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The Bloch-Kato conjecture on special values of
L-functions. A survey of known results

par GUIDO KINGS

RÉSUMÉ. Cet article présente un survol des cas connus de la con-
jecture de Bloch-Kato. Nous ne cherchons pas à passer en revue
tous les cas connus de la conjecture de Beilinson, et nous laissons
de côté la conjecture de Birch et Swinnerton-Dyer. L’article com-
mence par une description de la conjecture générale. À la fin, nous
indiquons brièvement les démonstrations des cas connus.

ABSTRACT. This paper contains an overview of the known cases
of the Bloch-Kato conjecture. It does not attempt to overview
the known cases of the Beilinson conjecture and also excludes the
Birch and Swinnerton-Dyer point. The paper starts with a brief
review of the formulation of the general conjecture. The final part
gives a brief sketch of the proofs in the known cases.

Introduction

This is an extended version of a talk at the "Journ6es axithm6tiques" at
Lille in July 2001. Our purpose is to survey the known results of the Bloch-
Kato conjecture on special values of L-functions. We restrict ourselves here
only to the cases where actually something is known about the L-value
itself and not only up to rational numbers (Beilinson conjectures). For the
Beilinson conjectures there are other surveys (see [34], although there is
some progress since then [28]).
The known cases concern only certain number fields (or more gener-

ally Artin motives), certain elliptic curves with complex multiplication and
adjoint motives of modular forms. Moreover all cases where the exact
formula of the Birch-Swinnerton-Dyer conjecture is known give examples
of the Bloch-Kato conjecture. Since we do not attempt an overview of the
Birch-Swinnerton-Dyer conjecture and there are many special cases checked
individually, we will say nothing about this.
The structure of the paper is as follows: In the first section we review

briefly the formulation of the conjecture for Chow motives. As our K-theory

Manuscrit requ le 28 novembre 2001.
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knowledge is limited, we also formulate a weak version of the conjecture.
The second section reviews the known cases and has naturally two parts:
the first treats the case of Artin motives (mainly abelian) and the second
treats elliptic curves with complex multiplication (mainly over an imaginary
quadratic field). The third section explains finally the main ingredients of
the proofs. Here two things are decisive: on the one hand techniques from
Iwasawa theory and the main conjecture and on the other hand motivic
polylogarithms and their realizations.

I would like to thank the referee for very useful comments.

1. Review of the Bloch-Kato conjecture
In this section we recall briefly the formulation of the Bloch-Kato con-

jecture, referring for more details to the articles of Fontaine [13], Fontaine
and Perrin-Riou [14] and Kato [23]. We follow mainly the excellent survey
[13]. To understand the connection with the Iwasawa main conjecture, [23]
is indispensable.

1.1. Motives and their realizations. Fix two number fields K and E
and consider the category of Chow motives M K (E) over K with coefficients
in E as defined in [21] § 4. To each object M = {X, q, r) E where

is a smooth, projective variety, q an idempotent, and r E Z, are
associated several realizations:

E the de Rham realization equipped

with its Hodge filtration .

the Betti realization each sum-

mand is equipped with a pure E Q9 R-Hodge structure over R on
MB 0o R.

Q9Q E the p-adic étale realization

with its Gal(K/K) action, where p is a prime number.
Remark. Note that one expects that there is a decomposition

in A4K(E), such that the realization of l~~’+2’’(M)(r) is 

etc. In particular it should be possible to restrict attention to pure motives
hw+2r(M)(r). This is known for curves [32] and for abelian varieties [31].
As we do not know it in general, we have to use the above realizations.

