
JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

HERSHY KISILEVSKY

JACK SONN
On the n-torsion subgroup of the Brauer group
of a number field
Journal de Théorie des Nombres de Bordeaux, tome 15, no 1 (2003),
p. 199-204
<http://www.numdam.org/item?id=JTNB_2003__15_1_199_0>

© Université Bordeaux 1, 2003, tous droits réservés.

L’accès aux archives de la revue « Journal de Théorie des Nombres
de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=JTNB_2003__15_1_199_0
http://jtnb.cedram.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


199-

On the n-torsion subgroup of the Brauer group
of a number field

par HERSHY KISILEVSKY et JACK SONN

RÉSUMÉ. Pour toute extension galoisienne K de Q et tout entier
positif n premier au nombre de classes de K, il existe une exten-
sion abélienne L de K d’exposant n telle que le n-sous-groupe de
torsion du groupe de Brauer de K est égal au groupe de Brauer
relatif de L/K.

ABSTRACT. Given a number field K Galois over the rational field

Q, and a positive integer n prime to the class number of K, there
exists an abelian extension L/K (of exponent n) such that the n-
torsion subgroup of the Brauer group of K is equal to the relative
Brauer group of L/K.

1. Introduction

Let K be a field, Br(K) its Brauer group. If L/K is a field extension,
then the relative Brauer group BR(LIK) is the kernel of the restriction map
TesLjK : Br(K) - Br (L) . Relative Brauer groups have been studied by
Fein and Schacher (see e.g. [2, 3, 4].) Every subgroup of Br(K) is a relative
Brauer group B r ( L / K ) for some extension L / K [2], and the question arises
as to which subgroups of Br(K) are algebraic relative Brauer groups, i. e. of
the form with L/K an algebraic extension. For example if L/K
is a finite extension of number fields, then Br(L/K) is infinite [3], so no
finite subgroup of Br(K) is an algebraic relative Brauer group. In [1] the
question was raised as to whether or not the n-torsion subgroup of
the Brauer group Br(K) of a field K is an algebraic relative Brauer group.
For example, if K is a (p-adic) local field, then Br(K) * Q/Z, so 
is an algebraic relative Brauer group for all n. This is not surprising,
since this Brauer group is "small" . A counterexample was given in [1] for
n - 2 and K a formal power series field over a local field. Somewhat

surprisingly, turned out to be an algebraic relative Brauer group.
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For number fields K, the problem is a purely arithmetic one, because of the
fundamental local-global description of the Brauer group of a number field.
In ~1~, it was proved that is an algebraic relative Brauer group for
all squarefree n. In this paper, we prove the following affirmative result for
number fields: given any number field K Galois over Q and any n prime
to the class number of K, Brn(K) is an algebraic relative Brauer group,
in fact of an abelian extension of K. In particular, Brn Q) is an algebraic
relative Brauer group for all n.

2. Algebraic extensions of K with local degree n everywhere
Theorem 2.1. Let K be a number field Galois over Q with class number
ttK. Let be a prime number, relatively prime to hK and let r be a positive
integers. There exists an abelian extension L/K of exponent £T such that
the local degree of L/K at every finite prime equals î’. If e = 2, then L can
be taken to be totall y complexe

Proof. Let be the cyclotomic extension of Q obtained by adjoining all
l-power roots of unity to Q. Let s be a positive integer. For l odd, let
kas be the unique subfield of of degree e$ over Q. If /!, = 2, there are
three elements of order 2 in one fixing the maximal real
subfield, one fixing and a third fixing a cyclic totally complex
extension of Q of degree 2s, which we define to be (As usual, pm
denotes the mth roots of unity.) Then É is the unique prime of Q ramified
in ks and it is totally ramified.

Choose s such that Lo = has degree .~’’ over K. Then the primes
of .K dividing have isomorphic completions, and since e is prime

to hK, they are all totally ramified in Lo/K. In the case e = 2, the real
primes are also ramified in Lo/K.

