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1. Introduction

Throughout this paper we write e(x) = exp(2xiz) and let p denote a
prime variable. Sums of the form

arise in applications of the Hardy-Littlewood circle method to the Waring-
Goldbach problem (for example see [9]), or in problems involving the dis-
tribution of modulo one (see [1, 12]). The aim of this paper is to give
improved bounds for these sums when 1~ &#x3E; 5 (although Theorem 3 does
give a better bound in certain ranges than any previously published ex-
plicit result for k = 4 as well). The first unconditional bounds for these
sums were given by Vinogradov [10, 11]. The case k = 1 was required for
his celebrated proof of the ternary Goldbach problem. In 1981 the author
[4] showed that, if

then, for k &#x3E; 2
1
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with q = 41-k, f &#x3E; 0, and constants implied by the « notation will de-
pend at most on k and e. We shall state this dependence explicitly in
the statements of theorems and lemmas. This improved the value 1 =

+ 1))-l obtained by Vinogradov, and generalised the case k = 2
given by Ghosh [3]. Improved bounds for

were given in [5]. Then, in [1], it was shown (essentially) that if a = : with
k 

q

q near P 2 we have

with a(k) = (3.2k-1 )-1. This bound, in which the exponent is only a factor
of 3 away from the classical bound for a Weyl sum, was used to prove new
results on the distribution of a~ modulo one. The new idea introduced
for this result was to estimate double sums

by approximating Qmk (or i (mt - ?7)) with another rational § where oneQ Q 2

could control the behaviour of s = s (m) (or s (ml, m2 ) ) on average over m
(or ml, m2). Since then various authors have given more general estimates
for these sums using similar ideas. For technical reasons it is often better
in these results to restrict the range of summation to p - P where a N A
throughout this paper means A  a  2A. The culmination of this work is
Lemma 3.3 of [7], which we state as follows.
Theorem 1.1. Let 4,,e &#x3E; 0 and let P E I~, P &#x3E; 2. Suppose that
a is a real number, and there exist integers a, q with

Then one has
I

In the above is the multiplicative function whose value for a prime
power pc is given by

This gives wk (q) « q-l/k, while, on average, q-1/2 is nearer the
truth.
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Theorem 1.1 was applied to obtain new results for the Waring-Goldbach
problem. The purpose of this note is to improve the first term on the right
hand side of (5). We are also able to consider more relaxed conditions on
a. Our main result is as follows.

Theorem 1.2. Let k E ~, k &#x3E; 5, E &#x3E; 0 and let P, H 2,

Suppose that a is a real number, and there exist integers a, q with

Then

The restriction to k &#x3E; 5 is caused by parts of the proof which require
a(k)  (8k + 2)-l. For larger k one should be able to obtain an exponent
a(k) = (4.5J~2 log 1~)-1 by using [13] in place of Weyl’s inequality (used im-
plicitly in Lemma 3.1 below). As applications of this result we note that
the case k = 5 leads to a major simplification of the proof of Theorem 2
in [7], and, for general k &#x3E; 5 this result should lead to improved bounds
for solving inequalities involving powers of primes. The main factor in our
strengthening of Theorem 1 is our estimation of Type I sums (Lemma 2 be-
low), which in some ways is less sophisticated than the corresponding result
in [7], but the injection of a simple idea from [1] enlarges the permissible
range of parameters.

Before stating our final result we will describe what is known when a is
rational. It turns out that one such result combines well with Theorem 1.2
to produce a strong bound for trigonometric sums over primes. In [3] the
author remarked that the bound

follows from work of Vaughan [8]. This is non-trivial for  q 
and greatly improves on Theorem 1.2 for small q. Fouvry and Michel

[2] proved quite a general result which shows, as one example, that, for q a
prime, q &#x3E; P, ~ &#x3E; 2,

I I

This result is only non-trivial for the short range P  q  P6 , but it

improves our results in a narrow range. It is interesting to note that the
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exponents of both the above results for rational a are independent of k. The
bound (9) can be combined with Theorem 1.2 to produce the following.
Theorem 1.3. Suppose that k &#x3E; 5, P &#x3E; 2, E &#x3E; 0 and a E R such that (2)
holds. Then

Here

Moreover, the bound (10) remains valid for k = 4 with a(k) replaced by i2.
Remark. This improves on all previous bounds, not just by virtue of im-
proving the term independent of q, but also in the way the bound behaves
for small or large q. Indeed, for very small or very large q, (10) gives a
better bound than can be obtained for the standard Weyl sum. The fact
that Tl (k) and T2 (k) do not tend to zero with increasing 1~ is very unusual.
Using Theorem 1.2 alone we would only obtain Tl (k) = T2 (k) = 2~ . The
explanation for this phenomenon would seem to lie in the underlying model
complete sum with which the exponential sum is compared, either

for which we know very different bounds hold in general.

