
JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

MICHAEL DRMOTA

WOLFGANG STEINER
The Zeckendorf expansion of polynomial sequences
Journal de Théorie des Nombres de Bordeaux, tome 14, no 2 (2002),
p. 439-475
<http://www.numdam.org/item?id=JTNB_2002__14_2_439_0>

© Université Bordeaux 1, 2002, tous droits réservés.

L’accès aux archives de la revue « Journal de Théorie des Nombres
de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=JTNB_2002__14_2_439_0
http://jtnb.cedram.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


439-

The Zeckendorf expansion of

polynomial sequences

par MICHAEL DRMOTA et WOLFGANG STEINER

d6dii d Michel France d l’occasion de son anniversaire

RÉSUMÉ. Nous montrons que la fonction ’somme de chiffres’ de
Zeckendorf sz(n) lorsque n parcourt l’ensemble des nombres pre-
miers ou bien une suite polynomiale d’entiers satisfait un théorème
central limite. Nous obtenons aussi des résultats analogues pour
d’autres fonctions du même type. Nous montrons également que
le développement de Zeckendorf et le développement standard en
base q des entiers sont asymptotiquement indépendants.

ABSTRACT. In the first part of the paper we prove that the Zeck-
endorf sum-of-digits function sz(n) and similarly defined func-
tions evaluated on polynomial sequences of positive integers or
primes satisfy a central limit theorem. We also prove that the
Zeckendorf expansion and the q-ary expansions of integers are
asymptotically independent.

1. Introduction

Let q &#x3E; 2 be an integer. Then a real-valued function f defined on the
non-negative integers is called q-additive if f satisfies

where E {O, 1,... q - 11 are the digits in the q-ary expansion

of the integer n &#x3E; 0. For example, the sum-of-digits function

is a q-additive function. The distribution behaviour of q-additive functions
has been discussed by several authors (starting most probably with M.
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Mend6s France [18] and H. Delange [3], see also Coquet [2], Dumont and
Thomas [10, 11~, Manstavicius [16], and [6] for a list of further references).
Most papers deal with the average value or the distribution of q-additive
function. There are, however, also laws of the iterated logarithm and more
generally a Strassen law for the sum of digits function due to Manstavicius
[17]. (It seems to be diflicult to generalize such a law to the Zeckendorf
sum-of-digits function since a corresponding Fundamental Lemmas seems to
be out of reach at the moment, even the generalization to a joint law of
two q-ary sum-of-digits function is not obvious, see [8].)
The most general central limit theorem for q-additive functions f is due

to Manstavicius [16], where the distribution of the values f (n) (0  n  N)
is considered. In this paper we are interested in the distribution of f (P(n))
(0  n  N), where is an integer polynomial. Here the best known
result is due to Bassily and Kitai (1).1 (Here and in the sequel ~(x) denotes
the distribution function of the standard normal law.)
Theorem 1. Let f be a q-ddditive function such that = 0 (1) as
k -+ oo and b E {0, ... , q - 1}. Assume that for
some &#x3E; 0 and let P(n) be a polynomial. with integer coefficients, degree r
and positive leading term. Then, as N -3 00,

and

where

and

This result relies on the fact that suitably modified centralized moments
converge.
The main purpose of this paper is to extend this result to certain G-ary

digital expansions. Let a &#x3E; 1 be an integer and the sequence G = 
be defined by the linear recurrence 

-

1 This theorem was only stated (and proved) for 17 = 3 . However, a short inspection of the
proof shows that 17 &#x3E; 0 is sufficient.
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Now every integer n &#x3E; 0 has a unique digital expansion

with integer digits 0  a provided that

for all j &#x3E; 0 (which means that 16G,k-l(n) = 0 if Eck(n) = a). A special
case of these expansions is the Zeckendorf expansion where a = 1 and the
G~ are the Fibonacci numbers.
A function f is said to be G-additive, if

Alternatively we have

where fk(b) := f (bGk).
First we will prove the following theorem concerning the distribution of

the sequence f (n), 0  n  N. The proof essentially relies on the fact
that the possible G-ary digital expansions can be represented by a Markov
chain. Note that the sequence Gk is also given by

where a is the positive root of the characteristic polynomial of the linear
recurrence

Theorem 2. Let G be as above, f a G-additive function such that fk(b) =
o (1) as k -3 00 for b E {0, ... , a}. Then, for all q &#x3E; 0, the expected value
of f (n), 0  n  N, is given by

where
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Furthermore, set

with

where

Assume further that there exists a constant c &#x3E; 0 such that

k&#x3E;0. Then, 

and

for all positive integers h.

