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Weber’s class invariants revisited

par REINHARD SCHERTZ

RESUME. Soit K un corps quadratique imaginaire de discriminant
d et O; l'ordre & conducteur ¢ € N dans K. L’invariant modu-
laire j(£;) est un nombre algébrique qui génere sur K le corps de
classes d’anneau modulo ¢. Les coefficients du polynéme minimal
de j(9;) étant assez large, Weber considére dans [We] les fonc-
tions f, f1, f2,v2,y3 définies plus bas, par lesquelles il construit
des générateurs plus simples pour les corps de classes d’anneau.

Plus tard les valeurs singuliéres de ces fonctions ont joué un role
central dans la solution de Heegner [He] du célebre probleme de
déterminer tous les corps quadratiques imaginaires dont le nombre
de classes est égal & 1 [He,Me2,St]. Actuellement on s’en sert en
cryptographie pour trouver des courbes elliptiques sur des corps
finis avec certaines jolies propriétés.

Le but de cet article est i) d’énoncer certains résultats déja con-
nus de [We,Bi,Me2,Schl] cf. Théorémes 1,2 et 3, concernant les
valeurs singuliéres des fonctions f, f1, f2,72,73, et ii) de développer
une preuve courte de ces résultats.

Cette méthode s’applique aussi & d’autres fonctions cf. Théo-
réme 4 et le tableau précédent celui-ci. Les preuves des théoremes
1 4 4 sont données en fin d’article.

Ces démonstrations résultent de la loi de réciprocité de Shimura
(cf. théoréme 5, ainsi que théorémes 6 et 7), du calcul de la
racine 24-itme de l'unité de n = ¥/A lors des transformations
unimodulaires (cf. proposition 2, tirée de [Mel] formules (4.21) &
(4.23) p.162), et donnent aussi via la proposition 3 des formules
explicites pour les conjugués des valeurs singuliéres, qui sont trés
utiles pour des calculs numériques.

Certains de ceux-ci sont donnés comme exemples juste avant la
Bibliograpie.

ABSTRACT. Let K be a quadratic imaginary number field of dis-
criminant d. For t € N let O; denote the order of conductor ¢
in K and j(9;) its modular invariant which is known to generate
the ring class field modulo ¢ over K. The coefficients of the mini-
mal equation of j(9O;) being quite large Weber considered in [We]
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the functions f, fi, f2,72,7s defined below and thereby obtained
simpler generators of the ring class fields.

Later on the singular values of these functions played a crucial
role in Heegner’s solution [He] of the class number one problem
for quadratic imaginary number fields [He,Me2,St]. Actually these
numbers are used in cryptography to find elliptic curves over finite
fields with nice properties.

It is the aim of this paper i) to enunciate some known results
of [We,Bi,Me2,Sch1] cf. Theorem 1, 2 and 3, concerning singular
values of the functions f, fi, f2,72,7s, and ii) to give a short and
easy proof of these results.

That method also applies to other functions, such as those in
the table preceding Theorem 4. The proofs of Theorems 1 to 4
are given at the end of our article.

Our proofs rely on the reciprocity law of Shimura (cf. Theorem
5, and also Theorem 6 and 7), and on the knowledge of the 24-th
root of unity that acquires 7 = %A by unimodular substitution
(cf. Proposition 2, and [Mel] p.162); they also give via Proposition
3 explicit formulas for the conjugates of the singular values (of the
above functions), that are quite useful for numerical calculations.

Examples of such calculations are to be found immediately be-
fore the References.

Weber’s Class Invariants
The Schléfli functions Weber used in [We] are defined by

cp (2EL 2z 2
s =02, =T, 5= 18 o0 5o
where
n(z) =g [JA-q"), q=e,
n=1

denotes the Dedekind n-function. They are related by the identity
f(2)f1(2) f2(2) = V2.

Further Weber considers the functions

Y 2T g2(2)
Y2(2) = Vi(2) = 12‘(5;;)—24@,

13(2) = Vi(2) —12% := 6° 93(2)

(2m)°n(2)'?
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Herein j is the modular invariant and g9, g3 are the Eisenstein series

1 1
g2(2z) = 60 _;_ —,  93(2) =140 E —, L;=Zz+L.
We:z w WG;OZ w
wF#0 w

They have the g—expansions

(2mi)*
223

27i)8
[1 + 240T3] ,g3(w) = (2332} [—1 + 504T5]

go(w) =
with

o0
Ty =Y ok(n)q", ox(n):= ) d*.
n=1 0<d|n
The Schlafli functions f, f2 and the modular invariant j are related by the
formulas
fA-16 A +16_ f3+16

L Y
Some basic results (cf. [De] or [La]). In what follows let K be a quadratic
imaginary number field of discriminant d and for some integer ¢t we let

9 denote the order of conductor ¢ in K. Using the notation [wy,ws] :=
Zwj + Zws the order O is explicitly given by

0, = [t‘”‘/a,l}.

