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The Diophantine equation
ax2 + bxy + cy2 = N, D = b2 - 4ac &#x3E; 0

par KEITH MATTHEWS

RÉSUMÉ. Nous revisitons un algorithme dû à Lagrange, basé sur
le développement en fraction continue, pour résoudre l’équation
ax2 + bxy + cy2 = N en les entiers x, y premiers entre eux, où
N ~ 0, pgcd(a, b, c) = pgcd(a, N) =1 et D = b2 - 4ac &#x3E; 0 n’est

pas un carré.

ABSTRACT. We make more accessible a neglected simple contin-
ued fraction based algorithm due to Lagrange, for deciding the
solubility of ax2 + bxy + cy2 = N in relatively prime integers x, y, 
where N ~ 0, gcd(a, b, c) = gcd(a, N) =1 and D = b2 - 4ac &#x3E; 0 is
not a perfect square. In the case of solubility, solutions with least
positive y, from each equivalence class, are also constructed.

Our paper is a generalisation of an earlier paper by the author
on the equation x2 - Dy2 = N. As in that paper, we use a
lemma on unimodular matrices that gives a much simpler proof
than Lagrange’s for the necessity of the existence of a solution.

Lagrange did not discuss an exceptional case which can arise
when D = 5. This was done by M. Pavone in 1986, when N = ±03BC,
where 03BC = min(x,y)~(0,0) |ax2+bxy+cy2l. We only need the special
case 03BC =1 of his result and give a self-contained proof, using our
unimodular matrix approach.

1. Introduction

The standard approach to solving the equation

in relatively prime integers x, y, is via reduction of quadratic forms, as in
Mathews ([6, p 97]). There is a parallel approach in Faisant’s book ([2, pp
106-113]) which uses continued fractions.

However, in a memoir of 1770, Lagrange ([11, Oeuvres II, pp 655-726]),
gave a more direct method for solving (l.l) when gcd(a, b, c) = gcd(a, N) =
1 and D = b2 - 4ac &#x3E; 0 is not a perfect square. This paper seems to have
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been largely overlooked. (Admittedly, the necessity part of his proof is long
and not easy to follow.)
M. Pavone ([10, p 271]) solved (1.1) when N = where

He had essentially solved ( 1.1 ) in general, as Lagrange showed how to
reduce the problem to the case N = ~1. (See (4.2) and (4.6)).

Strangely Pavone made no mention of Lagrange’s paper, referring instead
to Serret ([12, p 80]), who had earlier drawn attention to the possibility of
an exceptional case.

A. Nitaj has also discussed the equation in his thesis, ([9, pp 57-88]),
using a standard convergent sufficiency condition of Lagrange, which re-
sulted in a restriction D &#x3E; 16, thus making rigorous the necessity part of
Lagrange’s discussion. Nitaj discussed only the case b = 0 in detail, along
the lines of Cornacchia (~l, pp 66-70])~
Our contribution in this paper is to use the convergent criterion of

Lemma 2, which results in no restriction on D, while allowing us to deal
with the non-convergent case, without having to appeal to the case p =1
of Pavone, whose proof is somewhat complicated.
The continued fractions approach also has the attraction that it produces

the solution (x, y) with least positive y from each class, if gcd(a, N) =1.
Our treatment generalises an earlier paper by the author on the equation

x2 - Dy2 = N (See Matthews [7]).
The assumption that gcd(a, N) = 1 involves no loss of generality. For as

pointed out by Gauss in his Disquisitiones (see [3, p 221] (also see Lemma
2 of Hua [5, pp 311-312]), there exist relatively prime integers such
that aa2 + ba, + cy2 = A, where gcd (A, N) = 1. Then if a6 - {3, =
1, the unimodular transformation x = aX + #Y, y = ~yX + 6Y converts
ax2 + bxy + cy2 to AX2 + BXY + CY2. Also the two forms represent the
same integers.