(1.3) has been shown by Drmota [5] for strongly G-additive functions f,
i.e.

Furthermore, it should be noted that (1.4) provides an asymptotic relation
for the variance, too, however, without an error term:

We will use Theorem 2 and a method similar to Bassily and Kitai’s to
prove Theorem 3.

Theorem 3. Let G, f be as in Theorem 2 and P(n) a polynomial with
integer coefficients, degree r and positive leading term. Then, as N - oo,
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and

for all positive integers h, if we set f (P(n)) = -f (-P(n)) for P(n)  0.

Note that definition of f (P(n)) for P(n)  0 has no influence on the

result, because the number of non-negative integers with P(n)  0 is

negligible.
Our next results concern the indepence of different digital expansions.

For example, in [6] the following property is shown. Suppose that ql, q2 are
two coprime integers and fl, f2 qm resp. q2-additive functions satisfying the
assumptions of Theorem 1. Then we have, as N --&#x3E; oo,

i.e. the distribution of the pairs ( f 1 (n), f2 (n) ), 0  n  N, can be consid-
ered as independent.
We will extend this property to our more general situation.

Theorem 4. Suppose that fl, f2 are two functions satisfying one of the
following conditions.

(i) ql, q2 &#x3E; 2 are two positive coprime integers and f l, f2 ql - resp. q2-
additive functions satisfying the assumptions of Theorem 1. Further-
more set Mi(N) := Mqt (N) and Dq; (N) (i = 1, 2).

(ii) q &#x3E; 2 is an integer and fl(n) a q-additive function satisfying the
assumptions of Theorem 1. a &#x3E; 1 is an integer and f2(n) is a G-
additive function satisfying the assumptions of Theorem 2. Further-
more set MI(N) := Mq(N), Dl(N) := Dq(N) and MZ(N) := MG(N),

(iii) at, a2 &#x3E; 1 are two different integers such that is irrational,- 

y 2

G = and H = the corresponding linear recurrent se-
quences, and fl, f2 G- resp. H-additive functions satisfying the assump-
tions of Theorem 2. Furthermore set M1(N) := MG(N), D1(N) :=
DG(N) and M2(N) := MH(N), D2(N) := DH(N).

Let Pl(x),P2(x) be two polynomial with integer coefficients, degrees rl,r2
and positive leading terrra. Then, as N - oo,
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and

The paper is organized in the following way. Section 2 is devoted to the
proof of Theorem 2. Section 3 provides a plan of the proof of Theorem 3.
Sections 4-6 collect some preliminaries which are needed for the proof of
Theorem 3 in Section 7. Finally, the proof of Theorem 4 is presented in
Section 8.

2. Proof of Theorem 2

Our aim is to study the distribution behaviour of f (~c), 0  n  N, i.e.
the random variable YN defined by

If we define (k,N by

and by

then we obviously have

i.e. YN is a (weighted) sum of Therefore, we will first have a de-
tailed look at It turns out that constitutes an almost stationary
Markov chain, as the next lemma shows. We want to mention that this
fact is also a consequence of results from Dumont and Thomas [10, 11]. In
our case this is a quite simple observation. Therefore we decided to present
a short proof of this fact, too. This procedure is simpler and shorter than
introducing the notation of [10, 11] and to specialize afterwards.

Lemma 1. For fixed j, the random variables form a Markov
chain with 

.



445

where

with initial states

and

Rerraark. The matrices are no transition matrices of a Markov process,
but they describe transition matrices in view of the relations (2.1)-(2.3).
However, it turned out to be easier to work with 3 x 3-matrices instead of
(a + 1) x (a + I )-matrices.