For a motive M = (X, q, r) we define its n-th Tate twist to be M(n) :=
(X, q, r + n) and let M~ := (X, qt, dimX - r) be the dual of M if X has
pure dimension. Here qt is the transpose of the projector q. Denote by
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E the subgroup of the Chow group of X consisting of cycles
homologically equivalent to 0. We define the following objects for M =
(X, q, r): t

- 

,-,- , 
- _

this is motivic cohomology 
- 

--,- I 
-

Recall that one has Chern class maps defined by Soul6

where H¿ont (K, ... ) denotes the continuous Galois cohomology. Together
_ .., .. - I "- -

with the Abel Jacobi map
we get

for all p. Consider for all finite primes p of K the group Hf(Kp, Mp) as in
[13] 3.2. This is a subgroup of HI (Kp, Mp) and we denote the quotient by

Mp). Then let

and define

Conjecture The E vector spaces H°(K, M) and are

finite dimensional
b) The map rp induces an isomorphism H)(K, Mp)
c) H°(K, M) Q9Q H°(K, Mp) (Tate conjecture)

On the other hand there should be the following relation of H) (K, M)
and to the Betti and de Rham realization: Consider the com-

parison isomorphism

this induces the period map

where M£ :- are the invariants under complex conju-
gation on ME- One has the following conjecture (see [13] 6.10):
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Conjecture 1.1.2. There exists a long exact sequence

The maps are given by the Beilinson regulators roo as in [13] 6.9.

1.2. The conjecture of Bloch and Kato. Consider the motive M =
(X, q, r). Denote by detE the highest exterior power of an E vector space
and by detEl its dual. 

.

Definition 1.2.1. Assume that the conjecture 1.1.1 a) is true and define
the fundamental line following Fontaine and Perrin-Riou: Let

The fundamental line zs then

where are the invariants under complex conjugation.

Now we want to investigate the special values of L-functions. Let us
define an L-function for M: first consider a prime p of K not lying over p.
Put Dp(Mp) := where 7p is the inertia subgroup at p. For pip we let

Define an Euler product over all finite places p of K by

where Frp is the geometric Frobenius at p.

Definition 1.2.2. We say that M has an L-function, if

.for all p and L(M, s) converges for Rs » 0.

Note that L(M, s) is an E 0Q C-valued function. The order of vanishing
of L(M, s) at s = 0 is conjecturally given as follows:

Conjecture 1.2.3. The L-function of M exists and it has a meromorphic
continuation to a neighborhood of 0, moreover



183

Let us define the leading coefficient of the Taylor series expansion of
L(M, s) at 0:

Note that L(M(n), 0)* = L(M, n)*, if M (n) is the Tate twist of M. The
Bloch-Kato conjecture determines this value as follows: Assume that con-
jecture 1.1.2 holds, then one can define an isomorphism recalled below

If conjecture I.I.I b) and c) holds, then one can define an isomorphism
recalled below

Conjecture 1.2.4 (Bloch-Kato). The assumption are as above then:
a) There is an element bp(M) E 0 f such that

(Beilinson conjecture).
b) For all prime numbers p, the element

is a unit in OE.

Remark. There is also an equivariant version of the conjecture, which
is very important if one wants to understand the relation to the Iwasawa
main conjecture. This is due to Kato [23] and [24]. A generalization to non
abelian coefficients can be found in [7].

Let us recall very briefly how one defines and 6p: The isomorphism 600
is defined by taking the determinants in the exact sequence in conjecture
1.1.2 and the determinants in

The definition of Lp is slightly more complicated. Fix a finite set of places
of K containing the infinite places and the ones over p, such that M~, is an
étale sheaf over C7s := OK[11S]. As in [13] 4.5. one defines a distinguished
triangle

One gets an isomorphism of rank 1 Ep := ~, 0Q E-modules
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Here one uses fl9pjcxJ HO(Kp, Mp) for primes p dividing oo and
an identification of det Rrf (Kp, Mp) with det-1 (tanm as follows:

four E S’fin and p p one has Mp) 1 11, where 1 isI p p MM ’ p
the inertia group at p and the complex is in degree 0 and 1. Similarly for

pip one has Rr(Kp, Mp) I"J = [Dcris (Mp) Dcris(Mp) EÐ tanM] where
Dcris(Mp) := (Bcris,p 0 is the Frobenius on Dcris(~Mp)
(normalized as in [13]) and ir is the canonical projection of onto

tanm .
Note that the identification of detEp Rr c(Os, Mp) with det-1 (tanm P

introduces Euler factors at the primes in S’fin (see [13] 4.4. and [19] the dis-
cussion before definition 1.2.3). A calculation, which can be found in [13]
4.5., shows that this gives an isomorphism

Now take any stable OE OZ Zp lattice Tp in Mp. Then the
lattice in is independent of Tp.
Take any generator of this rank 1 lattice and use this to define

i.e. mapping this generator to 101.

