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A new exceptional polynomial for the integer
transfinite diameter of [0,1]

par QIANG WU

RÉSUMÉ. En améliorant l’algorithme utilisé par Habsieger et Sal-
vy pour obtenir des polynômes à coefficients entiers de plus petite
norme infinie sur [0, 1], nous étendons leur table de polynômes
jusqu’au degré 100. Au degré 95 nous trouvons un nouveau poly-
nôme exceptionnel qui a des racines complexes. Notre méthode
fait appel à des polynômes de Müntz-Legendre généralisés. Nous
améliorons un peu la majoration du diamétre transfini entier de
[0,1] et nous donnons une démonstration élémentaire de la mino-
ration des exposants de certains polynômes critiques.

ABSTRACT. Using refinement of an algorithm given by Habsieger
and Salvy to find integer polynomials with smallest sup norm
on [0, 1] we extend their table of polynomials up to degree 100.
For the degree 95 we find a new exceptionnal polynomial which
has complex roots. Our method uses generalized Muntz-Legendre
polynomials. We improve slightly the upper bound for the integer
transfinite diameter of [0, 1] and give elementary proofs of lower
bounds for the exponents of some critical polynomials.

1. Introduction

For a positive integer k, let be the set of polynomials P of degree
k with integer coefficients. Following Borwein and Erdelyi [2] we define the
integer Chebyshev polynomials on the interval [0, 1] as the polynomials Pk
such that

where The integer transfinite diameter of [0, 1] is

defined by
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The exact value of tz([O, 1]) is not known. The best known result has
been obtained by Pritsker who gives E (0.4213,0.4232). For a

general exposition see (3~, [2] or [7].
The integer Chebyshev polynomials have been studied extensively by

many authors such as Aparicio (1~, Flammang, Rhin and Smyth [4], Borwein
and Erdelyi [2], Habsieger and Salvy [5]. In [5] the authors gave a complete
list of integer Chebyshev polynomials for the degrees 1 to 75. They found
for the degree k = 70 a factor of Pk which has not all its zeros in [0, 1].
This gives a negative answer to a question of [2]:
Do the integer Chebyshev polynomials of [0, 1] have all their zeros in

[0,1]?
This exceptionnal polynomial is

which has four non real zeros. The question remained open to know whether
there are other such exceptional polynomials.

As suggested by Habsieger and Salvy we use a new algorithm to extend
their table and we give a list of integer Chebyshev polynomials up to degree
100. Nevertheless it seems that it is not possible to reach the degree 200
with our algorithm as suggested in [2]. For the degree 95 we have found a
new exceptional polynomial which is

We will give in section 4 a good polynomial in Z(x~, of degree 108, which
proves the following

Theorem 1.1. 
’

Remark. This improves slightly Pritsker’s result.

One of the important tools used by the previous authors is the M3ntz-
Legendre polynomials. We will generalize these polynomials. This will

provide us lower bounds for the exponent of critical polynomials : an irre-
ducible polynomial T in is a critical polynomial for the interval [0, 1]
if there exists a positive constant C(T) such that no every inte-

ger Chebyshev polynomial of degree n is divisible by the polynomial Tk
with k &#x3E; C(T)n. For instance we prove that if Tn is an integer Chebyshev
polynomial such that  0.423164171 then Tn = xk(1 - 
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with

for n large enough. This bound is not as good as Pritsker’s bound k &#x3E;

0.31n, but the method of proof is more elementary.
This paper is organised as follows : section 2 will be devoted to the

generalized Miintz-Legendre polynomials (GML) on [0, 1]. As already re-
marked in [5] it is interesting to deal with integer Chebyshev polynomials
on ~0,1/4~ because t z ([0, 1]) = (tZ([0,1/4~))1~2. Then section 3 is devoted
to the computations on the interval ~0,1/4~. In section 4 we summarize

briefly the algorithm that we use (a more extensive version is available in
[8] or [9]), and we give a list of integer Chebyshev polynomials on ~0,1~ from
degree 76 to 100.

