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On a decomposition of polynomials
in several variables

par ANDRZEJ SCHINZEL

Dedscated to Michel France

RÉSUMÉ. On considère la représentation d’un polynôme a plu-
sieurs variables comme une somme de polynômes à une variable
en combinaisons linéaires des variables.

ABSTRACT. One considers representation of a polynomial in sev-
eral variables as the sum of values of univariate polynomials taken
at linear combinations of the variables.

K. Oskolkov has called my attention to the following theorem used in
the theory of polynomial approximation (see [6], Lemma 1 and below,
Lemma 4): for every sequence of d + 1 pairwise linearly independent vec-
tors [a,., , a,,2] (l~/~~+l) and every polynomial F ~ C [Xl, X2] of
degree d there exist polynomials fILE C [z] (1  It  d + 1) such that

He has asked for a generalization and a refinement of this result. The
following theorem is a step in this direction.

Theorem 1. Let n, d be positive integers and K a field with char K = 0
or char K &#x3E; d. For every sequence S" (2  v  n) of subsets of K

each of cardinality at least d -f- 1 there exist M = Cn n 1 1 J vectors( n-1 )
[a,1 , 2? - " ? E {I} x S2 x... x 8n with the following property. For
every polynomial F E K~~1, ... , of degree at most d there exist polyno-
mials fp E K[z] (1 S J-t S M) such that
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It is not true that polynomials fp. satisfying (1) exist for every sequence
of vectors [a,,l, ... , (1  /-t  M) such that each n of them are linearly
independent. See the example at the end of the paper.

Let P(n, d, K) be the set of all polynomials F E xnJ of degree d.
Let M(n, d, K) be the least number M such that for every F E P(n, d, K)
(1) holds for some sequence of vectors ~a~l, ... , E K’~ and some se-

quence of polynomials f ~ E K[z] ( 1  ~a  M) if such sequences exist and
00 otherwise. For an infinite field K, let m(n, d, K) be the least number M
such that for a Zariski open subset S of P(n, d, K) and for every F E S,
(1) holds for some sequences of vectors and polynomials as before, if such
sequences exist and oo, otherwise. Theorem 1 implies

Corollary.  oo zf and only if either n = 1 or char K = 0 or
char K &#x3E; d. If K is infinite the same equivalence holds for m (rt, d, K) .

The problem of determination of m(n, d, K) is related to the problem,
much studied in the XIX th century (see [5], for a modern account), of
representation of a general n-ary form of degree d as the sum of powers of
linear forms. The two problems are not equivalent even for K algebraically
closed, since in our case neither F nor fp are supposed homogeneous.
Theorem 2. For every infinite field K such that char K = 0 or char K &#x3E; d

we have

For K = Fq, char K &#x3E; d, we have

In particular, every n-ary form of degree d over a field K of characteristic
0 is representable as a linear combination of (’~~ d i l) d-th powers of linear
forms over K. This has been first proved, but not explicitly stated by
Ellison [3].

Clearly M(I, d, K) = M(n,1, K) =1 and one easily proves
Theorem 3. 2, then M(n, 2, K) = n and if, in addition, K is
infinite, then m(n, 2, K) = n.

Diaconis and Shahshahani asserted without a formal proof that
= d ([2], Application 2).
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We shall show .

Theorem 4. For every field K such that either char K = 0, or char K &#x3E; d
and card K &#x3E; 2d - 2 we have

In particular, every binary form F of degree d over a field K of charac-
teristic 0 is representable as a linear combination of d d-th powers of linear
forms over K, which slightly improves Theorem A of [4]. For K = C this
was proved by Reznick [8].
The following theorem shows that the condition card K &#x3E; 2d - 2 in

Theorem 4 may be superfluous.

Theorem 5. For every field K such that

char K &#x3E; d and card K  d + 2

we have

Theorem 6. For every algebraically closed field K, if char K = 0 or
char K &#x3E; d, then

The proof of Theorem 1 is based on two lemmas.

Lemma 1. Letn 2::: 2~ (1  i ~ be a subset of K of cardinality d+l.
Then F = 0 is the only polynomial in ~[~i,... ? of degree at most d in
each variable such that F(ai, ~2,..., = 0 for all (al, a2, ... , 

Proof. See [1], Lemma 2.2.