2

A Z-module a of rank 2 in K is called a proper ideal of O, if
Oi={{€K|faCa}

The set J; of proper O;-ideals is a group under multiplication and the
quotient

Re =Tt/ He
is called the ideal class group of O;. For

[a1,00) =a€teR with 3(-32) >0
2
we set
. . ., O
j(8) = j(a) := j(—
a2

which is well defined, because j is invariant under all unimodular transfor-
mations of H. j(£) is called the modular invariant of ¢ or the modular
invariant of a. For any class & € R, the value j(¢) is an algebraic number
that generates the ring class field modulo ¢ over K

K(5(®) = .
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(2, is the abelian extension of K belonging to the subgroup 4l; of the ideal
group of K that is generated by all ideals of the form (), A integral, prime
to t and A = r mod ¢ for some r € Z. For &, ¥ € R; we have

306 #5(¥) e A Y
and the values j(t),t € R;, form a complete system of conjugate numbers
over K. It is even a complete system of conjugates over Q. In particular

this implies
Qii(e)) =RNQ

[QG(®) : QJ = [K(5(F) : K] = |Re|.
We have the explicit formula

he = 9] = b | (1 - :7 (g)) ’

plt

and

where the product is over all primes p dividing ¢, and ( %) is the Legendre
symbol (with d the discriminant of K). Here hgx := |R;| is the class
number of K, and e the index of the group of all roots of unity in K, that
are congruent to 1 mod ¢, in the group of all roots of unity in K.

More precisely there is an isomorphism

o: R — G(Q/K)
where G(Q;/K) denotes the Galois group of Q;/K such that the action on
the j-invariants is
7(8)°® = j(ep~1) for all &, b € R;.
This isomorphism is in close connection to the description of G(Q2;/K) given
by class field theory. Let ¢ be an integral ideal of O, prime to ¢. Then
¢t := cN O, is a proper D;-ideal and
o(c) = o(c),

where in abuse of notation o(c) = o(cil;) denotes the Frobenius map asso-
ciated to cil; by class field theory and on the right side o(c;) = o(c:$¢).

In what follows H will denote the upper half plane. A quadratic imagi-
nary number a € HNK is the root of a quadratic equation AX?+BX+C =
0 which is uniquely determined by « if normalized by

A,B,C€Z, gd(4,B,C)=1,A>0.
We call such an equation primitive. The discriminant
D(a) = B? - 4AC
is related to the discriminant d of K by
D(a) = t3d
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for some ¢t € N. This implies [,1] € J;, and, conversely, if [, ag] is
in J; then the quotient & = g1 is the root of some primitive equation of

discriminant t2d. So for o € H with this property the field Q(j()) is
conjugate to the maximal real subfield of ;.
If g is one of the functions f, f1, f2,72, 73 the above formulas tell us that

Qg(@)) 2 Qli(a)).
And following Weber we call g(a) a class invariant if
Qlg(a)) = Qli())-
To describe the conjugates of g(a) we make the following definition.
Definition. Let N be a natural number and a;,...,an, € H such that
[al, 1], ey [Olht, 1]

is a system of representatives for R; and that further the primitive equations
A; X% + B; X + C; = 0 of the o; satisfy

ged(Ai, N) =1 and B; = Bj mod 2N, 1< 14,5 < h.
Then we call ay,...,ap, a N-system mod ¢t.

As we shall prove later in Proposition 3, there always exists a N-system
mod ¢t for every natural number N.

The following Theorem contains Weber’s results on f and f; and also
includes the assertions conjectured by Weber, and proved in the meantime
in [Bi,Me2,Schl].

Theorem 1. Let o € H be the root of the primitive equation
AX? 4+ BX+C=0 with2{A, B=0 mod 32
of discriminant D(a) = B? — 4AC = —4m = t3d.