Proof. (Theorem 1.3) If Pi  q  P 2 the result follows immediately from
Theorem 1.2. Otherwise we can pick u, v, with

If v &#x3E; P 4 the result again follows from Theorem 1.2 since 8k _ ~ (k) ~ 1.
We now suppose that v  Pi . Writin g

we can suppose that S » Pl-o’+E. Let R = 1 + pkla - Then, by (9)
with partial summation,
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while (8) (or (5) if k = 4) gives

From (11) and (12) we deduce that, for any ~i E ~0,1~,

1
We first consider the case q  P 2 . Now we cannot have v  q/2 for
otherwise we get the contradictory sequence of inequalities:

We choose {3 = ~ in (13) (to eliminate R) and then

This establishes (10) for this case, so we henceforth suppose that q &#x3E; P§ .
From the first case (with q replaced by v) we may also suppose that v 

and so v  It follows that (noting q &#x3E; p2 &#x3E; 2Pi &#x3E;

2v)

Hence vR » pkq-1.
We now choose a = 3k/(4k -1) in (13) (to equalise the powers of R and

v) and deduce that

This establishes (10) for this case and so.completes the proof. 0

2. Theorem 1.2 deduced from 3 lemmas

We write A(n) for the von Mangoldt function. By a familiar argument
(partial summation) it suffices to show that, for P’ - P,

An application of Heath-Brown’s generalised Vaughan identity [6] as on
page 172 of [1] gives the following decomposition of the left hand side of
(14). In the following we write Tk ( n) for the number of ways of writing n as
a product of k positive integers with the convention that rl(n) =- 1. Also,
whenever we write log x, we mean 
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Lemma 2.1. Let 0  ’Y  12 and suppose that we have the Type I estimate12

, and the Type II estimate

_ _

The following result, proved in section 4 contains the main improvement
on [7].
Lemma 2.2. Let e &#x3E; 0. Suppose H, P, M are positive reals with 2  P,
(6) holds, and

Let a be a real number such that there exist integers a, q such that (7) holds.
Then, « we have

Remark. In Lemma 3.2 of [7] a trilinear sum is considered and a bound is
given which is stronger than (20). However, we can take M larger than in [7]
and this enables us to utilize the result of Lemma 2.1. Our advantage is thus
obtained by establishing a weaker result for a larger range of parameters.
The reader will see that it is possible to improve the first term on the right
hand side of (20), but this would complicate the proof yet not strengthen
the result of our main theorem.

Our final component in the proof of Theorem 1.2 is the following slightly
revised version of Lemma 3.1 in [7]. The proof will be given in section 3.
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Lemma 2.3. Let c &#x3E; 0. Suppose H, P, M are positive reals with

Suppose that am, bn satisf y (1 ~’) and a, a, q satisfy (7). Then, for P’ , P

Proof. (Theorem 1.2) We apply Lemma 2.1 with y = a(k). We can use
Lemma 2.2 to estimate (15) and Lemma 2.3 is applicable to (16) (replacing
c by e/2 in those lemmas). This establishes (18) with

and so (8) follows. 0

3. Proof of Lemma 2.3

First we need an important lemma which is a more general version of
Lemma 2.1 in [7] (where p is fixed as 21-k) but which follows in the same
way from Lemmas 2.4, 6.1 and 6.2 of [9].
Lemma 3.1. Let p E (0, 21-k~, e &#x3E; 0, X &#x3E; 1. Then, either

or there exist integers a, q with

and

Proof. (Lemma 2.3) We need to make two changes to the proof of Lemma
3.1 in [7]: first to allow for the changed conditions on a, a, q; second to
allow for the changed conditions on am, bn. We outline the steps in the
proof to help the reader follow the argument.

