in the form

Next, we write D (a, b, p, r, t) in terms of exponential sums mod p. Denote
21Tiw 

~ ~ 

as usual ep (w) = e P for any w. Using the equalities
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where

and

Note that for m = n = 0 one has

Next, we claim that if (m, n) ~ (0, 0) then the rational function h(X) =
mr(X) + nr(X + 1) E is nonconstant. Indeed, if n = 0 then 7n ~ 0
and h(X) = mr(X) is nonconstant by the hypotheses from the statement
of the theorem. The same conclusion holds if m = 0 and n ,~ 0. Let now

0, n ~ 0 and assume that

for some c E lFp. Suppose first that r(X) is not a polynomial and choose
a root a E Fp of the denominator of r(X), where Fp denotes the algebraic
closure of Fp . Since a is a pole of r(X), from (9) it follows that a is also a
pole of r(X + 1), that is a + 1 is a pole of r(X). By repeating the above
reasoning with a replaced by a + 1 we see that a+2,Q!+3,...,Q:+p20131
are poles of r(X). This forces degg(X) to be &#x3E; p, so d &#x3E; p, in which case

(3) becomes trivial. Let us suppose now that r(X) is a polynomial, say

with ao, ... , al E ~ 0. Then by the hypotheses of Theorem 1.1 it

follows that 1 &#x3E; 2. Looking at the coefficient of Xi in (9) we deduce that
m + n = 0 in Fp. But then, the coefficients of XI-1 on the left side of (9)
equals lnal, which is nonzero in IFP, contradicting (9). This proves our claim
that h(X) is nonconstant in Fp (X). By Lemma 2.1 it follows that

for any (m, n) # (0, 0).
Next, we proceed to evaluate the coefficients A(m, n). We calculate ex-

plicitly J?(0,0) and provide upper bounds for n) for (m, n) ~ (0, 0).
There are four cases.
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By the definition of H(y, z) it follows that for each y E {0,1, ... p - 1} we
have a sum of ep (nz) with z running over a subinterval of {0,1, ... ,~ - 1},
that is a sum of a geometric progression with ratio ep(n). The absolute
value of such a sum is  and consequently

where denotes the distance to the nearest integer.
II. m ~ 0, n = 0. Similarly, as in case I, we have

III. m ~ 0, n ~ 0. We need the following lemma.

Proof. One has

Thus
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Note that

Also,

Lastly, if h + ku is not a multiple of p, then

We also have the bound

which is valid for any h, k and u. Putting the above bounds together,
Lemma 2.2 follows.
We now return to the estimation of n). Writing

as a sum of b sums according to the residue of y modulo b, one arrives at
sums as in Lemma 2.2, with h = mb, k = n, u = a. It follows that

.....

IV. m, n = 0. By definition, we have

Let D be the set of real points from the square [0,p) x [0,p) which lie below
the line bz - ay = tp. Then equals the number of integer points
(y, z) from D. Therefore

An easy computation shows that Area(D) equals p2G(t, a, b) with G(t, a, b)
defined as in the Introduction, while the length of the boundary aD is  4p.
Hence
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By (5) we know that

where

One has

By (11) and (10) we have

Similarly one has

In order to estimate D3 we first use (10) and (13) to obtain

The first double sum in (14) is
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......

while the second double sum is

Hence D3 = 0 a,b,d  log2 p . Putting all these together, Theorem 1.1
follows.

3. Proof of the Corollaries

For the proof of the first Corollary, let us notice that

Here W = Z = 0 and so

Thus

which proves Corollary 1.2.
In order to prove Corollary 1.3 note that

This equals

where for any t we denote D (t) = D ( 1,1, p, r, t) . From Theorem 1.1 it
follows that
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Since (
for any m, we derive

From the definition of G we see that

Using the fact that for any positive integer r one has
if r is even and mr = 0 if r is odd, the statement

of Corollary 1.3 follows after a straightforward computation.
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