1.3. The case of pure motives. Let us discuss several simplifications
which occur if we restrict to certain types of motives, in particular if we
restrict the weight w of the motive M.

Definition 1.3.1. Let M = (X, q, r) be a motive. The integers w such that
0 are called the weights of M. The motive M is pure

of weight w if w is the integer such that 0.

Remark. It is of course equivalent to define the weights with the de Rham
or the étale realization.

Lemma 1.3.2.

a) Assume that conjecture c) is true, then = 0 if 0 is not
a weight of M.
b) Assume that conjecture true, then = 0 if all weights
w of M satisfy w &#x3E; -1.

Proof. Clear from conjecture I.I.I and the direct sum decomposition of the
Soul[ regulator rp. 0

Consider a motive M = (X, q, r) pure of weight w. We will discuss now
several special cases of the Bloch-Kato conjecture (cf. [13] § 7). For this
write VR := V Q9Q R for any Q vector space V.
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(1) (w  -3): then has weight -w - 2 &#x3E; 1 and the lemma implies
that = 0 = and the order of vanishing
of L(M, s) at s = 0 is dM = 0. Also by assumption and the lemma

= 0. In particular the exact sequence of conjecture 1.1.2
reduces to

where roo is the Beilinson regulator. Note that (A f)R reduces to

(2) (w &#x3E; 1): here = dim ker aM and the exact sequence of conjecture
1.1.2 reduces to

(This is the Beilinson conjecture after identifying Coker aM with
Deligne cohomology.)

(3) (w = -2): The dual motive M’(1) has weight 0 and consequently
the lemma implies that M) = 0 and by definition of K-theory
Hf(K,M~(1)) = 0. In particular the order of vanishing of L(M, s)
at s = 0 One gets

and the fundamental line is accordingly:

(4) (w = 0): One gets

and the fundamental line is

(5) (w = -1 ) : Here one conjectures that ker aM = 0 = Cokeram,
i.e. that the map H f (H, ~VI ‘~ ( 1 ) )~ - is an isomorphism.
This is equivalent to the statement that it induces a perfect height
pairing

The formula for the L-value is the generalization of the Birch-
Swinnerton-Dyer conjecture.

Finally we want to formulate a weak version of the Bloch-Kato conjecture,
which is useful, if we can only construct a certain subspace of the motivic
cohomology (which conjecturally is the same as I~ f (~, M) ) .
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Conjecture 1.3.3 (Weak Bloch-Kato conjecture). Let M be a pure
motive of weight w.
1) (w  -2): Suppose there is an E sub-vector space R(M) C Hf(K,M)
such that the sequence

is exact. Then the Bloch-Kato conjecture 1.~.l~ is true if one replaces ev-
erymhere M) by R(M).
2) (w &#x3E; 0): Suppose there is an E sub-vector space of

such that the sequence

is exact. Then the Bloch-Kato conjecture 1.,.1.4 is true if one replaces eve-
°

Let us finally make a remark about the compatibility with the expected
functional equation of the L-function. In fact one conjectures that the
L-function L(M, s) has a meromorphic continuation to C and satisfies

for certain r factors and an - factor e(M, s).