Write
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We begin with a standard application of Cauchy’s inequality to the left hand
side of (20) together with a familiar shufliing of the orders of summation:

Here N = P/2M and

The terms with nl - n2 can only be dealt with trivially and this leads to
a (PM)2+f term which is « in view of the upper bound for M
contained in (21). We then assume that the sum over m above is _&#x3E; M pf /T
and this shows, by Lemma 3.1, that we can approximate (n - by a2 1

fraction where

In the following we closely follow [6] and assume for the moment that in
place of we have bn satisfying the condition (bn « logn) which
occurs in that paper. We take out the factor no = (ni, n2), put n = nl/np,
1 = (n2 - nl)/no and write

Terms with no &#x3E; TP-1 can clearly be neglected, so we henceforth suppose
no  TP-’. Following the argument on page 11 of [7] we obtain a suitable
bound, except possibly when (see (3.13) in [7])

We deduce from Dirichlet’s approximation theorem that there exist d E Z
and with
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As in (7~, the sums to be estimated are of a suitable size, unless (see (3.18))

Now the conditions on a, a, q are only needed in [7] (see page 13) to show
that (see the display after (3.19)),

In our situation we have

from (21). Hence (23) is satisfied in our case.
Now we deal with the changed conditions on bn which, with the altered

hypothesis for eventually lead to the higher log powers in our result.
This means that we must include a factor in 81 on page 9 of [7].
Now, if q &#x3E; P’ we can use « qE/2 and the proof goes through
exactly as in [7]. If q  P" then we must persist with this factor. Thus the
inequality (3.8) in [7] becomes, upon writing No = N/no,

by making a suitable modification to the argument on page 10 of [7] to
deal with the Tv(n) factor. The factor is then carried through the
argument until at last one has to estimate the sum (see the un-numbered
display before (3.20) in [7])



736

1

However, since T1J(no) « n’ this sum is

by modifying Lemma 2.3 of [7]. Combining the results we obtain
, n

Here h = 2 + v2 + u2 and so the worst case has u = 1, v = 5 (or vice versa)
giving h = 28 as required to establish (22). 0

4. Proof of Lemma 2.2

First we need a further two lemmas.

Proof. We may assume that f  1. We have, since Zv~ (r) &#x3E; r- 2 ,

by Lemma 2.4 of [7].
Lemma 4.2. Suppose q, E, 9 &#x3E; 0, d &#x3E; 2, M &#x3E; 1. Say

Then, given r  d, the number of solutions to

Proof. This simple bound follows by the method of Lemma 6 in [1]. To see
this, note that when (25) is satisfied
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We then need to count the number of solutions to

This number is

which gives (26). 0

Proof. (Lemma 2.2) We start in a similar manner to the proof of Lemma
3.2 in [7]. Write Q = By Lemma 3.1 with X = P/m and p defined
by X1-p - pl-cr(k) /m, for each m, either

or there exist integers b, r with

Here we have changed a term  P-" to  2 since we may assume that
P is sufficiently large, and we require an explicit constant less than 1 later
in the proof. Evidently we can ignore those m for which (27) holds and
concentrate our attention on those m for which we obtain (28). For each
r  Q let ,M(r) be the set of all m - M for which (28) holds. Then

Now, by Lemma 3.1,

Clearly we can absorb the contribution from pairs (m, r) with

into the first term on the right of (29). So henceforth we assume (30) is
violated and denote the corresponding sum by S2. Now there exist c, d with
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Moreover, if d  H/2, we have

and so d = q, c = a in this case. Now write

where M(r, e) counts those m E M (r) with (m, d) = e. Clearly we can
dispense with those e satisfying e &#x3E; We now split the argument
into two cases.

(i) ekr  d. We can apply Lemma 4.2 to show that

The contribution to S2 from case (i) is therefore

where we have used Lemma 4.1, M  P 2 +~~~~, and d  We note
that we also required

for the final inequality, and it is this point which limits our method to the
case k &#x3E; 5.
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(ii) ekr &#x3E; d. For this case we have d  !Q2 and thus d = q, c = d. Also

Hence = q, and so wk(r) = wk(q/(mk,q)). We can therefore estimate
this case as

We now consider

from Lemma 2.3 in [7]. On the other hand, for q  ME we first define the

multiplicative function vk(n) by for u &#x3E; 0 and 1  v  k.
We then have

by Lemma 2.2 of [7] since We thus have an estimate

in this case. Combining (i) and (ii) then establishes (20) and completes the
proof. 0
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