Then the following numbers g(a) are class invariants:

3
((%)%f(a)z) , if m=1 mod 8,
f(@)?, if m=3 mod 8,

2)7)
—)—l—fl(a)2) ,if m =2 mod 4,
) , if m =4 mod 8.
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Herein the factor (%) denotes the Legendre symbol which is necessary for
the following to hold.

Ifa = ai,...,on, is a 16-system mod t the above singular values g(a;)
Jorm a complete set of conjugates over Q. Thus the minimal equation over
Q is given by

T1(x - g(e)

and has coefficients in Z, because from [De] we know that g(a) is integral.

For discriminants not divisible by 3 the result of Theorem 1 can be
improved using the above relation between f and 7, together with the
following Theorem. It then turns out that the assertions of Theorem 1
even hold without the outer exponent 3 if the primitive equation of a also
satisfies the conditions 3{ A and 3|B. The conjugates are then described by
a 3 - 16-system modulo ¢. Indeed, we have for 7s:

Theorem 2. Let o € H be the root of the primitive equation
AX?+BX+C=0 with3tA, B=0 mod3

of discriminant D(c) = B? — 4AC = t%d.

Then
Qi(e)) i 31D(a),
QiBa)) i 3|D(a).
Herein Q(5(3a)) is conjugate to the mazimal real subfield of Q3; which is
of degree 8 over Q(j(c)) when 3|D(a) and D(a) # 3.
Moreover, in the case 3 t?d , if @ = a1, ..., i5 a 3-system mod t, then
the singular values y2(a;) form a complete set of conjugates over Q. Thus
the minimal equation over Q is given by

H(X - Y2(%))-

Qr2(e) = {

and has coefficients in Z.
A similar result holds for 73:
Theorem 3. Let a € H be the root of the primitive equation
AX? 4+ BX+C=0 with2fA
of discriminant D(a) = B? — 4AC = t*d and we assume

_ J0mod4 if2|D(a),
" |1 mod4 if2¢{D(c).



Weber’s class invariants revisited 331

Then

QVdys(e)) = Qi(e) if 2t D(w),
Qv3(@)) = Qj(20)) if 2|D(ev).
Herein Q(j(2a)) is conjugate to the mazimal real subfield of Qoy which is
of degree 2 over Q(j(a)) when 2|D(a), D(a) # —A4.
Moreover, in the case 2 | t3d, if & = ay,...,an, is a 2-system mod t,
the above singular values y3(o;) form a complete set of conjugates over K.
Thus the minimal equation over K is given by

[IX = 73(es))

1

and has coefficients in O;.

The method of proof described in the next section also applies to other
functions g(w), as for example

Table 1

( )8 1@, 31N,
(n(%)fﬁ(m%, if21 N,
(

m
———) , m=ged(3,N), ifN=s% seNand2¢{N,

n(5)n(%) polg-l
—ov o | (W) z 7, ifN=pqg pgeN, ged(6,N)=1.
A
From [Sch4], Theorem 5, we know that the last function without the -
and y3-factors is very useful for the numerical construction of ring class
fields. They lead to generating equations for all ring class fields, whereas
the Schlifli functions only apply to the cases when t2d is even. Other useful
functions for the construction of ring class fields have been defined in [Mo].
In fact, by Proposition 2 below, it is easy to show that the functions (of
the above Table 1) all do satisfy the hypothesis of the following Theorem.
It refers to the field Fiy of modular functions of level N, N € N, whose
g-expansion at every cusp has coefficients in the N-th cyclotomic field.

Theorem 4. Let g € Fy. We assume g(z) and g(—_z—l) to have a rational
g-ezpansion and to be invariant under all unimodular transformations M =
(:2) mod N. Let o € H be the root of a primitive equation AX2+BX+C =
0 of discriminant B? — 4AC = t2d with gcd(A, N) = 1 and N|C.
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Then, if g(a) # oo, we have
g(a) € Q.

Moreover, if a = ay,...,ap, is a N-system mod t, then the numbers g(o;)
run through the images of g(c) under the different automorphisms of /K.