2. GML polynomials on [0, 1]
We consider, for 0  a  b, the scalar product of two real continuous

functions on the interval [a, b] defined by ( f , g)w = where

p is a real positive function on the interval [a, b~. We note

In the papers by Flammang, Rhin, Smyth [4] and Borwein, Erdelyi [2],
the authors study the integer transfinite diameter of [0, 1] by using the
M3ntz-Legendre polynomials which belong to the real vector space Vnk
generated by (xn, xn‘1, ~ ~ ~ , I xk) (n &#x3E; k &#x3E; 0). They apply the Gram-
Schmidt process to the basis x’~-1, ~ ~ ~ , xk ) and the usual scalar
product ( f , g) f (x)g(x)dx and obtain the orthogonal Miintz-Legendre
polynomials

Let R",~x~ be the set of polynomials of degree ~t with real coefficients.
For a polynomial P(x) = xkR(x) E belonging to Vn,k and R(x) E

we get 

Let F be a fixed non zero polynomial of R[x]. We now consider the vec-
tor space Vn,k generated by (x’~F, xn~lF, ~ ~ ~ , By the Gram-Schmidt
process with a scalar product ( , ) ~ on the interval [a, b], we get the set
(Ln, L~_1, ~ ~ ~ , of orthogonal generalized Muntz-Legendre polynomials.
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Suppose then that P = belongs to V,,,k then we get the inequality
[8]

We consider now the case of the interval [0,1] with F = (1 - x)9 and
= 1. Then we have, if q &#x3E; 0, k  n are integers,

Lemma 2.1. On the interval ~0,1~ for F = (1 - x)q, the orthogonal GML
polynomials are

Proof. It is sufficient to prove that for
We know that
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We consider Si as a rational function in the indeterminate q where n, i are

rational parameters. The degree of the denominator (2q + n - i) ... (2q + 1)
is equal to n-i. The degree of each numerator is 
1) = n-i. So if we keep the denominator in the form (2q+~-i) ~ ~ ~ (2q+1),
then the numerator is of degree less or equal to n - i. We will show that
Si is a constant in (~(q). For that, we show that the denominator divides
the numerator. Let q = -l/2 which is a zero of the denominator with
1  l  n - i. We compute
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J -"

The numerator of this sum is equal to zero because it is equal to

so (2q + n - i) ... (2q + 1) divides the numerator of Si, i.e. Si is a constant.
So, to compute Si, we can take q = -(n + i + 2)/2, and then

Then

and

LJ

Then we show how we can deduce a result of type (3) using the Propo-

large enough.
In fact, let k the minimum of the exponents of x and 1 - x, then Pn is

the form Pn = xk(1 - X)kSn-2k(X) and
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and

We remark that

o

i.e.

If we put a = ~ , and

then

By the inequality 0.423164171 we have

Since

it is enough to take a such that 0.423164171 ( f (a) ) 2 &#x3E; 1, so a &#x3E; 0.2907588,
0.2907588n for n large enough.

Remark. Using Proposition 2.2 for tz([O, 1/4]) we will prove the better
relation (3) in the next section.
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3. GML polynomials on [0, 1]
We also know that A2 = 1 - 2x [5] is a critical polynomial on [0, 1],

with the change of variable u = ~), we obtain A2 = 4u -1 which is a
critical polynomial for the integer Chebyshev polynomial on [0, 1/4]. We
consider here the vector space generated by the basis ((1-4x)9, 

1

4)9, , 7 4x)9) and the scalar product ( f, g)2 
As for the lemma 2.1, we have

Lemma 3.1. We put

then is an orthogonal GML family.

Proof. We put y = 4x and it is easy to verify that

3.1. The factor x.
If we want to determine a lower bound for the exponent of the factor x

when the exponent of the factor 1 - 4x is equal to q, we take a polynomial
of degree nd-q, Q = +anxn(I-4x)Q,
then Q = AkMk + + ... + with

, - - ,

then

We have

Proposition 3.2.

Proof. By taking y = 4x, we check that

so
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Then

This proves the proposition.

Proof. We have

If we put a = ~ and {3 = -1, we have

Then

o

i.e.

Since

we have
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If we take {3 = 0, i.e. the exponent of 1 - 4x is equal to zero, we have

- 

~ - 

B I V ,v /

and we obtain 1~ &#x3E; 2 x 0.2907588n which corresponds to the result on the
interval [0, 1] in the section 2.

