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A Gauss-Kuzmin theorem

for the Rosen fractions

par GABRIELA I. SEBE

RÉSUMÉ. En utilisant les extensions naturelles des transforma-
tions de Rosen, nous obtenons une représentation de la chaîne
d’ordre infini associée à la suite des quotients incomplets des frac-
tions de Rosen. Associé au comportement ergodique d’un certain
système aléatoire homogène à liaisons complètes, ce fait nous per-
met de résoudre une version du problème de Gauss-Kuzmin pour
le développement en fraction de Rosen.

ABSTRACT. Using the natural extensions for the Rosen maps, we
give an infinite-order-chain representation of the sequence of the
incomplete quotients of the Rosen fractions. Together with the
ergodic behaviour of a certain homogeneous random system with
complete connections, this allows us to solve a variant of Gauss-
Kuzmin problem for the above fraction expansion.

1. Introduction

The Rosen fractions, introduced in [11], form an infinite family which
generalizes the nearest integer continued fractions. They are related to the
so-called Hecke groups. There is an extended literature on these (see the
papers by Rosen and Schmidt [12], Gr6chenig and Haas [2], Schmidt [13],
Haas and Series [3], and Lehner [7], [8]). It is only recently (see the papers
by Burton, Kraaikamp and Schmidt [1] and Nakada [10]) that the ergodic
properties of these expansions have been studied. It should be stressed
that the ergodic theorem does not yield rates of convergence for mixing
properties; for this a Gauss-Kuzmin theorem is needed.
The technique developped by Iosifescu in [5] for the case of the regular

continued fraction expansion could be used for different types of continued
fractions. The aim of this paper is to take up the Gauss-Kuzmin problem
for the Rosen fractions in this manner.

This paper is organized as follows. Using the natural extensions for the
Rosen maps, in Section 3 we give an infinite order-chain representation
of the sequence of the incomplete quotients of the Rosen fractions. In
Section 5 we show that the random systems with complete connections
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(RSCCs ) associated with the Rosen continued fraction expansion are with
contraction and their transition operators are regular w.r.t. the Banach

space of Lipschitz functions. This leads further, in Section 6, to a solution
of a version of Gauss-Kuzmin problem for the Rosen fractions.

Let A = Aq equal 2 cos 7r/q for q E {3, 4, ... }. Fix some such q &#x3E; 4 and
let Iq = [-A/2, A/2). Then the map Tq : Iq -3 Iq defined by

is called a Rosen map. Putting

in case 0, and = 0, = 00 in case Tq -1 (x) = 0, and
using the Rosen map Tq, one easily sees that every x E ~Iq has a unique
expansion

which is called the Rosen or A-expansion (ACF) of x.
Now, related to Hecke (triangle) group Gq, q &#x3E; 4, we call x a Gq-irrational

if x has a Rosen expansion of infinite length. For Gq-irrationals, there
are restrictions on the set of admissible sequences of êi and ai. These
restrictions are determined by the orbit of A/2 [cf. [11] and [1]).

2. Natural extensions for the Rosen maps

Consider (see [1]) the so-called natural extension T for any Rosen interval
maps, which is defined as follows: for any fixed q &#x3E; 4, let A = Aq, T(x) be
Tq (x) and

where we have suppressed the dependence of a = a, and e = 61 on x. Also
notice that T is a transformation which on the first coordinate is simply
the interval map while on the second coordinate is directly related to the
"past" of the first coordinate.

It has been shown in ~1~, that T is a bijective transformation of a domain
n in R2 except for a set of Lebesgue measure zero. We consider two cases.