Conjecture 1.3.4. The Bloch-Kato conjecture for M implies the one for
MV (1).
Remark. Perrin-Riou developed a theory of p-adic L-functions of motives
starting from the Bloch-Kato conjecture. Decisive is her exponential map,
which interpolates certain exponential maps of Bloch and Kato. For this
she conjectured an "explicit reciprocity law" proven by Benois, Colmez,
Kato-Kurihara-Tsuji (alphabetical order). This "explicit reciprocity law"
also allows to deduce Kato’s explicit reciprocity law, which can be used to
prove the above conjecture in certain cases (see e.g. [19] appendix B).

2. A survey of results

Here we collect the known results of the Bloch-Kato conjecture to the
best of the knowledge of the author. As we do not attempt an overview
of the Beilinson conjecture (i.e. part a) of conjecture 1.2.4) we concen-
trate only on the cases where part b) is known (at least for some primes
p) . Moreover we do not say anything about the weight -1 case, which is
essentially the (generalized) Birch-Swinnerton-Dyer conjecture.

The organization of this section is as follows: we first treat Dirichlet
characters and abelian number fields, where the conjecture is known in
the most complete form. Then we consider arbitrary number fields, where
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only very special cases are known, which follow from the class number for-
mula. The second group of examples concerns elliptic curves with complex
multiplication and Hecke characters of imaginary quadratic fields.

2.1. Artin motives. Consider the category AQ(E) of Chow motives over
Q with coefficients in E. An object M := (Spec F, q, 0) of where

F/Q is a number field is called an Artin motives. We also consider Tate
twists M(T) := (Spec F, q, r). An Artin motive is called abelian, if F/Q is
Galois with Gal(F/Q) abelian.

Definition 2.1.1. Let X : (ZINZ)X -7 (C" be a Dirichlet character and
G := Suppose that E contains all values of Dirichlet char-
acters of (71/NZ)x. Let

be the projector onto the x-I-eigenspace in End(ho(Q(p,N ))). We call

the associated Dirichlet motive. Note that the element a E Gal(Q/Q) acts
via X(a) on h(x)et. We norrnalize the reciprocity map so that the geometric
Frobenius X(Frp) = x(p). We also denote by h(X)(r) the r-th Tate twist of
h(X).

Note that we get a decomposition (Dx h(X), where X runs
through all Dirichlet characters of In particular, every abelian
Artin motive is a direct sum of Dirichlet motives. The E 0Q C-valued
L-function of h(X) exists and is given by

for ~s &#x3E; 1, where f is the conductor of x. This has a meromorphic contin-
uation to C. Note that h(X-1). We collect what is known about
the conjectures in § 1, necessary to formulate the Bloch-Kato conjecture:

Theorem 2.1.2. Consider the motive h(X)(r).
1) (Borel): Conjecture 1.1.1 a) and c) is true.
2) (Soul6): Conjecture 1.1.1 b) is true.
3) Conjectures 1.1.2 and 1.2.3 are true.

Concerning the Bloch-Kato conjecture we have:

Theorem 2.1.3. Let h(X) be a Dirichlet motive and r E Z. Then there is
an elements such that

a) (Deligne [8], Beilinson [2]): 1) = 1/L(h(X)(r),0)*
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and

b) (Burns-Greither, [6], Huber-Kings, [19]): for all prime numbers p ~ 2

i. e. the Bloch-Kato conjecture is true up to powers of 2.

Remark.

(1) The case is due to Bloch and Kato [5] Theorem 6.1 up to a
conjecture (6.2 loc. cit.), which has been proved in [20] and later
with a different method in [18]

(2) A proof of the equivariant conjecture for Tate motives Q(r) and r G 0
over abelian number fields and p # 2 is given by Burns and Greither
in [6].

(3) In [23] § 6 Kato proves the p-part of the equivariant conjecture for
))+ for r &#x3E; 2 even.

(4) The proof of Beilinson of part a) of conjecture 1.2.4, had some gaps,
which were filled by [35] and [12].

(5) Fontaine [13] § 10 mentions the case of Dirichlet motives h(X) but
he assumes that p2 resp. p does not divide N or cp(N) (where N is
the conductor of X) depending on parity conditions and no proof is
given.

