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A representation theorem for a class
of rigid analytic functions

par VICTOR ALEXANDRU, NICOLAE POPESCU et ALEXANDRU
ZAHARESCU

RÉSUMÉ. Soit p un nombre premier, Qp le corps des nombres

p-adiques et Cp la complétion d’une clôture algébrique de Qp.
Dans cet article, nous obtenons un théorème de représentation
pour les fonctions analytiques rigides sur P1 (Cp)BC(t,03B5) qui sont
équivariantes par le groupe de Galois G = Galcont (Cp/Qp), où t
désigne un élément Lipschitzien de Cp et C(t, e) un 03B52014voisinage
de la G-orbite de t.

ABSTRACT. Let p be a prime number, Qp the field of p-adic num-
bers and Cp the completion of the algebraic closure of Qp. In
this paper we obtain a representation theorem for rigid analytic
functions on P1 (Cp)BC(t,03B5) which are equivariant with respect
to the Galois group G = Galcont(Cp/Qp), where t is a Lips-
chitzian element of Cp and C(t, 03B5) denotes the e-neighborhood
of the G-orbit of t.

1. Introduction
" 

Let p be a prime number, ~, the field of p-adic numbers, Qp a fixed
algebraic closure of ~ and Cp the completion of Qp with respect to the
p-adic absolute value. Let t E Cp and set E(t) = = Cp U
{oo}BC(t) where C(t) denotes the orbit of t with respect to the group G of
all continuous automorphisms ofCp over Q§ . In this paper we are interested
in the G-equivariant rigid analytic functions on E(t) and their restrictions
to affinoids of the form E(t, e) _ Cp U loo}BC(t, c) where C(t, c) stands for
the e-neighborhood of C(t).

These functions are easily described in case t is algebraic over Q§ . For
instance, if t E Qp then one can use the equivariant transformation z 
to send t to the point at infinity. Then the equivariant rigid analytic func-
tions on E(t) will correspond to the entire functions which are equivariant



640

and these are simply power series f (x) _ anzn with cn E Qp for any
1 
= 

-

n and such that lani n = 0.
If t is transcendental over Q, it is not obvious that there are any noncon-

stant equivariant rigid analytic functions on E(t). For certain elements t
(called Lipschitzian) such a function z H F(t, z) is constructed in [APZ2].
In this paper we define for any Lipschitzian element t of ~ and any natu-
ral numbers m, n an equivariant rigid analytic function Fm,n(t, z) on E(t),
which is related to our basic trace series F(t, z). Then in Theorem 4.2 below
we express any equivariant rigid analytic function on an a,ffinoid E(t, e) in
terms of the above functions F m,n (t, z).

2. Background material

2.1. Let p be a prime number and ~ the field of p-adic numbers endowed
with the p-adic absolute value II, normalized such that lpi = 1/p. Let Qp be
a fixed algebraic closure of Qp and denote by the same symbol ~ ~ the unique
extension of [ to Qp. Further, denote by (Cp, II) the completion of II)
(see [Am], [Ar]). Let G = endowed with the Krull topology.
The group G is canonically isomorphic with the group of
all continuous automorphisms of Cp over For any x E Cp denote

-

C (x) = E G} the orbit of x and let be the closure of the ring
Q§ [x] in Cp. For any x E Qp denote deg(x) = ~~ (x) : Qp].

2.2. Let x E Cp. Given a real number e &#x3E; 0 let B(x, c) = {y E Cp, 
y|  el the open ball of radius e centered at x. If M is a compact subset
of Cp and c &#x3E; 0 is a real number, denote by N(M, c) the number of all
disjoint balls of radius e which have a non-empty intersection with M. We
say that M is Lipschitzian if lim c = 0. We call an element x E Cp’
Lipschitzian. if C(x) is Lipschitzian.

According to [APZ2] if x is Lipschitzian then one can integrate Lips-
chitzian functions (see definition in 2.3 below) with respect to the p-adic
Haar measure ~t induced by G on the set C(x).

Let Gx = la E G : u(x) = x} and P a closed subgroup of G which 
contains Gx. Then Cp(x) = la(x) : a E P}, the orbit of x with respect to
P, is a compact subset of C(x) = CG(x). If x is Lipschitzian then Cp(x) is
a Lipschitzian compact set for any P with Gx C P. This follows from the
fact that for any 6- &#x3E; 0, N(Cp(x),e) divides N(C(x), e).

Let x E Cp and P a closed subgroup of G which contains Gx. For any
c &#x3E; 0 let Hp(x, c) = {7 E P : Ix-q(x)1 [  c} and Np(X,ê) = N(Cp(x),e).
Then Hp (x, c) is an open subgroup of P and Np(X,ê) = [P : In

particular N(x, 6) = [G : H(X,ê)], where H(X,ê) = Ha(X,ê).