Proof. A sequence of non-negative integers is a G-ary digital expan-
sion of an integer n, if and only a for all i &#x3E; 0, = 0 if Ei = a and

Ei ~ 0 only for a finite number of i (cf. e.g. Grabner and Tichy [13]). Let

be the set of G-ary digital expansions for n  Then

and it can be easily seen that (2.1) holds. For k = 0, even = a] is
equal to = 1].
We have

because we can take a block (o, E1, ... , fj-l) of the set on the left side of the
equation, shift it to the left, set = 0 and get a one-one correspondence
to the blocks on the right side. Therefore
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Since the other probabilities b], 1  b  a, are equal, we have

Now we show that we have a Markov chain.

where the third equation is valid only if (bo, ... , bk+i) E Bk+2. Otherwise
the probability is 0 (for bk+i = a, bk 0 0, (bo, ... , or undefined

(for (bo, ... , Bk+ 1). If the probability is defined, we thus have

with the probabilities
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Similarly to (2.1), (2.2) and (2.3) are easy to see. Hence

and the transition from to is entirely determined by (2.4). 0

Corollary 1. The probability distribution of is given by

with

Proof. Let P be the matrix obtained by neglecting the C~ (Q2J-k») terms in
the matrix The eigenvalues of P are 1, 0 and the eigenvector

to the eigenvalue 1 with

Lemma 1 suggests to approximate the digital distribution by a station-
ary Markov chain (Xk, k &#x3E; 0), with (stationary) probability distribution
Pr[Xk = b~ = pb, 0  b  a, and transition matrix P, i.e.

The next lemma shows how we can quantify this approximation for finite
dimensional distributions.

Lemma 2. For every h &#x3E; 1 and integers 0  kl  k2  ...  kh  j we
have

- ,
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and consequently

Since

we just have to apply (2.6) and Corollary 1 and the lemma follows. D

The case of general N is very similar.

Lemma 3. The probability distribution of Ç,k,N for Gj  N  Gj+l with
j &#x3E; k is given by

for all b E {0, ... , a}.
Furthermore, the joint distribution for

given by

Proof. For we have
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Therefore

otherwise

where we have used

A similar reasoning can be done for the joint distribution, e.g. we have
j:

otherwise

Thus, we can proceed in the same way. 0

We now turn to the derivation of EN = EYN , i.e. to the proof of (1.2),
the first part of Theorem 2. Since

for N  the expected value of YN is given by

where
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and q &#x3E; 0 is a sufficiently small number (to be chosen in the sequel).
Furthermore, we have

which implies

It seems that the variance Var YN cannot be treated in a similar (easy)
way. Therefore, we use some additional assumptions and present a proof
of (1.4) together with the distributional result (1.3).
The above calculation indicates that we just have to concentrate on dig-

its with A  k  B (defined in (2.9)). The reason is that we obtain
uniform estimates for this range. The following lemma is a direct conse-
quence of Lemmata 2 and 3. Note that it is not necessary to assume that

ki, ... , kh are ordered and that they are distinct.

Lemma 4. For every h &#x3E; 1 and for every A &#x3E; 0 we have

uniformly for all integers

(where A, B are defined in (2.9) with an arbitrary 1/ &#x3E; 0) and bl, b2, ... , bh E
10, 1, ... , al, where

This observation causes that we have to truncate the given function f (n)
and have to consider

In order to finish the proof of Theorem 2 it is (luckily) enough to prove

where
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This is due to the following lemma and (2.11).

for E ~8 if and only if

for all x ~ DL
Furthermore, if for all h &#x3E; 0

then we also have

and conversely.

Proof. We consider the three (sequences of) random variables

Suppose first that the limiting distribution of XN is Gaussian and that all
moments converge. Since

ant the same is true for YN.
Further, we know that

Thus, it immediately follows that the limiting distribution of ZN is the same
as that of YN and that all moments of ZN converge to the same limits as
the moments of YN .

It is also clear that the converse implications are valid. This completes
the proof of Lemma 5. 0

Therefore it is sufhcient to show that the moments
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converge to the corresponding moments of the normal law. We will do this
in two steps. First we prove a central limit theorem (with convergence
of moments) for the exact Markov process and then we compare these
moments to those of7(n), i.e. (1.4). Obviously the proof (1.3) of Theorem 2
is completed then.
The next lemma provides a central limit theorem for E fk(Xk), where

Xk is the stationary Markov process defined by (2.5).