(6) The Bloch-Kato conjecture for with coefficients in Q and
r  0 is easily seen to be equivalent to the cohomological Lichtenbaum
conjecture (see [18] corollary 1.4.2.). The case where F is

totally real and r  0 is odd is is a direct consequence of the main
conjecture due to Wiles (see 2.1.5 below). In [30] this conjecture is
proven for abelian number fields for all primes p, which do not divide
the degree of the number field over Q. However, the formula given
there has erroneous Euler factors. (The Euler factors are fixed in [3]
and [29]).

(7) In recent work [4], Nguyen and Benois show how to reduce the Bloch-
Kato conjecture for h° (F) and r &#x3E; 1 to the case of r  0 by showing
compatibility under the functional equation.

(8) Burns and Greither [6] proved even an equivariant version of the
above theorem.

For general Artin motives we have the following results: The first is a

reformulation of the class number formula.

Proposition 2.1.4. The Bloch-Kato conjecture is true for ho(F) and
ho (F) (1) -

This is mentioned in [13] with some indications of the proof. A full proof
can be found in [19] 2.3. (at least for p # 2).
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Remark. The equivariant conjecture for hO(F), where F/Q is a very special
non abelian extension and r = 0 is considered in [7] § 7. We refer to this
for the exact description of their result.
The next result is a consequence of the main conjecture for totally real

fields by Wiles:

Theorem 2.1.5 (Wiles, [38] 1.6.). Let F be a totally real field and r &#x3E; 1
odd. Then the Bloch-Kato conjecture is true for h°(F)(-r) and all prime
numbers 2.

2.2. Elliptic curves with complex multiplication and Hecke char-
acters of imaginary quadratic fields. There are two types of results
in the case of Hecke characters of imaginary quadratic fields: there is the
critical case for weights w  -2 and the case of all L-values at negative
integers (recall that we do not treat the Birch-Swinnerton-Dyer case).

Let us start with the motives in question. Let K be an imaginary qua-
dratic field and X/K be an elliptic curve with complex multiplication by
OK, the ring of integers in K. Note that this restricts the class number of
K to 1. The motive h(X) := (X, id, 0) over K has a decomposition with
respect to the zero section

where (Spec K, id, 0) and h,2 (X ) "-_r Consider
as object in the category of Chow motives over K with

coefficients in I~. This is pure of weight 1. We fix an embedding A :
K C C such For any w &#x3E; 1, the motive 
has multiplication by K(1)w, where the tensor product is taken over Q.
The idempotents in K&#x26;Jw are parameterized by the Aut(C) orbits of the
embeddings (C). These in turn are given by for all

a, b &#x3E; 0 with a + b = w. Denote the motive associated to this projector
by This is a motive in which is pure of weight w. Fix
an isomorphism 8 : EndK (X) such that the composition 0 : 

I~ is the natural inclusion. Let cp : Kx

be the Serre-Tate character associated to X and f be its conductor. We
will write

and for its Tate twists. According to Deninger [10] 1.3.2. we
have

where the product runs through all primes p of K and Rs &#x3E; ~ + 1. This
function has a meromorphic continuation to C. Note that 



190

has a first order zero at s = -l and 1 E Z for those 1 such that

(5) -1  min(a, b) if a ~ b and

(6) -l  a = b = 2 otherwise.
The L-function s) is critical at s = --L and 1 E Z if

Remark. The above construction can be carried out mutatis mutandis if
the curve X is already defined over Q. The resulting motives are

then in (see [10] § 4). To get the right L-function one has also to
descend the coefficients from K to Q. This is carried out in loc. cit.

The result in the critical case is:

Theorem 2.2.1. Let X/Q be an elliptic curve with complexe multiplication
by OK and consider E MQ(Q), with k &#x3E; j &#x3E; 0. Assume that

L(~(~+~)(&#x26;),0) ~0. Then:

a) (Goldstein-Schappacher, [15] thm. 1.1): There is an element

such that

b) (Guo, [16] thm. 1, Harrison, [17]): For all prime numbers p &#x3E; k + 1
where X has good ordinary reduction,

Remark.