Let E be the extension of K obtained by adjoining Lo and the 
roots of all the units of K (including the Ê’th roots of unity). Let S’ be
the (infinite) set of primes of K which split completely in E. For p E ~
consider the £-ray class field Rp with conductor p, i. e. the l-primary part
of the ray class field with conductor p. Since the class number hK of K is
prime to .~, p is totally ramified in Furthermore, the .2-ray class group
is isomorphic to the e-part of I~~ - (the multiplicative group
of the residue field) modulo the image of the unit group of K. By choice of
p E SS’, the absolute norm N(p) is congruent to 1 modulo Ê’ and all units
are powers in K*. Hence J~ has a (unique cyclic) quotient of order
£T. We define LP to be the corresponding cyclic subextension of degrees
ofRp.

Let 1 = ~ be one of the prime divisors of Ê in I~. Consider the condition
1 splits completely in LP (p ~ 9). This is equivalent to ( being an eth
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power in the ray class group mod p. But since e is prime to h = hK, this
is equivalent to the principal ideal [h = (a), a E K*, being an ~’’th power
in the ray class group mod p. Since all the units of K are eth powers
modulo p, this is equivalent to a being an .e’’th power in .Kp, which for
p E ~’ is equivalent to p splitting completely in Denote the a

corresponding to ~ by ai.
Let ~’’ C ,S be the set of primes of K that split completely in E’ _

E( lz;al,..., lytat). The prime divisors 4 of É in .K split completely in LP
if p e SI.
We now define recursively a subsequence S’o of primes of S’ . We begin

with any prime pi such that &#x3E; Af (4-) four 4 dividing ~. (As
above, N denotes the absolute norm.)
We claim there exists a prime P2 E S’ with N(~2) &#x3E; satisfying:

(a) P2 splits completely in LP’
(b) pi splits completely in LP2;
(c) q is inert in L~2 for all primes q # pi, Lï of .~’ with absolute norm

N(a) _ JV(P,)-
To prove the claim, we reduce it to an application of Chebotarev’s density

theorem. Arguing as above, (b) is equivalent to pi being an £Tth power in
the ray class group mod p2. But since ~ is prime to h = hK, this is equivalent
to the principal ideal ph = (c), c E K*, being an .eTth power in the ray class
group mod P2. Since all the units of K are £Tth powers modulo .p2, this
is equivalent to c being an Ê’th power in K;2’ which is equivalent to p2
splitting completely in lVê). Thus (b) is a Chebotarev condition

compatible with (a).
We now consider (c). We want all 

(these are finitely many) to be inert in LP2 . For this it suffices that q be
inert in MP2, where MP2 is the subextension of L~2 of degree ~ over K.
As above, if q~ _ (b), b e K*, this means that (b) is not an lth power in

the ray class group mod p2, i. e. b is not an Êth power in K;2 (again since
all units are £Tth powers in K;2)’ i.e. P2 is nonsplit in K(~.c.~, ‘ b). Since

p2 splits in this is equivalent to P2 being nonsplit in 
For this Chebotarev condition to be compatible with (a) and (b), it suffices
that the fields and qh = (b), q =1= pl, _ 
be linearly disjoint over K(lie,).

Let ql, ... , qu be the primes of K distinct from pl, [1,’ ... It of absolute
norm less than or equal to that of pi, and let qi - (bi ) , i = 1, ... , u.
Set ~’ - We show first that the fields (K’(fl) : 1 = 
are linearly disjoint over K’. If not, then by Kummer theory we have
an equation Ilu b2 a - xi with x e .F~’, and not all the 6~ divisible by
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~. Taking ideals in K’, we have = (x)£. Since hK is prime to
.~, and the primes qi are unramified in K’, we see that Ê must divide all
the ei, contradiction. Set F2 := K’ ( ‘ bl, ... , ‘ bu) . It
remains to show that Fi ~1 F~ - K’. If not, then there is a common cyclic
subextension F3 g Fi n F2 with [F3 : K’] = é. On the one hand, F3 is

of the form with not all ei divisible by l. For such an z, the
prime divisors of qi in K’ ramify in F3. But the only primes ramifying in FI
are divisors of pi, It, contradiction. Thus the disjointness assertion
is proved.