2.1. Even indices. Fix q = 2p, with p &#x3E; 2, and let I be the interval Iq.
Putting §j = -T~ a~2, with ~o = -A/2, we construct a partition of I by
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considering the intervals

Furthermore, let Kj = [0, Lj], j E {I, ... p - 1 ~ and Kp = [0, R~, where
Lj, 1  j  p - 1, and R satisfy the system

Let S2 = U1=1 Jk x Kk. One has that R = 1, and that T is bijective
on Q except for a set of Lebesgue measure zero. In [1] it is shown that T
preserves the probability measure v (abolutely continuous with respect to
the Lebesgue measure on S2) with density ~i~£, where C is a normalizing
constant. Actually, for q even, the constant C is given by

2.2. Odd indices. Fix an odd q and recycle notation as above. Let I
be the interval Iq and Oj = -T~.~/2, with §o = -A/2. Putting h = Q;3, we
construct a partition of I by considering the intervals E 11, - - - 2h+2},
where

Let Kj = [0, Lj], j 2~ + 1 }, and K2h+2 = [0, R], where Lj,
1  j  2h + 1, and R satisfy the system

Let q = 2h + 3, with h &#x3E; 1 and S1 = x Kj. One has that R
satisfies the equation
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and that T is bijective on f2 except for a set of Lebesgue measure zero. In

paxticulax, A  R  1. The transformation T preserves the probability
measure v with density ( 1 + ~ y) -~, where

3. An infinite-order-chain representation
In this section we obtain an infinite-order-chain representation of the

sequence of the incomplete quotients of the Rosen fractions. We treat

simultaneously the two subfamilies of Rosen maps, those of odd indices
and those of even one.

Let us consider the sets

and define

Similarly to relations (2), for all n E N*, let us define

which implies

Writing [~i~i,~2~2?"’ ? enzn] for the finite continued fraction

for all n E N* we have
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Now, define the random variables an, n E Z = ~... , 20132, 20131,0,1,2,... }
on Q by

where TO denotes the identity map and lii (z, y) = al(x). Clearly, on f2,

Since T preserves v, the doubly infinite sequence (an)nEZ is strictly sta-
tionary under v.

Let us put = for all n E Z and

(x, y) Clearly,

Projecting v, we obtain the invariant measure vx on ~- 2 , 2 ~ and vy on
[0, R]. Since the invariant density h(x, y) = on St has projections

hx(t) = f h(t,y)dy and hy(t) = f h(x,t)dx on ~-2, 2~ and ~O,R), respec-
tively, we have 

-

where and denote the collection of Borel sets on [-, ] and
2 22J 

2 2

0, RJ, respectively.
Now, we are able to prove the following theorem which is very important

in the sequel.
Theorem 1. For any x E I, we have

continued fraction with incomplete quotients ao, a_1, ... ).
Proof. As is well known
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Let us denote by In the fundamental interval

for any arbitrarily fixed values of the ti and ai, i = 0, -1, ... , -n. Then
we have

for some vn E In. Since

the proof is complete.

Corollary. For any i E Z* we have

where a = [fofo, ] 

Proof. For i = -1 we have

Hence the conditional probability above equals v-a.s. to

Fori=lwehave

Hence the conditional probability above equals v-a.s. to
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Finally, the proof for i E Z* B {-1,1} is analogous. 0

Remarks. (i) The strict stationarity of (an)nEZ under v implies that the
conditional probability

does not depend on n and is v-a.s. equal to pi (a), with

(ii) The process (lnän)nEZ is called an infinite- order- chain in the theory of
dependence with complete connections (see [6], Section 5.5).
(iii) Many standard formulas for continued fractions (see [9]), hold for the
Rosen fractions. Letting

where -i and ai depend on x E I, we find that

Therefore

It follows that for any Gq-irrational number x E I and any positive integer
n we have

Let us put sn = E N*. Note that the equation qn = anÀqn-l +
enqn-2 implies 

"

with so = 0, i.e. sn = [an, ê2al]; clearly, Sn E [0, RJ.
Motivated by Theorem 1, we shall consider the family of probability

measures (Va)aE[O,R] on BI defined by their distribution functions

In particular v° is the Lebesgue measure on I, if A = 1. For any a E [0, R]
put Sô = a and
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Let us consider the quadruple