Lemma 6. Suppose that there exists a constant c &#x3E; 0 such that (2) &#x3E; c

for all j &#x3E; 0. Then we have 
’

and the sums of the random variables fk(Xk) satisfy a central limit theorem.
More precisely

and for all h &#x3E; 0 we have, as N ~ oo,

Proof. Let

(which does not depend on k) denote the transition function of the Markov
chain (Xk, k &#x3E; 0) and

its ergodicity coefficient. If the fk are injective on f 0, ... , a}, then

0) is a Markov chain with ergodicity coefficient (3 and we

get, by Lemma 2 of Dobru0161in [4] and with = Qk2 &#x3E; c,

If some of the fk are not injective, we get the same result by considering in-
jective functions Ik which tend to fk. Since D(N)2 = 
and = Var EB k=A fk (Xk) this proves (2.11) if {3 is positive.

Suppose ,Q = 0. Then there exist Xl, X2 E {0, ... , a} and a set A such
that P(xl, A) = 0 and P(X2, A) = 1, because P(x, A) attains just finitely
many values. We have P(x, {0}) &#x3E; 0 for all x. Hence, if 0 E A, we get
a contradiction to P(xi, A) = 0 and, if 0 ft A, we get a contradiction to
P(x2, A) = 1. Therefore we have {3 &#x3E; 0.
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For each h &#x3E; 2, the moments E are jointly bounded because of
fk(b) = O (1). Hence, if the fk are injective, all conditions of Theorem 4 of
Lifsic [15] are satisfied and we have convergence of (absolute) moments to
those of the normal distribution. An inspection of Lifsic’ proof shows that,
as above, this is valid for non-injective fk too. D

Now we are able to compare the moments of f (n) and E 
Lemma 7. For every h &#x3E; 1 and every A &#x3E; 0 we have

Proof. We have

and

By Lemmata 4 and 6, these expressions are equal up to an error term
O ((log N)h/2-À). Since A can be chosen arbitrarily, the lemma is proved.

0

3. Plan of the Proof of Theorem 3

We set M, D and 7 as in Theorem 2 with the only difference

(A = [(log N)n~). Then an argument similar to
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Lemma 5 shows that it is enough to prove

and

In fact, we prove that the centralized moments

and

converge (for N -~ oo) by comparing them to Ah(N’’). By proceeding as in
the proof of Lemma 7 and by using the following lemma, it follows that for
each fixed integer h &#x3E; 0, Bh(N) - 0 and Ch(N) - 0
as N -&#x3E; oo. (Of course, this proves Theorem 3. We just have to replace
Lemma 4 by the following property.)
Lemma 8 (Main Lemma). Let P(n) be an integer polynomials of degree
r &#x3E; 1 and positive leading term. Then for every h &#x3E; 1 and for every A &#x3E; 0

we have

and

uniformly for all integers

It turns out that this lemma can be proved similarly to that of Bassily
and Kitai [1], i.e. with help of exponential sums. The only difficulty is
to get a nice condition for extracting the digits ek (n) without using greedy
algorithms. This problem is solved in the next section with help of a proper
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tiling of the unit square. Section 5 provides proper estimates for exponen-
tial sums. These are the two main ingredients of the proof which is then
completed in Sections 6 and 7.

4. Tilings
The aim of this section is to provide proper tilings of the plane corre-

sponding to our digital expansions in order to get an analogue to q-ary
expansions where we have

if ~x~ denotes the fractional part of x.
For our expansions, we will have to take into account the values of

I I I B

and By taking just one value into account, there
are overlaps and we cannot get something like (4.1) or (4.2).

Proposition 1. Let Ab, 0  b  a, denote rectangles in the plane R2
defined as the convex hull of the following corners:

Then these rectangles induce a periodic tiling of the plane with periods Z x Z,
i.e. they constitute a partition of the unit square modulo 1. Their slopes
are (a, 1), (20131,0:) and their areas are = Pb, b = 0,..., a, with Pb as
in Corollary 1. Furthermore, if ek(n) = b then

Essentially, this proposition says that there is an analogue to (4.1) for
G-ary expansions with a small error of order 0 (a-k) for the k-th digit.
We want to remark that Farinole [12] considered a very similar question.
Remark. The rectangles Ab modulo 1 constitute a Markov partition of the
toral automorphism with matrix
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Example. Before proving the proposition, we illustrate the example a = 3:

which looks like follows in R /Z:

Proof of Proposition 1. Suppose that n is given by n Then we
have
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with the abbreviations

where we have used (1.1) and that is an integer for
. Similarly we get

By R6nyi [19], we know that
graphically) implies

(lexico-

Hence, if Ek  a, then y is bounded by

and by

if Ek = a. Similarly, x is bounded by

for all Ek, by

for E~ = 0 and by

for f-k &#x3E; 0.