11
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2.3. The notion of rigid analytic function is defined in [FP] (see also
[Am]). According to [APZ2], a rigid analytic function defined on a subset
D of Cp is said to be equivariant if for any z E D one has C(z) C D and
f (a(z)) = a(f (z)) for all a E G. A function f : C(t) - Cp, t E Cp is
Lipschitzian if there exists a real number c &#x3E; 0 such that f (y)~ 

yl for all x, y E C(t).
Let t be a Lipschitzian element of Cp and f : C(t) - Cp a Lipschitzian

function. Then the integral

is well defined (see [APZ2]). In particular for any polynomial P(X) E
Cp[X], any z U {00} B C(t) and any natural number n the function
z 1-7 = is Lipschitzian on and we consider the integral

Let us denote

According to [APZ2] for any m &#x3E; 0 one has

This shows that F,.,z,o (t, z) = E ~, Fo,o (t, z) = 1 and 1 +Fl,l t, 1) =
F(t, z), the trace function associated to t. Also by the equality 

valid for any positive integer m and any u with Jul  1, it follows that for
Izi &#x3E; lxl one has

Then one may write:

This formula represents the expansion of Fm,n(t, z) in a suitable neigh-
borhood of infinity. As in Theorem 6.1 of [APZ2] one shows that for all
m &#x3E; 0, n &#x3E; 0, is an equivariant rigid analytic function defined on
Cp U 
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Remark 2.1. = for any m &#x3E; 0,’n ~~’ 1. As a

consequence one has where the derivative

is taken with respect to z. 
n! m,

2.4. The above considerations can be generalized as follows: Let c &#x3E; 0

be a real number and S a system of right representatives of G with respect
to the subgroup H(t, e). Assume that the identity element e of G belongs
to S and that t is Lipschitzian. For any cr ~ S the subset Cu(t, c) = {r(t) :
T ~ is a compact subset of C(t). For m &#x3E; 0, ~ &#x3E; 0 denote

It is clear that

In fact this formula represents the Mittag-Leffier decomposition of Fm,n(t, z)
viewed as a rigid analytic function in the connected affinoid Cp U fool B
Uo-EsB(u(t), c) = E(t, ê). In what follows we try to obtain a similar decom-
position for any element of the set A(E(t, e)) of equivariant rigid analytic
functions on E(t, c).

3. A combinatorial Lemma

Let a, x, y, be variables. For any m &#x3E; 1, let us denote
, . 6 ,

where as usually 
1) ..~I(m - k + 1) , For any integer 

1 we set
.. 

I 

~ . %--l

where h~,n~(a) denotes the formal k-th derivative of the polynomial hm(a)
with respect to a.

Lemma 3.1. For any x, y and any m &#x3E; 1 one has:

and
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Proof. Equality (3) states that = x), which follows directly
from the Taylor expansion (2). As for the second equality, by applying (3)
and using the identity

1

one contains

This equals by (3) and so the lemma is proved. 0

4. Equivariant rigid analytic functions on E(t, e)
4.1. Let t be an element of Cp, let e &#x3E; 0 be a real number and denote

by B(C(t), c) the union of all disjoint open balls B(x, c) which have a
nonempty intersection with C(t). Choose a E Qp such that it - al  e.

Then one has H(t, c) = H(a,E). Let S be a system of right representatives
of G with respect to H(t, E) and assume e E S. One has B(C(t),E) =
UUES B(u(a),E). Consider the affinoid E(t,ê) = ~ U loolBB(C(t), 6) and
let A(E(t, E)) be the set of equivariant rigid analytic functions on E(t, e).
If t is Lipschitzian then the functions Fm,n(t, z) defined in Section 2 are
elements of A(E(t, e)). In this section we shall prove that all the elements
of A(E(t, E)) can be expressed in terms of the functions Fm,n(t, z), m, n &#x3E; 0.

4.2. We have the following proposition.

Proposition 4.1. Let t be an element o/Cp. Denote Kt = n Qp and
let e &#x3E; 0 and a E Kt such that c. There exists a sequence 
of elements of Kt and a sequences of positive real numbers such
that:

(i) W = ~~ ai = a,
(ii) For any n &#x3E; 1 one has  It - anll,
(iii) It - an  en, ~e &#x3E; 1, and deg an is smallest with this property.
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The proof easily follows by induction on n since any ball B (t, c) contains
elements of Kt (see [APZ1]).

In what follows we work with sequences and fcnln as in Propo-
sition 4.1. It is clear that limen = 0, and t = liman. Note also that

n n

the ball is contained in B (an, cn) for all n &#x3E; 1. Let us
consider the subgroup H(t, en) = H(an, en) defined in Section 2. Denote
dn = [G : H(T, en)] = N(t, en), and let Sn be a fixed system of represen-
tatives of right cosets of G with respect to H(t, en). We shall assume that
the identity element e of G belongs to each Sn. We remark that Sl = S
and dn divides for all n &#x3E; 1.