Proofs

First we state Shimura’s Theorem (see [Sh,La]). The extension Fy /Q(5)
is Galois and there is a natural isomorphism between

Gal(Fy/Q(j)) and GL2(Z/NZ)/{£1}

via the following action of integral 2 x 2 matrices B over Z having deter-
minant prime to N on functions g € Fy:

[9 0 B](2) = 9(B(2)) for B € SL2(Z),

[go ((1,2)]

with b prime to N is obtained from g by applying the isomorphism ({y —
C}’v) of the N-th cyclotomic field to the coefficients of the g-expansion of g.
An arbitrary integral matrix B of determinant prime to N has a decompo-
sition of the form

B=M (}9) M, mod N
with b prime to N and unimodular matrices M7, M5. The action of B on
g is then given according to the above rules by

goB = [[goMl]o(‘l)g)] o M,.

We recall that for an integral ideal b of ©; prime to ¢ the intersection
b; := bNO; is a proper O;-ideal. We can now state the

Theorem 5 (Reciprocity law of Shimura). Let g be in Fiy and a € J; with
Z-basis a1,z and o = ?% € H, g(a) # oo. Let b be an integral ideal of
01 of norm b prime to tN and let B be an integral matriz of determinant
b such that

all . . -
B(a2) is a basis of ab;.
Then

1) g(@) is in Ky, the ray class field modulo tN over K,
2) the action of the Frobenius map o(b) belonging to b is given by

9(a)’® = [g o bB~Y](B(a)).

For many functions occurring in complex multiplication the singular
value in Theorem 5 in fact is contained in a much smaller field. We observe
that by class field theory K;y contains 2; and prove
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Theorem 6. Let g € Fx have a q-ezpansion with rational coefficients and
we assume that go M = g for all unimodular matrices M = (3 2) mod N
and let a be as in Theorem 5 with g(a) # oc.

Then g(a) € Qn¢.

Proof. The Galois group of the extension Ky /S (i.e ray class/ring class
field modulo tN) is the set of Frobenius maps o(r) belonging to integral
ideals b = (r) generated by natural numbers r prime to tN. The matrix B
in Theorem 5 is then B = (8 2) and one can find a unimodular matrix M
satisfying

r’B~l = (1 0 ) M mod N,

0r2
r0
and M = mod N
0r
with a natural number 7/, 7' = 1 mod N. Theorem 5 now implies
g(a)’™ = g(a). Hence g(a) € Qn. O

For the computation of the conjugates of the numbers g(a) in Theorem
6 we derive from the reciprocity law

Theorem 7. Let ay,...,op, € H be a N-system modulo t with primitive
equations A; X? + B; X + C; = 0.
For g € Fy we set

gi:=go (Ai({)a

and we assume g(Aja;) # 0.
Then

gi(a;) € Kyy, i=1,...,hy,
and there exist automorphisms o1,...,0n, of Kin/K with

-1 .
g1 (al)a1 %= gi(ai)’ 1= 17 ey ht7
such that the restrictions of the o; on S are
0i|Q% = o([a, 1]_1)

which constitute the different automorphisms of /K. In particular, if
g1(01) € Q, then

he
[I(X - gi(@)) € K[X].

=1

Proof. By Proposition 3 which will be proved later, there exist unimodu-
lar transformations M; € T'(N), so that the o) := M;(c;) have primitive
equations

AX24+BIX+Cl=0
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satisfying
ged(A;,tN) =1, A4} > 0 and B; = B; mod N.
As g(a;) = g(c}) and o([c},1]) = o([es,1]) it suffices to consider the case
when the A; are prime to tN. (Note that g(Aja}) = g(A1a1) # oo because
Alol = Ajoqy mod NZ.) Then the proper O;-ideals
0; := [Aici, 4]
are contained in O; and prime to tN and so for
¢ := D104
we have
a; = ¢; N Oy

Now let o; := o(c;) be the corresponding Frobenius maps of K;y/K. Then
their restrictions to ; are

ailQ = o(a;) = o([es, 1] )
which constitute the different automorphisms of Q;/K. We set
-B; + tvd

2

This is a quotient of a basis of O;, and as by assumption g(ag) # oo, the
reciprocity law implies

Qg = A1a1 =

9(a) € K-
Using B; = B; mod 2N we can write

-B; +tVd .
g(ao) =g (——15———) , t=1,...,hy,

so by the reciprocity law we obtain

9(a0)” = [90 (1(1;(1))] (:%t_\/_&) = gi(ai)-

This implies the assertion of the Theorem. O

We now consider a more special situation.

Proposition 1. Let g be as in Theorem 6 and O, = [B,1] with 8 prime to
Nt and 3(B8) > 0. Let A € N be prime to Nt with the property that A is
the norm of a primitive ideal a of O and that a; = [B, A].