This shows the existence Of P2 satisfying (a),(b),(c).
We now assume inductively that n &#x3E; 2 and Pl,..., p.-j E SI with

 i = 1, ... , n - 2, have been chosen such that

(1i) pi splits completely in L~j for all j  i, i = 2, ... , n - 1

(bi) pj splits completely in L’pi for all j  i, i . = 2, ... , n - 1

(ci) q is inert in for all primes q satisfying N(Pi-2)  N{q)  N(Pi-1),
q ~ p~i, ~ = 2,..., ~ - 1 (take po = 1)

(Note and (bi ) together say pi splits completely in L’pj for all i ~ j,
1 n-1.)

Cl aim: There exists a prime pn E S’ satisfying (an) ,(bn) ,(cn) .
The argument is similar to that for P2: (an) is satisfied if and only if Pn

splits completely in the composite LPn-1. e

(bn ) is satisfied if Pn splits completely in Ksi( where

p~ = (c,), ~=1,...~-!
(cn ) is satisfied if pn remains inert in for each qh = (b), q ~ 

with   In order to apply the Chebotarev theo-
rem we need the linear disjointness of LPI ... LPn-1 - E’( ‘T cI, ... , 
and the over for all the above b’s. Since the (ci )’s
and the (b)’s are distinct prime ideals raised to the power h, the previous
argument goes through, proving the claim.
We therefore have an infinite sequence So = of primes of S’

satisfying
(i) pi splits completely in LPJ for all 1 ~ j,
and

(ii) q is inert in Lpn for all q # with  .J~(q)  
Now take L to be the composite of Lo and all the LP-. We check the

local degrees of L/K:
For p = pi E So, L contains LPi which is totally ramified of degree ¡;r at

p , p splits completely in La, and by (i), ~ splits completely in L~ for j 1= i,
so [Lp : K p] == gT.
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For p e So, p not dividing e, p is unramified in L, so Lp/Kp is cyclic of
exponent dividing 2T. There exists a positive integer n such that 

 N(Pn). By (ii), p is inert in LPn+l hence [Lp : Ke] = e. For p
dividing ~, p is totally ramified in Lo and splits completely in all the 
hence [Lp : Kip] = e. Lo is totally complex, hence so is L. This completes
the proof of Theorem 2.1. 0

Remark 2.2. The hypothesis that K is Galois over Q guarantees that all
primes 4 dividing e in K have isomorphic completions, which is all that
is needed in the proof. Also we can have L/K unramified at the infinite
primes by choosing the maximal real subfield of in place of ks.

3. The n-torsion subgroup of the Brauer group of K

Theorem 3.1. Given a numbers field K Galois over Q and a positive in-
teger n prime to the class numbers of K, there exists an abelian extension
L/K (of exponent n) such that the n-torsion subgroup of the Brauer group
of K is equal to the relative Brauer group of L/K.

Proof. Consider the case n = 2’’, 2 prime. By Theorem 2.1, there exists an
abelian l-extension L/K whose local degree at every finite prime is £T, and
is 2 at the real primes if e = 2. It follows from the fundamental theorem
of class field theory on the Brauer group of a number field that L splits
every algebra class of order dividing f!, and conversely, any algebra class
split by L has order dividing er. For general n, the theorem follows from a
straightforward reduction to the prime power case (see [1]). 0

Remark 3.2. For K = Q, Theorem 3.1 says that Brn(Q) is an algebraic
relative Brauer group for all n. The proof of Theorem 2.1 is more concrete
in this case because the ray class fields involved are simply the degree 1
subfields of Q(pp) with p - 1 (mod ~). Theorem 3.1 was proved in [1]
for the case n squarefree, K = Q. The case n = 2 was proved there
by constructing L /Q with local degree 2 everywhere except perhaps at the
prime 2. We are grateful to Romyar Sharifi and David Ford (independently)
for a construction of L/Q with local degree 2 everywhere, including 2, the
idea of which was instrumental in the proof of Theorem 2.1.
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