Lemma 2. Let for each k = 0,1, ... , n - 2 elements of K (0 ~ l  d)
be distinct and let for a positive integer q  (d + 1)wl

be the expansion of q - 1 in base d + 1.
Define

as the matrix (ars) , where



650

Then det 0.

Proof. Let us put in Lemma 1: Tï = {,Qi-i,c : ~  l  d} (1  i  n - 1).
By the lemma the only polynomial F E K(xl, ... , xn-11 of degree at most
d in each variable such that

Now, all the vectors ~lo, ... , ln_2~ E {O, ll... , dln-1 can be ordered lex-
icographically, so that the vector ~lo, ... , l~_2~ occupies the position 1 +
n-2

E + 1 ) i and then the system of equations (3) reads
i=O

Also the polynomial F can be written as

and (3) can be rewritten as

The fact that the only solution of this system is

corresponding to F = 0, implies in view of (2) that

But then also det = det ,-~ 0.

Proof of Theorem. 1. Let us choose in 5~ distinct elements /3"_2,0, ... , 
(2  v  n). By Lemma 2

7

hence the matrix B consisting of the rows r for which
1

. n + d - 1d is of rank equal to the number of such rows M = n + n - d 1 1 . T herefo r e
B has M linearly independent columns 81, 82, ... , sM. We put
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Let

(note that the multinomial coefficient is non-zero).
For each 1  d we determine ( 1  ~  M) from the system of

equations

which can be rewritten as

By the choice of sl, ... , sM the matrix of this system has rank equal to
the number of equations, hence the system is solvable for E K. We set

and (1) follows from (6) and (7).

Proof of Corollary. In view of Theorem 1 it is sufficient to show that

M(n, d, K) = oo if n &#x3E; 1 and

Let us consider an arbitrary polynomial F of the form (6) in which ad,O,...,o ~
0 and ap-1,1,o,...,o ~ 0. If K is infinite such polynomials exist in every open
subset of P (n, d, K) . If (1) holds, then the part Fd-p of degree p of F
satisfies 

-

which is impossible, since xpl-l X2 occurs with a non-zero coefficient on the
left-hand side, but not on the right.

Proof of Theorem 2. The dimension of the set of all n-ary polynomials
of degree not exceeding d and greater than e is (n!d) - ( e On the
other hand, the dimension of the set of all polynomials of the form 
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d

where f = L is at most d - e + n - 1 since the vectors a can be
I=e+l

normalized by taking the first non-vanishing coordinate equal to 1. This

gives the upper bound m(n + 6! 2013 1 - e) for the dimension of the set of all
m

polynomials of the form E f J1. (OoJ1.x) and, by the definition of m (n, d, K)
IA= 1

which implies the first part of the theorem.
In order to prove the second part let us observe that the number of nor-

malized vectors a is q-1 , while the number of non-zero polynomials
Hence we obtain at most

polynomials of the form f (ax) and at most polyno-
m

mials of the form 1: On the other hand, the number of n-ary
p.=1

polynomials over 1FQ of degree not exceeding d and greater than e is

By the definition of M(n, d, this gives

which implies the second part of the theorem.

Proof of Theorem 3. Let Fo, the leading quadratic form of F, be of
rank r. By Lagrange’s theorem there exist linearly independent vectors
~a~ 1, ... , apn] in Kn ( 1  p  r) such that

We set au = 0 for r  ti ~ n and choose n - r vectors [0:1£1’...’ in
Kn (1 :s; J..t  r) such that Then there exist E K
(1  /i  n) such that
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and (1) follows with M = n .

n

On the other hand, the polynomial F = where 0 is clearly
v=1

not representable in the form ( 1 ) with M  n.

For the proof of Theorem 4 we need

Lemma 3. We have the identity

where TZ is the i-th fundamental symmetric functiort of ~1, ... , zd, To = 1.

Proof . See [7], p. 333.

Lemma 4. Let ap’ (1 ~ p,  d) be arbitrary pairwise linearly independent
vectors in K2. If char K = 0 or char K &#x3E; d, for every polynomial F E
K[XI,X2] of degree at most d - 1 there exist polynomials f~, E K[z] such
that

Proof . Since ce IA are pairwise linearly independent we may assume that
either

(i) O:¡.¡.l = 1, c~2 are all distinct (1  ~  d),
or (ii) all = 1, a,2 are all distinct (1 G ~c  d), adl = 0, ad2 = 1.