Then, if g(B) # oo, we have
1) g(ﬂ) € QtN:

2) 9(8)"® =g(%),
3) 9(B)°® =g(5).
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Proof. Keeping in mind that g has rational g-expansion coefficients the
first and third assertion follow directly from Theorem 5 and 6. To prove
the second assertion we first observe that O; = [8,1] = [B,1], whence

B9O; = [B,b] with b = BS. Theorem 5 now implies 9(B)°®) = g(%) = g(/—;—)
which completes the proof. O

To apply Proposition 1 to the Schlafli functions we quote from [Mel], p.
162 formulas (4.21), (4.22) and (4.23):

Proposition 2. Let M = (ZZ) be a unimodular matriz which we assume
to be normalized by

c>0 and d>01ifc=0.
We define ¢; and X\ in Z by

c=c;2 withey =1 mod 2 if c # 0,
ca=A=1ifc=0.

Then we have the transformation formula
n(Mz) =e(M)Vez+dn(z) withR(Vez+d)>0

and
a —a2_. a— 3(,2_
e(M) = (.c‘.‘l.)<§4+c(d(1 )—a)+3(a-1)e1+r3(a?~1)

27

Herein () is the Legendre symbol and (o4 = €24 .

Proof. The formula is easily derived from [Mel]. In fact there are two
formulas in [Mel], one in the case 2 { ¢ and another in the case 2 { a. The
above formula is obtained by applying the quadratic reciprocity law to the
Legendre symbol (£) in front of the second formula in [Mel] which then in
the case 2 { ¢ coincides with the first formula. a

Remark. A multiplicative interpretation of the above values e(M), with
M unimodular, can be found in the paper of Farshid Hajir [Ha).

Proposition 3. Let N be a natural number, oy € H the quotient of a basis
of an ideal ay from J; and ApX? + BoX + Cp = 0 its primitive equation.
We assume that gcd(Ag, N) = 1. (this last exigency puts no restriction
on the above ideal ag). Then in any class of R; there ezists an ideal a

and a Z-basis of a such that its quotient o € H has a primitive equation
AX? + BX + C = 0 satisfying

gcd(A,N) =1 and B = By mod 2N.
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For any such o there exists a unimodular transformation M = :1:((1)(1’
mod N such that the coefficients of the primitive equation A'X? + B'X +
C' =0 of M() satisfy

ged(A',tN) =1 and B' = B mod 2N.

Proof. Let a € H be the quotient of a basis of an ideal a € J;. Then
o € H is the quotient of a basis of an ideal from the same class as a if and
only if o/ = M (o) with a unimodular transformation M. So we must show
that there exists a unimodular transformation M such that the primitive
equation of M () has the desired properties. We do this by induction on
the number of primes dividing N. For N = 1 there is nothing to be shown.
Note that B2 = t2d mod 4 which implies the desired congruence for B in
the case N = 1. So we assume the assertion to be shown for some N € N
and we contend that it is also true for N’ = Np®,s € N, with a prime p
not dividing N. To construct the unimodular transformation needed, we

define
(1 —u _ (10
M"'_(O 1), N,,.—(_” 1), uEZ.

If w € H is a root of the primitive equation
AX*+BX +C =0,
then M, (w) resp. N,(w) are roots of the equations
AX?+ (B+2pA)X + (C+puB + p*A) =0
resp. (A+uB +u?C)X? + (B+2uC)X +C =0,

where the gcd of the coefficients is again equal to 1. Now we assume that
a is a root of the primitive quadratic equation

AX? + BX +C =0 with ged(4,N) =1,4 > 0 and B = By mod N.

If a is transformed by some M, or N, with p divisible by N, these condi-
tions are conserved for p sufficiently large. Note that B? — 44C < 0 and
A > 0 implies C' > 0. Further by applying a product of M,’s and N,’s we
can achieve that A becomes prime to p. For p # 2 or (p = 2 and 2|B) this
becomes clear by writing A + uB + p?C = A + u(B + pC). If (p = 2 and
2t B) we must first achieve that 2|C by applying some M, and then we
get gcd(A4,2) = 1 by applying some N,. In this way we end up with an
equation where A is prime to N'. In order to get an equation in which B is
congruent to By mod N’ we apply again some M,,. Then B is transformed
to B’ = B + 2uA. Writing

B - B

B’—Bo=2( +uA),



Weber’s class invariants revisited 337

and keeping in mind that B = By mod 2, we then see that by a suitable
choice of a number 1 = 0 mod N the congruence B = By mod 2N’ can be
satisfied.