(1) Note that 
(2) Harrison [17] considered the case j = 0 and k &#x3E; 1 over K = Q(i).
(3) The result of Goldstein-Schappacher concerns all critical values and

treats imaginary quadratic fields.
We turn to the non critical, K-theory case: Let for a subspace 

Theorem 2.2.2. Let X/ K be an elliptic curve with complex multiplication
by OK. Consider the motive with r &#x3E; 0. Therc L(h(ëp)(-r),s)
has a zero of order 1 at s = 0 and:
a) (Bloch r = 0, Deninger, [9] 11.3.2): There is a subspace R(h(p)~(r)) of
H1(K,h(~p)~(r)) and an element E such that
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i. e. the weak Beilinson conjecture is true.
b) (Bloch-Kato r = 0, Kings, [27] theorem 1.1.5.): Assume that for p ~’ 6ff
the group h(cp)(2+r)) is finite. Then, for all prime numbers
p not dividing 6f f, 

-

i. e. the weak Bloch-Kato conjecture is true.

Remark.

(1) In the case where X is already defined over Q and r = 0 part b) is

due to Bloch and Kato [5] at least for all primes p, which are regular.
(2) The case X already defined over Q and r &#x3E; 0 was deduced from part

b) in ~1~.
(3) Deninger’s result is much more general. The methods for proving b)

generalize to this case.
(4) If we fix p, the finiteness of h(cp)(2 + r)) is known for

almost all r (see the discussion in [27] 1.1.4).

2.3. Adjoint motives of modular forms. In this section we describe
briefly the results by Diamond, Flach and Guo [11] about the Bloch-Kato
conjecture for the (critical) values L(A, 0) and L(A,1), where A is the
adjoint motive of a newform f of weight k &#x3E; 2. We will omit a lot of
details because they are very technical and give only a rough sketch.

Let f be a newform of weight k &#x3E; 2 and level N with coefficients in the
number field K. Scholl [37] has constructed a motive Mf with coefficients in
K, such that for all places A of K, the Galois representation Mj,À coincides
with the one associated to f. The adjoint motive Af is then essentially
defined to be the kernel of the canonical map Mf 0 M’ -+ K. Define a

set of places Tf of K to consist of the and the ones where the Ga-
lois representation (fl4 j, x a lattice in Mj, x) is not absolutely
irreducible when restricted to GF, where F = Q( vi (-I)(l-1)/2l) and All.
Theorem 2.3.1 (Diamond, Flach, Guo). a) For i = 0, l, there is an ele-
ment

such that

(This is essentially due to Rankin and Shimura)
b) For all places A 0 Tf

where tx ts the A-part of ip.
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The proof is mainly a computation of a Selmer group, which can be
computed because it arises as the tangent space of a deformation problem
as in the theory of Wiles, Taylor-Wiles.

3. Ingredients in the proofs
Here we want to explain the most important ingredients in the proofs of

the above results. We concentrate on the more difficult non critical case. 0
Then not only Iwasawa theory enters but also the motivic polylogarithm
classes and their twisting property. The idea of proof is the same in all
cases and follows the line of ideas already used in [5]: One describes the
Galois cohomology groups H’(K,Mp) with the help of certain Iwasawa
modules. These modules are independent of the Tate twist. The image
of the in H) (K, Mp) extends to an Euler system and the
conjecture can be reduced to the main conjecture in Iwasawa theory. To
make this reduction possible one needs a twist compatibility of 6f (M).
This is the most difficult part of the proof (besides the use of the main
conjecture). The twist compatibility can be shown in the known cases
because the elements 6f (M) are given by motivic polylogarithm classes.
We divide this section into two parts, the first treats Dirichlet motives

and the second CM elliptic curves.