Let now

(note that the binomial coefficient is non-zero). In the case (i) for each
I  d we can solve for bId in K the system of equations
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since the rank of the matrix of the coefficients equals the number of equa-
tions. Then we set

n-1

In the case (ii) for each I  d we can solve for in K the system of
equations

and then we set

Proof of Theorem 4. In view of Theorem 3 we may assume d &#x3E; 3. We shall
prove first that

M(2, d, K)  d.
Let F E P(2, d, K) and let Fo be the highest homogeneous part of F.
Supposing that we have represented Fo in the form (1) with M = d we
may assume that ap (1 ~ JJ  d) are pairwise linearly independent and
then apply Lemma 4 to represent F-Fo in the form (1) with the same a IA *
Therefore, it is enough to find a representation (1) for F homogeneous of
degree d. By Lemma 1 there exist Cll, C21 in K such that 0.

Replacing F by F(cllxl + C22~2)~ where c12, c22 are chosen
in K so that CllC22 - c12c21 ~ 0 we may assume that the coefficient of xd
in F(xi, X2) is non-zero. Let then

and let us consider the polynomial

Since 0 the polynomial G is not identically 0 and we have for each
..-.. -
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Since card K &#x3E; 2d - 2, by Lemma 1 there exist elements {31, ... , #d_2 of K
such that

We now put

which makes sense, since by (9) the denominator is non-zero. Again by (9)
we have ,Qi ,-~ {3j for 1  i  j  d. Hence

However, by (10) and Lemma 3,

Hence the system of equations

is solvable for elements bp of K.
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We set

and obtain (1) from (8) and (11).
It remains to show that M(2, d, K) &#x3E; d. Let us consider the equation

In order to prove that it is impossible for every a E K it is clearly
sufficient to consider fp = bp.zd, all = 1, ap2 distinct. Comparing the
coefficients of on both sides of (12) we obtain

The determinant of this system is

(1 ~  d) and by (12)

, hence b~ - 0

a contradiction. This argument is valid without the assumption on 

For the proof of Theorem 5 we need

Lemma 5. Let al, ... , ak be distinct elements of Pp, k &#x3E; p - 3. Then

Proof . If k = p - 1 we use the identity

If k = p - 2 we argue by induction. For j = 0 the statement is true, for
k &#x3E; j &#x3E; 1 we have the identity
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hence, by induction

If k = p - 3 we argue again by induction. If j = 0 the statement is true. If
k &#x3E; j &#x3E; 1 we have the identity

hence, by induction

Proof of Theorem 5. By the last statement in the proof of Theorem 4 we
have M(2, d, K) &#x3E; d, thus it is remains to prove the reverse inequality. Let
F E P(2, d, K). By Lemma 4 we may assume that F is homogeneous. Let

and consider first card K = p = d + 1.
Let us assume first that the mapping Pp - Fp given by t H f (t) =

p-i 
,

E ap-l-it’ is not injective. Then there exist r, s such that r # s and
i=O

f (r) = f (s), hence

71= I

Setting a12 = 0, ~a22, ... , ap_2,2~ _ ~ ~ jr, s} we have by Lemma 5

hence, by (14),

and, by Lemma 3,
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Since det (~2) 0, this suffices for solvability over Fp of the system
of equations 

- -

Then we obtain from (13) - (15) that

Assume now that the mapping Pp -+ IFP given by t ~ f (t) is injective.
We shall consider three cases

In the case (i), let

so that

Setting a12 = 0, {a22, ... , ap_1,2} _ ~ B Irl we have by Lemma 5

hence, by (16),

and, by Lemma 3,
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Since det (2) 0, this suffices for solvability over IFp of the system
of equations

Then we obtain from (13) and (17) that

In the case (ii), let

so that

Setting all = 0, {a21, ... , B {r} we have by Lemma 5

hence, by (18),

and, by Lemma 3,

Since det (~1) 0_ jGp-1 =1= 0, this suffices for solvability over Fp of the system
of equations 