To prove the second assertion of Proposition 3 we continue applying this
construction to the primes p dividing ¢ and not dividing N. Then the
parameters u are divisible by N. So the unimodular transformation M
satisfies M = :I:((l) (1’) mod N because it is a product of M,,’s and N,’s with
# =0 mod N. O
Proof of Theorem 1. Using Proposition 2 and the relation f = ﬁ%, we find
that f3 is invariant under unimodular Transformations M = (}?) mod 16.
Further we can see from the definition that f3 has rational g-expansion
coefficients and by Proposition 2 it follows that f3 is in Fijg. Let m be
the natural number from Theorem 1 and ¢ be the conductor of the order
[vV—m,1]. For p € Z we set

B, = v—m+ 2y, if m =1 mod 2,
P lvV=m+1424, ifm=0mod?2.

Then by Theorem 6 we have

F2(Bu) € Q.

Here [Qi6: : ] = 16 for t3d # —4 and [Q¢; : Q] = 8 for t3d = —4.
Choosing the numbers 1 mod 8 with the property that the §, are prime to
t we find that

Gal(th/Qt) =< {O‘(E) /3 mod 8} >.
By Proposition 1 we obtain the Galois action

(607 ® = (P8I = £ (=) P,
Bu

keeping in mind that by class field theory (g is in Q;6; (or by concluding

(8 = f(B0)*f(B1)™® € Quet). Herein we have (g ®u) — (g* with the complex
norm ny, of B,. Further from Proposition 2 we get the identity f(=%) =
f(z). Whence our Galois action becomes

P/=m) Bt = D g b,
Using the relation f3(z) = (16f3(z + 1) we further obtain
F(V=m)7 Bt = (A g gl

From the Frobenius congruence we deduce

Ve B-1 _ (3)

Ny
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Discussing cases we now obtain that for the special arguments o = v/—m
the numbers of Theorem 1 are in ;. Moreover these numbers are real
as can be seen from the g-expansions. So we can conclude that they are
contained in Q; R = Q(j(v/—m)). They are even generators for this field,

because of the relation j = ﬁ.ﬁ‘ﬁ%ﬁﬁ = (P16

I
The assertions of Theorem 1 now follow f;om Theorem 7 keeping in mind

that the action of the automorphism o; in Theorem 7 on V2 is given by
V2" = (£)V2. O
Proof of Theorem 2. Using Proposition 2 it can be seen that -, is invari-
ant under unimodular Transformations M = (§) mod 3. Further 7, has

rational g-expansion coefficients. As in the proof of Theorem 1 we first
assume o« to be of the form

a={\/:n- or

?’m—"‘?— V- —m =1 mod 4,
with a natural number m and conclude by Theorem 6
72 (a) € Q3t7

where ¢ denotes the conductor of the order O; = [a,1]. For a = 9—@ the
assertion is trivial because 72(a) = 0. Otherwise we find
3, ifm= 0mod3,
[Q3:: %] =42, ifm=-1mod3,
4, ifm= 1mod3.

<ola+1)>, ifm= O0mod3,
Gal(Q3:/Q) = { <o(a+3) >, ifm=-1mod3,
<oglaxl)>, ifm= 1modS3.
We compute the Galois action on v2(a) by Proposition 1:
G¥E 1
72(a)a ate) = (’)'2(6! + “)Cg)a(m) = 72(3_'_—“)(;"“'

Here n, is the norm of a+ i which is congruent to m + p? modulo 3.
Using further the transformation formula y2(=%) = 72(2) the Galois action
becomes

— 2
72(a)0(a+n) - 72(_5)Cg(1+fn+u ) _ o a)cg(2+m)_

Observing that 2 (a) is real, we can conclude as in the proof of Theorem 1:

_JUuNR=Q(j(a)) if3tm,
Qrz() = {Q3t AR =Q(j(3a)) if 3m.
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The rest of the proof now follows again from Theorem 7. O

Proof of Theorem 3. As in the preceding proofs it suffices to consider the
case when « is of the form

i"j%E’E, —m = 1mod 4, or
v—-m

with a natural number m. As -3 satisfies the hypothesis of Proposition 1
with N = 2 we have

Q=

v3(@) € Qo,
where t is the conductor of O; = [a,1]. Here D(a) = —m, and

o1 Jlord if 24 D(e),
(20 : %] = {2 if 2|D(a).