3.1. Dirichlet motives. In the case of Artin motives one can not only
reduce the statement of the Bloch-Kato conjecture to the Iwasawa main
conjecture but also use the Bloch-Kato conjecture to prove the main con-
jecture. This uses ideas of Kato [23] and follows Rubin’s arguments (see
[36]) to prove the main conjecture. Let us cite from [19] how the argument
works:

(1) One proves the Bloch-Kato conjecture directly in the case of the full
motive h°(F) where F is a number field and r = 0. This is the class
number formula. By the compatibility with the functional equation
(which can be checked directly in this case) the conjecture also holds
for and r = 1.

(2) Then one uses the Euler system methods to establish a divisibility
statement for Iwasawa modules in the case X(-l) = (-1)’’-1. By the
class number trick - with the class number formula replaced by the
Bloch-Kato conjecture for F = Q(J.LN) and r = 1 - one proves the
main conjecture of Iwasawa theory from it.

(3) Using Kato’s explicit reciprocity law, one deduces the Bloch-Kato
conjecture for r &#x3E; 1 and X(-1) _ (-I)’ from the main conjecture.
The necessary computation was already used in the "class number
trick" in the previous step. 

’

(4) Using the precise understanding of the regulators of cyclotomic ele-
ments one shows the Bloch-Kato conjecture for r  0 and X( -1) =



193

from the main conjecture. However, this argument does not
work for r = 0 and X(p) = 1, the case of "trivial zeroes".

(5) Using the compatibility of the Bloch-Kato conjecture under the func-
tional equation, one deduces the remaining cases for r &#x3E; 1 and r  0.

(6) From the Bloch-Kato conjecture at positive and negative integers,
we can deduce different versions of the main conjecture. Conversely,
these new versions allow to prove the Bloch-Kato conjecture for r = 0
and r = 1 unless there are trivial zeroes.

(7) The last exceptional case r = 0 and X(p) = 1 follows again by the
functional equation.

We explain the most important steps in the next section in more detail.
There we only consider the case of h(x)(r) with X(-1) _ (-1)’’ and r E Z.
The functional equation 1.3.4 implies then (except for r = 0 and r = 1)
that the result is also true for h(X-1)(1 - r) for all r E Z. This takes care
of the characters of the other parity.

3.2. The cyclotomic polylogarithm. Let us consider the motive h,(x) (r)
with r  0 and X(-I) = (-1)T. The fundamental line is

Choose a lattice of h(x)s and let Tp(X) := 0z Zp C
h(X)p. We let tB(X-1) the dual basis element in h(x-1)B. Recall the

following theorem of Beilinson (see theorem 5.2.3. of [19]):
Theorem 3.2.1 (Beilinson [2], Neukirch [35], Esnault [12]). There is an

el,ement

such that the element

maps to (L(x, r)*)-1 under the isomorphisme too.
Define an element in by

One can now reformulate part b) of conjecture 1.2.4 as follows:

Proposition 3.2.2. The element cp(b f(h(X)(r))) is a unit in OEp 
i.e. part b) of the Bloch-Kato conjecture 1.~.l~ is true, if and only if

Cl-r(X-1) is a generator ofdetoEpRr¡(Q,Tp(X-1)(I-r)) via the isomor-
phism 
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To study we use Iwasawa theory. Let 
be the maximal Zp-extension inside Q(Cp.) and Q C with

= We let A := p be the Iwasawa

algebra. Let G := Gal(Q((N)/Q) and X : G -+ ex be a Dirichlet character
of conductor N and Tp(X) be a Galois stable lattice in h(X)p. Let be
the ring of integers in the Z/p’Z-extension Qk of Q and define

where the limit is taken with respect to the corestriction maps. Let

be the cyclotomic character and write x 6’oo according to the
decomposition ~~ ^’ (Z /pZ)  x Zp. We write for the Op module
of rank 1 with Galois action given by Then

The elements extend to Euler systems and in particular we get
elements (also denoted by cl-,(X-1) by abuse of notation)