If we put these limits into we obtain the given
corners for Ab. It is now an easy exercise that (the interiors of) these
rectangles are pairwisely disjoint (and situated as in the example) and that
they induce a periodic tiling in 91 with periods 7~2. 0

5. Exponential Sums

In order to prove the Main Lemma we have to study exponential sums
of the form 

~.. ,

and

where
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with integers i as usual.

Lemma 9. Let I

(log N)6 for all i, j and
be integers with I 

for arbitrary constants 6 &#x3E; 0, 1/ &#x3E; 0. Then, if 0,

for all 77’  "1.

Proof. Clearly we have

For the lower bound, we first remark that ak is given by

where the sequence is defined by G’ = 0, Gi - 1 and G) =
+ for j &#x3E; 2. Therefore we have

with

and

We have

if A00orBi4O and

because G~ is given by

(cf. (1.1)). Hence

The next two lemmata are adapted from Lemma 6.2 and Theorem 10 of
Hua[14].
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Lemma 10. Let P(n) be a polynomials of degree r with leading coefficient
/3. For every To &#x3E; 0, we have a T &#x3E; 0 such that

implies

Lemma 11. Let P(n) be as in Lemmas 10. For every To &#x3E; 0, we have a
T &#x3E; 0 such that

implies

as N -4- 00.

Note that we can apply these two lemmas for /3 = S/(a + 1) with S 0 0
for any choice of T &#x3E; 0 since

Lemma 10 can be deduced for r &#x3E; 12 from Theorem I in Chapter VI of
Vinogradov [20] because of

if P E (q, +-,]. For general r, the two lemmata can be proved by replacing
q by - in the proofs of Lemma 6.2 and Theorem 10 of Hua and using the
following lemma.2

Lemma 12.

where llxll = min((x),1 - (~)).
Proof. In each of the intervals [mo, (m + 1)0) and (1 - (m + 1)R,1 - mo],
0  rn  2 (~~, we have at most one Therefore

2 Unfortunately we could not find a direct reference for Lemmata 10 and 11.
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6. The Boundary of the Tilings
Lemma 13. Let P(x) be an arbitrary polynomial of degree r and A &#x3E; 0.
Set

where

(8A6 denotes the boundary of Ab.) Let (log N)n  k  logo NT - (log N)n
for some (fixed) 77 &#x3E; 0 and A an arbitrary positive constant. Then, uni-
formly in k, we have

Proof. We use discrepancies to prove this lemma. The isotropic discrepancy
JN of the points (xl,l, x1,2), ... , (xN,l, xN,2) in JR2 is defined by

where the supremum is taken over all convex subsets C of ’B’2 = R2 /Z~. It
can be estimated by the normal discrepancy DN which is defined by

where the supremum is taken over all 2-dimensional intervals I of ~2:

(see Theorem 1.12 of Drmota and Tichy [9]).
To get an estimate for DN we use the following version of Erdös- Turán-

Koksma’s inequality:
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where M is an arbitrary positive integer (and -1 = +oo) (cf. Theorem 1.21
of [9]). 

- -

We set and M = (log N)2À. Then we
have, since Ub(A) is the union of 4 convex subsets and the conditions of
Lemmata 9 and 10 hold,

Similarly we get, with Lemma 11,

We can choose To &#x3E; 2A and the inequalities are proved. D

7. Proof of Main Lemma

For b E {0, ... , a} let Wb(X,y) be a function periodic mod 1, defined
explicitly in [0, 1] x [0, 1] by

Its Fourier expansion is given by

where V(Ab) denotes the set of vertices of the rectangle Ab and 
the set of vertices adjacent to (xl,x2) E V(Ab) (cf. Drmota [7], Lemma 1).
This can be bounded by (cf. Lemma 2 of Drmota [7])
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uniformly for all (mI,m2), where the constants implied by « only depend
on Ab and +i := mi I m2, +2 := mi .on Ab and mi := mi + := m2 - 