In the case 2 { D(c) this implies y3(a) € €, because the square of y3(a) is
in Q;. Here v/dv3(a) is real and by the usual arguments it follows

Q(Vdys(e)) = Qj(a)), if 2 D().

In the case 2|D(a) the Galois group of Q2;/€; is generated by o(a+ 1)
and, using the identities y3(z + 1) = —v3(2z) and 73("71) = —3(2), we
get 13(@)°@+1) = —y3(c). This implies Q(13(e)) = Q2 NR = Q(j(20))
because in this case y3(a) is real. The last assertion of Theorem 3 follows
again from Theorem 7. O

Proof of Theorem 4. From Theorem 5 we know that g(e) is in Kyy. So
we are left with the proof of g(a) being invariant under the automorphisms
of K;n/Q:. These are all Frobenius maps o(c) belonging to some principal
primitive prime ideal ¢ = AD; of norm ¢ prime to tN with A € O;. To
compute g(a)?(® we observe that

a:= [Aa, 4] € J; and O; = [Aa, 1.
By adding to o a suitable number from NZ we can further achieve that
@ = D1\ = [Ae, ] and at; = [Aq, Ac).

Under this change of a the value g(a) remains the same because g has the
period N and also the assumptions about the coefficients of the primitive
equation remain valid. The reciprocity law now implies

9(0)™® = g(2).

To show that g(%) = g(a) we observe that

() () (4)
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where u,v € Z come from the representation A = u + vAa € O; = [Aa, 1].
Further we have

[Aa, Ac] = at; = A[Aa, A].

So there is a unimodular matrix M satisfying

o ()G () (5)

Comparing coefficients, we now get the identity

10 u vC
<Oc) _M(—vA u—vB)’

M= (*O) mod N,
* %k

because by assumption we have N|C and gcd(N,c) = 1. From (+) we now
conclude that £ = M(a) and the Galois action therefore becomes

9(e)7 = (=) = g(M(@)) = gle).

This invariance implies g(a) € Q.. O

which tells us that

Examples.

The polynomials in the following examples are the minimal polynomials
of the numbers © from Theorem 1.

1) m=17,0 = %f(\/—_)—m 2
Xt-X3-2X2-X+1

2) m=11,0 = f(v/—m) :
X3-2X2+2X -2
3)m =13,0 = {1 f(v—-m)*

X?2-3x-1
4) m=23 ,0 = Vl_é-f(\/—m)

X3-X-1
5) m=22, © = % fi(v/—m)?

X?2-2Xx-1
6) m=28, © = 2—\1/§f1(\/—m)4

X?2-6X+2
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7) m=1001, © = 71_5 f(v/—m)?

X% — 2824 X% 4 75112 X3 — 718892 X7 + 2617834 X3¢

— 3040200 X>° — 5787096 X3* + 11053184 X3° — 12333429 X 32

+ 12040916 X3! + 9400544 X3 + 582996 X?° + 148470680 X 2®

+ 146227624 X7 + 239284416 X?° + 287353308 X?° + 122239373 X4
+ 350484164 X >° + 497832264 X% + 657032444 X2 + 977531386 X 2°
+ 657032444 X° + 497832264 X'® + 350484164 X7 + 122239373 X'¢
+ 287353308 X '° + 239284416 X'* + 146227624 X2 + 148470680 X2
+ 582996 X! + 9400544 X'° 4 12040916 X° — 12333429 X*®

+ 11053184 X7 — 5787096 X°® — 3040200 X° + 2617834 X* — 718892 X°
+75112 X% - 2824 X 41

8) m=2003, © = f(v/=m)

X7 — 360 X6 + 3488 X5 — 15310 X** — 752 X** — 69104 X 22

— 24664 X' — 91520 X?° — 189088 X '° — 175504 X '® — 129792 X7

— 118848 X'® + 52160 X'° — 122240 X'* — 271744 X*® + 161152 X '2

+ 665344 X! + 314624 X' + 336512 X° + 522240 X® + 1093120 X"

+ 706304 X° — 737280 X° — 1262592 X* — 688384 X > — 163840 X — 14336 X — 512

9) m=1013, © = 1 f(v/=m)*

X% — 8638585 X>° — 2071370697 X2* — 138021080344 X* + 383664717488 X*?
— 4702813029912 X2 4 19839877238724 X 2° — 72973630222172 X *°