4.3. Let f E A(E(t,ê)). Then (see [FP], Ch I) f admits a Mittag-Leffier
decomposition: f(z) = ¿uES fa(z) + f (oo) where f (oo) is the value of f
at infinity and

Since f is equivariant then for any z E E(t, e) and any T E G one has

and for E S one can write:

Next we remark that for any T E H(t, e) and any a E S the element u(r(a))
belongs to B (a (a), ê), and so the function fu(z) = E,.~, 1aa,,m ). can also
be written as

where

In what follows we shall assume that f (oo) = 0.

4.4. At this point we derive another convenient expression for f (z), using
the above elements an. Fix n &#x3E; 1. Then d = d¡ divides dn = [G : H(t, en)~.
Denote qn = dn/d and let en), 1  j  qn be all the balls of radius
en centered at suitable conjugates of an and such that these balls cover

e). Then
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where

According to (5) for all a E S one has

As a consequence of (4) there exists a positive real
number M such that for any m 2: 1 one has:

It follows from (7) that

for 2 and 1  j  

4.5. At this point we assume that t is a Lipschitzian element of Cp, e &#x3E; 0
and a E B(t, e), a E Kt. Let f E A(E(t, e)), f = EqES fu(z) with f,(z)
given by (4). For any m &#x3E; 1 denote

Also, for a E S consider the function 170, , (t, Z) defined in Section 2.

Theorem 4.2. Let t be a Lipschitzian element of Cp, e &#x3E; 0, a E 
and f E A(E(t,e)). Then for any z E E(t,e) one has

Proof. For any ~n &#x3E; 1 let and

Step 1. Fix zo E E(t, ê). We assert that for any z E B(zo, ê), the function
z e A(x, z) is defined and is Lipschitzian on B(t, c). Firstly we remark
that for any x E B(t, c) one has (see (8)):
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and

Since c  1, by (4) and the above considerations it follows that
I - . I

when m 2013~ oo. Then the function A(x, z) is defined on

B(t, ê), as claimed. Now let x, y E B (t, ~) . For any m &#x3E; 1 we have

where Di are suitable natural numbers. Then one can write

But (see (8)) for any i &#x3E; 1 and z E B(zo, e) one has

..

Also by an easy computation one sees that:

Finally, one has is Lipschitzian
on J3(t,c). The above considerations also show that for any J &#x3E; 0 we have

for all m large enough in terms of z and J, uniformly for x, y E Ce(t, e) .
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Step 2. Let us denote D = Ce (t, e) = B (t, c) nC(t). Then D is a compact
Lipschitzian subset of Cp and we consider the integral

Here we use the definition of the integral with respect the p-adic measure
~t as in [APZ2]. We assert that

where e is the identity element of G.
To see this, consider the sequences and ~an }n from Proposition

4.1. Let H(t, en), dn, Sn be as above. In particular el = e, al = a, d, = d.
For any n &#x3E; 1 let Cn), 1  i  qn be the open balls of radius en
which cover D. Then one has:

where

is the Riemann sum associated to (see[APZ2]). We have

From (6) it now follows that

Since this equality is valid for any n we conclude that

Step 3. We now apply formula (2) to obtain another expression for 
One has:
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Therefore

We claim that

In order to prove this formula we need the following result:

Lemma 4.3. Let t be a Lipschitzian element of e &#x3E; 0 a real number,
g : B(C(t), e) --&#x3E; Cp a Lipschitzian function, and let c be a real number
such that lg(x) - g(y)~  clx - all x, y E C(t). Then there exists a
real number k independent of g such that:

Proof. Let be a decreasing sequence of positive real numbers such
that limén = 2 and C(t) g Then one has:

- 

n

where (see Section 2) dn = [G : 

Sn is a system of right cosets of G with respect H (t, En) and ~ (g, T (t), 
1 

.

is the Riemann sum associated to Sn and g (see [APZ2]).

In particular E1) = g(t).
Let n &#x3E; 1. Then dn divides dn+1 and for any T E there exists

exactly one element a E Sn such that T(t) E Then we have

Let n be large enough such that
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Then by the above considerations one has:

Now let us take since

being Lipschitzian by hypothesis.

Let 9 &#x3E; 0 be a real number. Then by (4), (11) and (12) it follows that for

m large enough one has:

E D. Lemma 4.3 implies that

Therefore

and using (13) one obtains (14).

Step 4. Let a E S and denote DO’= B(u(a),e) fl C(t) = Cu(t,e). Working
as above, one gets:

Finally by adding these equalities for Q E S one obtains the expression of
f (z) stated in Theorem 4.2 0

Corollary 4.4. The notations and hypothesis are as in Theorem 4.2 As-
sume a E Q. Then S = {e} and one has:
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