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Computing modular degrees using L-functions

par CHRISTOPHE DELAUNAY

RÉSUMÉ. Nous donnons un algorithme pour calculer le degré mo-
dulaire d’une courbe elliptique définie sur Q. Notre méthode
est basée sur le calcul de la valeur spéciale en s = 2 du carré
symétrique de la fonction L attachée à la courbe elliptique. Cette
méthode est assez efficace et facile à implémenter.

ABSTRACT. We give an algorithm to compute the modular degree
of an elliptic curve defined over Q. Our method is based on the
computation of the special value at s = 2 of the symmetric square
of the L-function attached to the elliptic curve. This method is
quite efficient and easy to implement.

1. Introduction

From the recent and difficult work of [14], [11] and [3], it is now known
that every elliptic curves E/Q is modular. If N denotes its conductor, this
implies that there exists a covering map cp from Xo (N) to E. The pull-
back by cp of the unique (up to multiplication) invariant differential form
w on E is 2i’lrcf(r)dr, where f (T) is a normalized newform of level N and
weight 2 on ro(N) and where the ’Manin’s constant’ c is rational and can
be assumed positive. Furthermore, the L-function associated to f coincides
with the Hasse-Weil L-function of E.
The question of computing the degree is natural and interesting

because of important conjectures related to this number deg(cp). It is well
known (cf. [15]) that there exists a simple relation between deg(cp) and

where 11-IIN denotes the Petersson norm. In [15], D. Zagier explains
how to compute explicitly Ilf JIN in the general case of a congruence sub-
group r. J. Cremona, in [7] interprets Zagier’s method in the langage of
"M-symbols" and computes deg(cp) for many elliptic curves (large tables of
elliptic curves are given in [6]). Both methods are geometric and efficient
but tend to be quite slow when the conductor is large. The purpose of this
paper is to give an alternative way of computing Ilf JIN. This is an analytic
method based on well-known results which relate the special value of the
L-function associated to the symmetric square of E with Ilf JIN-

Manuscrit reçu le 5 juin 2002.
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2. The imprimitive symmetric square of E

Let E be an elliptic curve defined over Q of conductor N. The normalized
newform attached to E is f (T) _ En anqn (q = We have ~p* (w) _
2i1rcf(r)dr, and a conjecture of Manin asserts that c =1 whenever E is a
strong Weil curve (there is exactly one such curve in an isogeny class). We
then have ([15]): 

- - -

where vol(E) is the volume of a minimal period lattice A with C/A.
Now, the Hasse-Weil function L(E, s) is equal to Fln a,n-3 and can be
expanded as an Euler product:

f -1 if E has non-split multiplicative reduction at p 
ap = 1 if E has split multiplicative reduction at p 0 if E has additive reduction at p V I N).

We define the imprimitive symmetric square L-function of f to be:

The subscript N means that we have omitted the Euler factors at the primes
dividing N.

It can be shown that L(Syml2 f , s) has a holomorphic continuation to the
whole complex plane, and by Rankin’s method that (cf. [10]):

-1.

This formula allows us to study quadratic twists of an elliptic curve. In-

deed, assume that E is the quadratic twist of an elliptic curve E’ with
conductor N’ such that ordp(N) for all prime p. We denote by
X the underlying quadratic character and by cond(x) its conductor. From
classical results about twists of newforms (cf. [2]) and from the fact that
for an odd prime p the p-adic valuation of cond(x) is  1 , we can obtain
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the following. Let P &#x3E; 3 be a prime number with p cond(x);

Thus, we can write N = and N’ = MD22 A where D¡ (resp. D2)
is the product of the odd primes p such that p cond(x) and p ~’ N’ (resp.
p cond(x) and pIIN’), A = ord2(N’), k = ord2(N) so that A  k and M,
D1, D2 are odd. We can now state :

Theorem 1. Assume that E is the quadratic twist of E’ with conduc-
tor N’ such that ordp(N) for all p. Write f’ = E n ann-S
= aP s)-1(1 - for the newform attached to E’. Let

N = and N’ = MD22~ as explained above. Then:

REMARK : From this theorem, it is easy to relate deg(cp) with 
PROOF: We observe that we have aP = = and that the Euler

product (2) for f and f’ are clearly related since ;~2 is the trivial char-
acter modulo cond(X). Furthermore, this Euler product allows us to give
a "local" proof of the theorem. So, suppose that E is the twist of E’
by a character of prime conductor p &#x3E; 3 with ordp(N’)  ordp(N) (if
ordp (N’) = ordp(N) then we have L(Sym;2 f’, s) = f, s)). We have
N = lcm(N’,p2) = N’p2 (resp., = N’p) if (N’, p) = 1 (resp., (N’, p) = p).

p the Euler factor at q of both f, s) and f’, s) are
the same. Since I N we have ap = 0 (~1~), and there is no Euler factor
at p in f, s).
When (N~, P) = 1 (i.e. p Di) we have:

A little calculation with s = 2 shows that:
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The case p = 2 follows by the same argument except that there is no
character of conductor 2 and so we have to deal with cond(x) = 4 or 8.
This also explains why some cases cannot (and do not) occur in list of cases
relating II f II N and 0

This theorem asserts that we only have to consider elliptic curves E
which are not twists of another curve E’ having a lower conductor.

3. The primitive symmetric square of E

The imprimitive symmetric square L(Syml2 f, s) does not have a "tra-
ditional" functional equation and there is no simple method to compute
L(Sym2 f, 2) directly. Thus, we consider the primitive symmetric square
L-function of E, L(Sym2 f, s):

where the product is over the finite set S of bad primes where E has bad
but potentially good reduction, in other words primes p such that p I N
and ordp(j(E)) &#x3E; 0, j(E) being the j-invariant of E. The properties of the
primitive symmetric square function are studied in [4]. In particular, the
following is proved:

Theorem 2 (Coates-Schmidt). The function L(Sym2 f, s) has a holomor-
phic continuation to the whole complex plane and there exists B E Z such
that the completed function:

is entire and admits the functional equation:

REMARKS: 1. the Euler factor at p of the primitive and imprimi-
tive symmetric square functions of E are the same and we have ordp(B) =
ordp (N) . In particular, if N is squarefree, then L(Sym2 f, s) = L(Syml2 f, s)
and B = N.

2. The function L(Sym2 f, s) is invariant if we twist E by a quadratic
character of Q. This is not true in general for the imprimitive symmetric
square function.

In order to write down the correct Euler factor at P ~ I N2, we assume
that E is not the quadratic twist of a curve E’ of lower conductor. For the
cases p = 2 and p = 3, we have the following tables coming from [4] (we
should mention that two cases have been initially forgotten in [4] whenever
2$ ~ 1 N, and that [13] corrects this mistake).
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When several possibilities occur in theses tables, the correct Euler factor is
given by certain properties of the fields The cases 2411N and
2611 N never appear since we assumed that E is minimal among its quadratic
twists. If p ~ 2, 3 then ordp(B) = 1 and Lp(Sym2 f, X) =1-pX or 1 + pX
depending on whether or not Qp(El)/Qp is abelian. Nevertheless, for each
ambiguous case, one can find in ~13~ 1 the correct Euler factor: first assume
that p &#x3E; 5. Then we have Lp(Sym2 f , X ) = 1 - pX if and only if one of
the following conditions holds, where c6 and c4 are the classical invariants
attached to E:

~ p =1 (mod 12);
p ’ 5 (mod 12), p2 I c6 and p2 f C4;

w p = 7 (mod 12) and either c6, or p2  I C6 and p2 04.
For p = 2, 2811N is the only ambiguous case and:

. if 29 I C6 then LP(SYM2 f, X) = 1;
~ if 29 f c6 and c4 - ~ 32 (mod 128) then 1 + epX,

where c = ±1.
For p = 3, 3411N is the only ambiguous case and we have Lp (Sym2 f, X)
1- pX when one of the two following holds:

o c4 - 27 (mod 81);
. C4 == 9 (mod 27) and c6 m ~1Q8 (mod 243).

4. Computation of L(Sym2 f , s)
For simplicity, we write:

where C = and L(Sym2f,s) = Note that the coeffi-
cients bn are easily computable from the definitions. Furthermore, it fol-
lows from Deligne’s bounds and the Euler product for L(Sym2 f , s) that

 n2. Classical estimates coming from the functional equation of

1 During the preparation of this paper, we were informed of the preprint [13] of M. Watkins
where a similar (but not so detailed) method of computing deg(W) is described and used to
compute several interesting modular degrees.
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A(Sym2 f, s) give:

This formula implies that the series En bn/n2 converges to L(Sym2 f, 2).
Of course, this is not an efficient method to compute because the

convergence is very slow. However, it easily gives us a first approximation
of 

Fortunately, a classical method for computing Dirichlet series with func-
tional equation can be applied to our case (cf. [5], Chapter 10):

Proposition 3. We have:

where

,forallb&#x3E;0.