By the corollary to Theorem 1, the sequence is an W-valued
Markov chain on which starts at so = a and has the following
transition mechanism: from state s E W the only possible transitions are
those to states (l, i) E X B {(-1,1)}, and to ~19 or to R if (l, i) =
(-1,1) and s E ~0, ~’ R 1~ or s E ~~ R 1,R~, respectively, the transition
probability being 

Let B(W) be the Banach space of bounded measurable complex-valued
functions f on W under the supremum norm III = Clearly,
the transition operator of transforms f E B(W) into the function
defined by

whatever a E W.
Note that for a E W, A = ~ (an+1, ... ) and n E N*,

This follows from Theorem 1 for all irrational a E W and by continuity
for all rational a E W . In particular, it follows that the Brod6n-Borel-L6vy
formula holds under va for any a E W , that is

forxEl, nEN*.

4. The Gauss-Kuzmin type equation

Let p be an arbitrary non-atomic probability on BI and define
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because TO is the identity map. Since

we can write the Gauss-Kuzmin type equation as

Assuming that for some m E N the derivative F§£ exists everywhere in
I and is bounded, it is easy to see by induction that exists and is

bounded for all n E N*. Differentiating the Gauss-Kuzmin type equation
we arrive at

We consider two cases.

4.1. Even indices. Let h(x, y) = 1+xy~ be the invariant density on

with p &#x3E; 2 (see Subsection 2.1). For

} and Kj = [0, Lj] we obtain

and, for

Thus we have

where

Further, write

to get
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for n &#x3E; m. Clearly, the above equation reduces to

with V being the linear operator defined on B(I) by

where

Note that V is the transition operator of the homogeneous Markov chain
defined as

and yo = 0. Clearly, (yn )n&#x3E;o satisfies the recursion equation

and yn E I for all indices n. Let us consider the quadruple

where v : I x X - I is given by v (x, (l, i)) = vii (x) and Q : I x X - [0, 1]
is given by Q (x, (l, i)) = 

Let us prove that 1:(I,i),Cx qli(x) = 1, for all x E I. First, we show that
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for all (1, i) E X and, Hx = 1 on [0, ~), we obtain

Since it follows that

Hence the right-hand side of
the above equation equals

Next, to prove that we note that

Hence

For the other cases, similar proofs hold, and we leave them to the reader.
Thus we have shown that the sequence is an I-valued Markov

chain on which start at yo - 0 and has the following transition
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mechanism: from state s E I, the only possible transitions are those to
states m, (l, i) E X B {(-1,1), (1,1)~, and to 2 or to ’ if l = ~1,
i = 1 and s E ~- 2 , ~ - A) or s E ( ~ - a, 2 ) , respectively, the transition
probability being qls(s).

4.2. Odd indices. We have the same goal as in the previous subsection.
Let q = 2h + 3, with h &#x3E; 1, and recycle notation as above. Since h(x, y) =
c is the invariant density on fl = Kj (see Subsectiony j (
2.2), it follows that for t E E { 1, ... , 2 h + 1} and Kj = [0, 

while for t E J2h+2 = [0, 2 ~ and K2h+2 = [0, RI, we get

Thus

where

Further, write f n (x) - EC7Fn(x), x E I, to get m,

where V is the linear operator defined on by

with qli and vlz, (1, i) E X defined as in the previous subsection. As in the
even case, we may prove that qii(x) = 1 on I. Also, it appears that
V is the transition operator of the homogeneous Markov chain on

-

5. Characteristic properties of the transition operators U and V

Here we restrict our attention to the transition operators U and V in-
troduced in Sections 3 and 4. In this section we deal with the properties of
U and V on function spaces different from B(W) and B (I ) .