+ 109241003683084 X '® — 133315578757800 X7 + 159614389643888 X ¢

— 241116348297768 X'° + 107250978902142 X '* — 285857666066774 X*
—107250978902142 X% — 241116348297768 X! — 159614389643888 X '°
—133315578757800 X° — 109241003683084 X® — 72973630222172 X’

— 19839877238724 X° — 4702813029912 X° — 383664717488 X*

— 138021080344 X ® + 2071370697 X* — 8638585 X — 1

10) m=1007, © = % f(v/=m)

X% —50Xx%° 4+ 228 X% — 171 X*" — 739 X% + 1063 X*° + 642 X**
— 2904 X*° + 468 X* + 3816 X' — 2916 X?° — 2965 X'° + 4638 X'®
+ 738 X'7 — 3948 X6 4 1488 X° + 2069 X '* — 1844 X** — 303 X !?
+972 X" — 465 X" —198 X° + 349 X® — 122 X" — 111 X°® + 110 X
+13X*-34X>+3X% 44X -1
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11) m=1006, © = -\}—5 fi(v/—m)?

X% _ 2862 X' + 18195 X'® — 48762 X7 + 11084 X'® + 60534 X5 — 174675 X4
— 201690 X** — 351665 X% — 324756 X' — 32904 X'° — 324756 X°

— 351665 X° — 201690 X” — 174675 X® + 60534 X° + 11084 X* — 48762 X°
+18195 X% - 2862 X +1

12) m=1004, © = 2—1ﬁf1(\/—'m)4

X*? — 5671948 X*! + 1112926984 X *° — 74506711266 X>° + 1675441064140 X 3*
— 20345997579492 X7 + 150351443028134 X3¢ — 762529752723792 X *°

+ 2798004552329936 X34 — 7787328942670784 X >* + 16996307948907776 X *2
—30010334766581376 X! + 44569850359633884 X3¢

— 57942714536638960 X *° + 67539174378820096 X *° — 70938998122923512 X 27
+ 67381814594465424 X?° — 58822250908214576 X ° + 48241450095048360 X >*
— 37726219762705792 X** 4 28473140297449600 X **

— 21313830576800768 X' + 16561288807726592 X2° — 13724502533179904 X '°
+11721800154235312 X '® — 9568457484683072 X7 + 6990811806670464 X6

— 4392860511123296 X '° + 2315747367256640 X '* — 1000014874461888 X *

+ 342306261424160 X' — 88137409618176 X! + 15377464747264 X *°

— 1245547475968 X ° — 148822030336 X° + 50249859072 X7 + 152754496 X°

— 2497642752 X° + 580336640 X* — 81811072 X + 5100288 X2 — 360704 X
—128

A slightly simpler generating element for the same field is obtained by
the singular value

6= g”;)) (%)) o =186 ++v—m,

which is a quotient of the form a2/ax2, for the ideal a = [, 5], in the sense
of [Ha-Vi] pp.518-519. For the above a the values y2(a) and y3(a) are

class invariants. So Theorem 4 implies that 0 is in K(j(a)) = Q4 and
from [Sch2, Sch3], we know that © is a generator of Q4/K. It also is a
generator of Q(j(c))/Q because © has a real conjugate. Computing its
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minimal equation over Q by Theorem 4 we find
X% -~ 388 X + 39454 X*° + 152772 X%° — 1151521 X8 — 1808750 X7

(Bi]
[De]

+ 37261677 X3¢ + 123881082 X*° + 624595534 X3 + 1415717296 X>°

+ 4094968517 X 32 — 11236196284 X' — 9140592356 X >° + 19698906464 X *°
— 35151306728 X8 — 76440167784 X" + 16320199943 X >® + 4808571960 X *°
+ 21934161066 X2* — 70262876284 X3 + 549244154775 X2

+ 172140515694 X! + 734171360591 X?° + 439699716458 X °

+ 1522058484380 X '8 + 339554800476 X7 + 1544651311977 X ¢

+ 525923997560 X '° + 1338600826888 X '* + 148663740988 X '3

+ 1025057142710 X2 — 4796740960 X! + 445539315907 X *°

+ 7421360504 X° + 166511416826 X® — 70875911504 X + 69044405135 X°®

— 18623298898 X° + 6114740239 X* — 639708518 X° + 22031834 X
— 259936 X + 1.
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