This is a rapidly convergent series since we have:

Proposition 4. Let s = (J + it and A = 21/4C then:

I

PROOF: We have:

Hence,
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With an easy but tedious calculation, we obtain:

Thus, we have:

/ 2/3
The proposition is then proved by taking J = ’ 0

This proposition allows us to estimate the tail of the series in (4) (we
have ~,2). In order to compute F(s, x), we push the line of integration
to the left catching all the residues of t-’-t(z):

Proposition 5.

with

It is clear that the terms in this expression can be recursively computed.
In practice, we compute No such that:
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We then compute io terms in the series of proposition 5, where io is the
smallest integer such that (cf. [12]):

We thus obtain A(Sym2 f , 2) with a sufficiently high accuracy and we de-
duce from it the value of hence of deg(p). Using this method, we
can quickly compute modular degrees of strong Weil curves. As a check on
the computations, we use the fact that deg(p) is an integer.

REMARK. In fact, what is really obtained here is an algorithm to com-
pute L(Sym2 f , 2) from which lif 11 and then deg(p) can be easily recovered.
Nevertheless, the quantity ilf 11 makes sense and is also interesting in greater
generality, namely for any holomorphic form f of integral weight k &#x3E; 2 and
level N, not necessarily related to an elliptic curve. In this general case,
one can also define L(Sym2 f , s) the primitive symmetric square L-function
related to the L-function of f and we have:

This L-function does have a traditional functional equation and the adap-
tation of the method above is possible. However, in our case ( f is related
to an elliptic curve), computing the Euler factors involves looking at the
elliptic curve whenever the reduction is additive N); in general, such a
study is not possible and the case of non-squarefree N seems not to be easy.
When N is squarefree the adaptation of the method is very simple since
the Euler factors of L(Sym2 f, s) are all given by (2) and the functional
equation is : 

- -

Furthermore, when N is squarefree, one can adapt the method to compute
(conjecturally) special values of general symmetric powers L(Sym~ f , k)
since they also satisfy a traditional (and conjectural) functional equation.

5. Some estimates

From the functional equation of L(Sym2 f , s), one can show that I I f 112
~ë Nl+c. In fact, Nt: can be replaced by a suitable power of log(N). Thus,
estimates for vol(E) provide upper bounds on deg(p) (modulo Manin’s
conjecture).
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Proposition 6. Let C be a nonnegative real number. There exist a E 1I~

and A E R depending on C such that:

where Ami,, is the discriminant of the minimal model of E.

PROOF: This proposition comes from a straightforward estimate for the
fundamental periods W1 and w2 of E, since we have vol(E) = 

0

Assuming Manin ’s conjecture, we see that proposition 6 gives the up-
per bound « for elliptic curves with bounded j-invaxiant.

Proposition 7. Let 6 be an infinite family of elliptic curves defined over
Q such that:

PROOF: The upper bound comes from the classical estimate L(Sym2 f, 2) K
log(N)3 and from the fact that the Manin’s constant is bounded whenever
the conductor is squaxefree. The last estimate comes from the lower bound
L(Sym2 f, 2) » 1/ log(N) for N squarefree (cf. [8]). 11

The curves E~ defined by y2 + xy = x3 + k (with 432k2 + k squarefree)
give a infinite family of elliptic curves for which the conditions in the propo-
sition hold.

The lower bound of the proposition also holds in the more general set-
ting where the condition is squarefree" is replaced by "E is
semi-stable (i.e. N is squarefree)".

We wrote a GP-PARI ([9]) program for computing the modular degrees
using the method explained above. In the following table we give three
examples for which the modular degree is very large. In each cases, deg(cp)
was computed in a few minutes. The column j(an) indicates the number
of coefficients an needed (for an accuracy 10-4).
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The last curve is in fact the quadratic twist of the curve E’ with coef-
ficients [1, 0,1,120229952, -3351306510322] of conductor 1290. We need
5000 coefficients an to compute deg(p(E’)) = 1068480.
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