For (small) A &#x3E; 0 we consider the function

The Fourier expansion
given by

of this function is

if (ml, m2) =1= (0, 0) and

Hence

and

as 0.
It is clear that 0 1 for every pair (zi , z2) and that

We define

and

We set

and get, with (4.2) and Lemma 13,
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for A greater than the error terms 

Furthermore, set

and let be the set of vectors M = (mi i, ml,2,... , 7 Mh,l mh,2) with
integer entries 
Then we have

where

and

for all i, j, Lemmata 9 and 10 provide

if 0. Lemma 11 provides a similar result for primes.
Since (mi,l, mi,2 ) e (mZ,1, mZ,2 ) is, up to a constant, an orthogonal trans-
formation, we have

and, with (7.2),
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For the M with for some i, j , we get similarly

if we set Therefore we have

(and a similar expression for E2). Since the main term depends on A, we
want to replace TM by

Hence we have to estimate the difference ’ ]
By (7.3), we have

First assume I  for all i, j. Then we obtain from (7.6) and

and it remains to estimate the sum of the TM and TM with
(log N)a~2 for some i, j which satisfy MV = 0, i.e.

This is done by the following lemma, where only one of the equations is
needed.

Lemma 14. We have
TT
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where E’ denotes the sum over all integer solutions (ml, ... , mH) of the
linear equation

(with integers -yi :A 0) such that I mi I &#x3E; for some i. The constant

implied by « does not depend on the ~.

Proof. First we remark that mi = 0 for some i reduces the problem to a
smaller one. For H = 1 (as well as for H = 2), the lemma is trivial. Hence
we assume H &#x3E; 1 and 0 for all i.

For every choice of (mi,..., I MH- 1), let m H be the corresponding solution
of (7.10). First we sum up over all choices with 
and obtain

If we consider only Imil I &#x3E; (log N)b~2 for some i  H - 1, we have thus

It remains to estimate the sum over the choices (ml’...’ MH-1) with
- - _...i ,9 - -

Then we have

and
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We split the possible range of 112m21 into

For J2, we obtain

Summing up over all such (ml, ... , mH) with (log for some i,
we get

Thus it suffices to consider m2 with 1’2m21 E 12 from now on. This implies

with

We split the possible range of |y3m3| into

and 13 = (0,2~imi)] B J3. Similarly to (7.12), we obtain

and the sum over these (7~1,... rrcH) can be estimated as in (7.13). For
all other m3, we have

We can proceed inductively and in the only remaining case we would have

which contradicts (7.11). Thus the lemma is proved. 0
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We apply Lemma 14 for (7.7) with H = 2h - 1. Multiplying each term
of the sum in (7.9) by min(l, (where mh 2 is determined by (7.8)),
gives

and the same estimate for TM .
Hence

where

Together with (7.5), we obtain

if we choose To = 2A and 6 = 8(h - 
The result does not depend on the choice of the polynomial P(n). If we

set P(n) = n, Lemma 4 implies

Similarly we get

Remark. In the case h = 1 we have MV = 0 only for (ml, m2) _ (0, 0) and

8. Proof of Theorem 4

In order to prove independence of different digital expansions we can
proceed essentially along the same lines as for the proof of Theorem 3. We
just have to replace the Main Lemma (Lemma 8) by the following three
(main) lemmas (corresponding to the three parts of Theorem 4) which
imply
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and the corresponding statement for primes. Therefore the twodimensional
moments converge to those of the twodimensional normal law and Theo-
rem 4 is proved.

Lemma 15. Let ql, q2 be two positive coprime integers and Pi (x), P2 (x)
two integer polynomials of degrees r, resp. r2 with positive leading terms.
Then for every hl, h2 &#x3E; 1 and for every A &#x3E; 0 we have

and

uniformly for all integers

Lemma 16. Let q &#x3E; 2 and a &#x3E; 1 be two integers and Pl(x), P2(x) two
integer polynomials of degrees rl resp. r2 with positive leading terms. Then
for every hl, h2 &#x3E; 1 and for every A &#x3E; 0 we have

and
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uniformly for all integers