The miracle is:

Theorem 3.2.3 (Huber-Wildeshaus, [20]). Under the above isomorphism
the element maps to c2_r(X 1~-1).
Remark. The theorem consists in showing that the C1-r(X-1) are special-
izations of the motivic cyclotomic polylogarithm. A different approach via
the elliptic polylogarithm is developed in [18].
3.2.1. Reduction to the Iwasawa main conjecture. Write

then we get by taking coinvariants under Gal(Qoo/Q)

and the image of cl-,(X-1) is the old cl-,(X-1). Now one can use the

property of the elements cl-,(X-’) E r)) that they are
compatible under twisting to define them for all r E Z by taking simply the
twist for positive r. It turns out:

Proposition 3.2.4 (theorem 3.3.2. in [18]). The Bloch-Kato conjecture
for for r &#x3E; 1 and X(-l) = (-1)’ is true, if and only if C1-r(X-l)
is a generators r)).
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Thus the propositions 3.2.2 and 3.2.4 give:

Proposition 3.2.5. The Bloch-Kato conjecture for h(X)(r) for all r E Z
and X( -1) = (-I)’ is equivalent to

Remark.

(1) Note that the statement is independent of r. For r = 0 it is a restate-
ment of the main conjecture of Iwasawa theory in the form

at least if the conductor of X is not divisible by p and x(P) ~ 1. Here
2°§ is the X component of the inverse limit of the global units and

is the inverse limit of the ideal class groups (see [36] 3.2.8).
(2) The above proposition turns out to be the right formulation of the

Iwasawa main conjecture ifp ) I conductor X. The main point of the
proof of this more general main conjecture is that the formulation
is independent of the choice of lattices TB(X). In particular the role
of the cyclotomic elements is explained by the fact that they span
8f(h(X)(r)), i.e. map to the complex L-value under 

3.3. Elliptic curves with complex multiplication. The proof follows
the same lines as in the case of Artin motives.
We consider the motive h(~p)(-r). Note that if we knew that the motivic

cohomology + 2)) had the right dimension, we would have

The cokernel can be identified with HI (X(C), Fix as in [27]
theorem 1.2.2 a generator of this group.

Theorem 3.3.1 (Beilinson, Deninger [9]). There is arc element

such that

maps under

Remark. Note that the ~ here is not the one from [27] 1.2.2. because there
some Euler factors are excluded from L(ë¡5, -T).

Let -r) be the Euler factor (or the product of Euler factors) at
the primes dividing p in K. Define

Let X ~p’~~ be the n torsion points of X and let Tp(X) := Urn 
Define Kn := and denote by On its ring of integers. Let
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S :_ ~ primes in Kdividing pf f }.
the cyclotomic case we can define

and

The element e-r extends to an Euler system and gives in particular elements

Assume that is finite. One has:

Proposition 3.3.2. The Bloch-Kato conjecture for h(~p) (--r) is true for p,
if

Note that the right hand side is independent of r. Again a miracle
happens:

Theorem 3.3.3 (Kings [27] 5.2.1). The isomorphisms of A modules

maps e-r to ei-r.

This theorem allows to reduce to the case r = 0, which is just a refor-
mulation of Rubin’s main conjecture for imaginary quadratic fields.
Remark.

1. This last theorem is the most difficult step in the proof of the Bloch-
Kato conjecture for h(§5) (-r) and the main contents of [27].

2. The idea of proof is roughly as follows: first one uses the result from

[18] theorem 2.2.4 that the element e-r is essentially the specialization
of the elliptic polylogarithm. Then one has to compute the p-adic real-
ization of the elliptic polylogarithm. For this a "geometric" approach
to the polylog sheaf is developed in § 3 of [27]. The polylog extension
can then be written as a projective limit of one-motives (section 4.1. in
loc. cit.). 0 The specialization can then be expressed in terms of elliptic
units. This gives the twist compatibility and the relation to Rubin’s
main conjecture.
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