In connection with the operators U and V, we note the following prop-
erties. First, if we define
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and

then we have U’U’f = U°° f for all f E B(W) and V’V’f = V°° f
for all f E B(I) and n E N*. Second, let L(W) (respectively L(I)) be
the Banach space of all bounded complex-valued Lipschitz functions on W
(respectively I ) under the usual norm IIIIIL = I f + s ( f ), where

Then U (respectively V) sends boundedly L(W) (respectively L(I)) into
itself. Moreover, we have the following results.

Theorem 2. The random system with complete connections (RSCC)

associated with the aCF-expansion is with contraction and its transition
operator U is regular w.r.t L(W).

Proof. We have for all (l, i) E X

Hence the requirements of the definition of an RSCC with contraction
are met with k = 1 (see Definition 3.1.15 in [6]). By Theorem 3.1.16
in [6], it follows that the Markov chain (s:)n&#x3E;O associated with the RSCC
{(W,W), (X, X), u, P} is a Doeblin-Fortet chain. Hence by Definition 3.2.1
in [6], the Markov chain (sn)n&#x3E;o is compact, because its state space is a
compact metric space (W, d) _ (~0, R~, d), with d(x, y) _ ~x - y I, dx, y E W
and its transition operator is a Doeblin-Fortet operator.

To prove the regularity of U w.r.t. L(W), let us define recursively wn+1 =
(w" + 2)-1, n E N, with wo = w. A criterion of regularity is expressed
in Theorem 3.2.13 in [6], in terms of the supports En(w) of the n-step
transition probability functions P~(w, ~), n E N* where, with the usual
notation,

Clearly Therefore, Lemma 3.2.14 in [6] and an induc-
tion argument lead to the conclusion that wn E E N*. But

limn,,, wn = V2- - 1 for any w E W . Consequently
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Now, the regularity of U w.r.t. L(W) follows from Theorem 3.2.13 in [6]
and the proof is complete. 0

Theorem 3. The random system with complete connections (RSCC)

is with contraction and its translation operator V is regular w.r.t. L(I).

Proof. The proof parallels that one of Theorem 2. We have for all (l, i) E X

We deduce that the Markov chain associated with the RSCC

(X, X), v, Q} is a Doeblin-Fortet chain. Moreover, the Markov
chain is compact and its transition operator is a Doeblin-Fortet
operator.

To prove the regularity of V w.r.t. L(I) we proceed as in the preceding
proof. Here the transition probability function is

A similar argument leads to the regularity of V. 0

Remark. Theorem l’ in [4] shows that there exist positive constants
Kl, K2, ,~  1 and 0  1 such that

6. A Gauss-Kuzmin type problem

The results obtained allow to a solution of a Gauss-Kuzmin type problem.
The solution presented here is based on the ergodic behaviour of the RSCC
associated with the transition operator V.

It should be mentioned that it is only very recently that there has been
any investigation of the metrical properties of the Rosen fractions (Nakada
(in ~10~) started investigations of metrical properties of the Rosen fractions,
but only with even q’s) . Thus, we may emphasize that our solution obtained
in an elementary manner is surprisingly simple and could be used in similar
contexts.

For any arbitrarily given n E N*, take
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(see Section 3). By equation (4), we have

By elementary computations we obtain

and If:1  2, 8(1:)   3 for all possible values of sn.
Now, we note that on account of the last remark in Section 5, we actually

proved the following Gauss-Kuzmin type theorem.

Theorem 4 (Solution of the Gauss-Kuzmin problem). For all a E W there
exist two positive constants K and 0  1 such that

there p denotes the invariant measure vx for T on x3I.
Remark. Theorem 4 reduces for a = 0 and A = 1 to a version of Gauss-
Kuzmin type theorem for the nearest integer continued fraction, where p°
represents the Lebesgue measure on [-1/2, 1/2] 2 2 ’

It should be emphasized that, to our knowledge, Theorem 4 is the first
Gauss-Kuzmin result proved for the Rosen fractions.
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