Lemma 17. Let al, a2 &#x3E; 1 be two integers such that is irrational

and let G = and H = denote the corresponding second order
recurrent sequences. Furthermore, let Pl(x), P2 (x) be two integers polyno-
mials of degrees rl resp. r2 with positive leading terms. Then for every
hl, h2 &#x3E; 1 and for every A &#x3E; 0 we have

and

uniformly for all integers

The proofs of these lemmas run along the same lines as the previous
Main Lemma (compare also with [1] and [6]). We have to consider sums of
the type

(cf. (7.4), where, in the q-ary case, M,~, V,~ and Tm, are defined by
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with

Especially, r2, then the proof is straightforward and very similar to
that of Proposition 1 in [6]. The reason is that there are no cancellations
in the leading coefficient of the polynomial MlVlPi(n) +M2Y2P2(n) and
consequently one can directly apply Lemmata 10 and 11 in order to estimate
the corresponding exponential sums.

Therefore we concentrate on the case rl = r2. Here we have to adapt
certain properties.

Lemma 18. Suppose that ql, q2 &#x3E; 2 are coprime integers and Cl, C2, r pos-
itive integers. For arbitrary (but fixed) integers hl, h2 let (1 ~ j ~
hip, 2 E {1,2}) be satisfying 0 mod q and I  (log N)6, where
J &#x3E; 0 is any given constant. Set 

’

Then, for

we uniformly have

for all given 0  1/’  1/, where q = max{ql, q2}.
This lemma is implicitly contained in the proof of Proposition 2 of [6],

the statement of which is that of Lemma 15 for r = 1. However, by using
Lemmata 10, 11 (which have not been used in this generality in [6]) and
18, Lemma 15 follows as Proposition 2 of [6].
Lemma 19. Let q &#x3E; 2 and a &#x3E; 1 be two integers and cl , c2, r positive
integers. For arbitrary (but fixed) integers hl, h2, let (1  j  h 1)
be integers satisfying fl 0 mod q and I  (log N)a and let M~2)
(1  i  h2, j E {I, 2}) be integers satisfying  (log N) 6, where
ð &#x3E; 0 is any given constant. Let 

’
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and

Then, for

and for

we uniformly have

for all given 0  n

Proof. The upper bound is trivial. Thus, we concentrate on the lower
bound. We have, with (5.1) and + 1) = Gka + Gk-1,

with integers 7~’n(l), m~2~ and therefore S = 0 if and only if the equa-
tions

hold. Since (Gk, Gk+I) = 1 for all k, we obtain q hl IClm 1 and hence
(for sufficiently large ~ ~) which is not possible for m(l) 0 0 mod q.

Hence we may assume S ~ 0. In order to get a lower bound for S, we
use Baker’s theorem (see [21]) saying that for non-zero algebraic numbers
0:1, ~2? - " ? an and integers bl, b2,... , bn we have either

or

where

with
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and real numbers ~1~2?-" with where h(.)
denotes the absolute logarithmic height.

Set - = + h2 - 1). Then there exists an integer K with 0  K 
h, + h2 - 2 such that for all j, t

So fix K with this property. First suppose

Then we have log I and we
I., "

can apply Baker’s theorem for

I and obtain

for a certain constant C &#x3E; 0. Of course, this implies

for some constant c &#x3E; 0 and all T &#x3E; 0.

Otherwise we have some Sl, S2 such that for all
J  - J

, Here we get by Baker’s theorem,
as above,

and can estimate S - S by

Hence we have
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Lemma 20. Let al, a2 &#x3E; 1 be two integers such that is irrational,

detG = (Gj) and H = (Hj) denote the corresponding second order recurrent
sequences and Cl, C2, r be positive integers.

For arbitrary (but fixed) integers hl, h2 let (1  j  hi, j, i E {1, 2})
be integers satisfying 1  (log N)6 (where 6 &#x3E; 0 is any given constant)
such that 

and

Then, for

we uniformly have

for all given 0  q’  q, where a = max { 0:1, a2l -

Proof. Again we can concentrate on the lower bound and have

The assumption that a2+4 is irrational ensures 0:2 % Hence S is

zero if and only if the equations

hold. Then we must have e.g.
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we get m~l~ - 0 and thus m~ = m~2~ = = ,S’1 = 82 = 0.
Hence ,S’ ~ 0 and the lower bound is obtained similarly to Lemma 19. D
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