3.2. The factor 1 - 4x.
To find a lower bound for the exponent of the factor 1- 4~ if the exponent

of x is fixed, we consider the vector space generated by the basis 
4x) n, Xq (1 - ... , 4x)k and the scalar product (f, 2. We
put

We have so and

and

We obtain
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Proposition 3.4.
then

We can estimate the exponent k of the factor 1 - 4x, because it is clear
that is an integer. As in lemma 3.3, we can prove

Lemma 3.5. We put Pn and ai as above. If {3 = * is given, then k &#x3E;
an + o(n), where cx is the smallest positive root o, f

where f (a, /3) is defined in l emma 3.3.

So, with lemma 3.3, by taking the exponent of 1 - 4x equal to zero,
we obtain that the exponent of x is at least equal to 0.581517fi99fin, and
with this result we obtain that the exponent of 1 - 4x is at least equal to
0.0949fi70642n by lemma 3.5. We put this last result in lemma 3.3, we thus
get that the exponent of x is at least equal to 0.5947009759n, we continue
and obtain the following results :

TABLE 1

By these results, we obtain the proof of the relation (3), i.e. let Pn E

0.5952253n, q &#x3E; 0.0966218n.

4. Application for tZ ((0,1~) and a new exceptional polynomial
In the paper by Habsieger and Salvy [5], we find a table of integer

Chebyshev polynomials of degree less than or equal to 75 on the inter-
val [0, 1]. They found the factors : A, = ~(1 - x), A2 = 1 - 2x, A3 =
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In this section, we first consider the interval [0, .1]. For the search of
the factors of integer Chebyshev polynomials, we use the method which we
detail in [8] and [9] with the following steps:

1. Find a good upper bound for 1 In this step we use the LLL

algorithm [6] which furnishes a LLL-reduced basis of H where
H is a lattice with basis (ei), i.e. such that the norm (euclidean norm) of
vectors fi is small and in particular such that the vector fl is not so far
from being the smallest non zero vector in H. Then we can find a good
upper bound.

2. Use this bound to deduce polynomials that are necessary factors of
Now we use the generalized Muntz-Legendre method with this bound

to give an upper bound for the exponents of critical polynomials as in
section 2 and section 3. More precisely we comput explicitely the bound of
the coefficients ak when F is an explicit polynomial having even more than
one irreducible factor (such as A3, A4).

3. Perform an exhaustive search for the missing factors : We have so a
system of inequalities cn where F is determined by the step
2, c,~, is the good upper bound in step 1, Q(x) is a polynomial of degree
k = n - deg F whose unknown coefficients are to be determined and the
xi are control points in the interval [a, b] which are different from the roots
of F(x). This system defines a polyhedron of which we must determine
the integer points. We solve this system with a method adapted from the
simplex method and the LLL algorithm. We thus obtain a polynomial Pn
which is appropriate.
We thus find a new factor

and also the factor
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and we extend the table up to degree 50 (i.e. on the interval ~0,1~ we can
obtain the integer Chebyshev polynomials of degree up to 100 if we consider
only the polynomials Q of even degree such that Q(x) = Q(1 - x)).

Otherwise, by lemma 1 of Habsieger and Salvy [5], we can also search
the factors of integer Chebyshev polynomials of odd degree on the interval
[0, 1] by transferring the search on the interval [0, 1], i.e. we compute
Pn(u) such that

and we replace u by x(1 - x), the table 2 is thus obtained. In this table,
for the integer Chebyshev polynomial of degree 95, we have

which is a new exceptional polynomial, i.e. it has four non real zeros. For
the polynomials of degree less or equal to 75, we find of course the same
ones as those of the table of Habsieger and Salvy.
We will now explain how our computation let us obtain a polynomial of

degree 108 which will imply the Theorem. Let Bl = 969581u8-1441511u?+
928579u 6- 338252u5 + 7fi143u4 -10836u3 + 951u2 - 47u + 1, B2 = 49u2 -
20u + 2, B3 = 34u2 -12u + 1, B4 = 193u3 -104u2 + 18u -1, B5 = 199u3 -
105u2 + 18u -1, B6 = 182113u7 - 233968us + 127434u5 - 38125u4 +6763u3 -
711 u2 + 41 u -1, where the polynomials Bi appear during the computation
of the table 2. Using a classical semi-infinite linear programming [8], we
get the smallest bound for max [ with

0u1/4 
2 10 11 1 6

the condition . Then we obtain the

polynomial H of degree 108 with
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TABLE 2

This proves the theorem. Surprisingly we see that the exceptional polyno-
mial All does not appear as a factor of H!
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