- -

Then we obtain from (13) and (19)
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In the case (iii), since

we have ao = Op-i. Hence the first and the last row of the determinant

are equal and the determinant vanishes.
Since 0, this suffices for solvability over Fp of the

i

system of equations

Then we obtain from (13) and (20)

Consider now the case, where

Again, let us assume first that the mapping F; --+ IF~ given by t ~ f (t) =

is not injective. Then there exist r, s E PP such that 

hence

Setting we have by Lemma 5

hence, by (21),
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and, by Lemma 3,

Since det (~2) o~jp-3 7~ 0, this suffices for solvability over Fp of the system&#x3E; 

of equations 
- -

Then we obtain from (13) and (22) that

Assume now that the mapping Pp - IFp given by t 1-4 f (t) is injective.
We shall consider two cases

In the case (iv) let 0 = f (r), r E so that

Setting we have by Lemma 5

hence, by (23)

and by Lemma 3
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Since det (C~,,2) Ojp-2 0 0, this suffces for solvability over 1Fp of the system
of equations

Then we obtain from (13) and (25) that

In the case (v) t -&#x3E; f (t) is a bijective mapping ofF; onto F;. If the mapping
t H t f (t) had the same property, we should obtain

which is impossible. Hence there exist r, s E IF; such that r 0 s and

Setting

we have by Lemma 5

hence, by (26), (24) holds and we conclude the argument as in the case
(iv). The proof of Theorem 5 is complete.

Proof of Theorem 6. We shall prove first that

Let 2d + 4 = u2 + v, where u, v are integers, Ivl I  u. We have
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hence on taking e = d + 1 - u we obtain from Theorem 2

which gives (27).
In order to show that

we notice that

Let us consider independent variables where

and the matrix B = where

1~~ being determined by the inequality

Let Bv be the minor of the matrix B obtained by omitting the v-th
column and D be the discriminant of the polynomial

Polynomials Bo and D in the variables aid are not identically zero.
In order to see that 0 let us order all variables aid linearly assuming

aki if either  ~ + l or 2 -+- j = k + 1 and j  l. Then all products
of aid are ordered lexicographically. The product

occuring in the expansion of Bo precedes in the lexicographic order any
other term in this expansion, hence it does not cancel and 0. On the
other hand 

- -

where Do is the discriminant of the polynomial
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Now, the discriminant of the polynomial

is not identically 0 as a function of t" (it is different from 0 for tv = 0 for
v  m - p, tm-p = 1), hence Do = 0 implies an algebraic dependence over
the prime field II of K between (1  v  m - p). Let

We assert that for

This is obviously true for i  m - 1. Assume that it is true for all i  j,
where m  j  m -f- 1 - 1. Since, by the Cramer formulae, for p =.i_; - _ , ......

and all a’s occuring on the left-hand side have the second index at most

it follows that E Q

(28) is complete. But then
and the inductive proof of

implies

while the number of independent variables
1, m  j  m ~- k - 1) equals

The obtained contradiction shows that 0, and hence D ~ 0.



665

We now assert that if for a polynomial

we have BoD =1= 0, then there exist
such that

Indeed, using the notation introduced earlier we take for
the m distinct zeros of the polynomial

Now for each 1  d we solve the system of equations

for in K and assert that the solution satisfies the larger system

The proof is by induction on j. We assume that (32) is true for all j  i,
i &#x3E; m and obtain

However the sum on the right-hand side of (33) coincides with the sum on
the left-hand side of (29) on putting there k =1-m+l, a = i-rrz+~2~+1 
(kt1). Hence by (29)

which proves (32).
Now, on taking
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we obtain (31) from (30) and (32).
Example. Each three of the vectors ~1, 0, 0~, (0,1, 0~, [0,0,1], (3,1,1~,
[1, 3, 1], (3, 3, 2~ are linearly independent over Q, nevertheless for all poly-
nomials fi E Q[z] (1 -i  6) we have

Indeed, it is enough to consider the case fi = biz2 (1  i G 6). Assuming
the equality in (33) we obtain comparing the coefficients of XIX2, XlX3 and

which is impossible, since

I conclude by expressing my thanks to U. Zannier for a remark helpful
in the proof of Theorem 5.

Note added in proof. M. Kula has checked that M(2,d,K) = d in the
simplest cases not covered by Theorems 4 and 5: d = 7 or 8, K = 
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