2. The structure of the solutions

We outline the structure of the integer solutions of ( 1.1 ) as given in
Skolem ([13, pp 42-45]).
The primitive solutions x + of ax2 + bxy + cy2 = N (i.e. with

gcd(x, y) =1) fall into equivalence classes, with x + yVD and x’ + 
being equivalent if and only if

where u and v are integers satisfying u2 - Dv2 = 4.
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This is equivalent to the equations

It is easy to verify that (2.1) holds if and only if the following congruences
hold:

Each primitive solution gives rise to a root n of the congruence

In fact if (a, 7) is a solution of (1.1) and a6 - ,~7 = 1, then

Equivalent solutions give rise to congruent n (mod 
Conversely, primitive solutions which give rise to congruent n (mod 

are equivalent. This follows from the equations

and congruences (2.3) and (2.4).
It is also straightforward to verify that is replaced by an

equivalent form AX2 + BXY + Cy2 under a unimodular transformation,
then equivalent primitive representations (x, y) and (x’, y’) of N map into
equivalent primitive representations (X, Y) and (X’, Y’). In fact the n
of equation (2.5) is replaced by An, where A is the determinant of the
transformation. (See Gauss [3, pp 130-131].)

3. Some lemmas

Lemma 1. Assume D &#x3E; 0 is not a perfect square and Qo I (PO2 - D).
the n-th complete convergent in the simples continued

fraction for x = (Po and = QOAn-1 - POBn-1, where
denotes a convergent to x, then

or equivalently

Proof. See Mollin [8, pp 246-248]. 0
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Lemma 2. If w = I where &#x3E; 1 and P, Q, R, S are integers such
that Q &#x3E; 0, S &#x3E; 0 and PS - QR = tl, or S = 0 and Q = 1 = R,
then P/Q is a convergent An/Bn to w. Moreover if Q ~ S &#x3E; 0, then

RIS = + + kBn), k &#x3E; 0. Also (+ k is the (n + l)-th
complete convergent to c~. Here k = 0 if Q &#x3E; S, while k &#x3E; 1 if Q  S.

Proof. This is an extension of Theorem 172, Hardy and Wright ([4, pp
140-141)), who dealt with the case Q &#x3E; S &#x3E; 0. See Matthews [7, pp
325-326]. 0

The following result is a special case (p( f) = 1) of a result due to M.
Pavone, [10, p 271]. Pavone’s proof is rather complicated and we give a
self-contained proof using our Lemma 2 as cases (ii) and (iii) (c) of the proof
of Lemma 3 below and in the Appendix.

Lemma 3. Suppose X, y &#x3E; 0, Q, n, R are integers and

where D = n2 - 4QR &#x3E; 0 is not a perfect square. Also let ca = - 2~ and
w* _ be the roots of QB2 + R = 0. Then either

(i) X/y is a convergent Ai-1IBi-1 to w (resp. w*) and if (Fi + 
denotes the i-th complete convergent to w (resp. w*), then Qi = (-1)z2
(resp. Q, = l /-l~i+12~~ or

(ii) D = 5, Q  0 and

where and As/Bs denote convergents to w and w*, respectively
and

where
Moreover X/y is not a convergent to c.r or cv*.

Conversely, if (i) or (ii) hold, then X/y is a solution of (3.3).
Remarks. (a) In the Appendix, we prove that if D = 5 and Q  0,

then r - 1 - s (mod 2) and

the latter being obtained directly by an appeal to symmetry by Pavone
([10, p 277]).

(b) As Pavone points out, we have
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The corresponding equations hold if w is replaced by w*, each Ar is replaced
by As and each Br is replaced by Bs etc.

Consequently, A,-A,-, is not a convergent to w or w*.Br-Br-i

(c) If n is even, say n = 2P, then w = (-P + and

w* _ (-P - where A = p2 - QR. If we then denote the n-

th complete convergent to w (resp. w*) by (P~ + condition (i)
becomes Qi = (-1)z (resp Qi = (-1)z+1).

Proo f . Suppose (3.3) holds. Consider the matrix

where t = -PX - Ry if n = 2P, 
Then in both cases,

Also it is straightforward to verify that

where

Case (i). Suppose QX + Py &#x3E; 0. Then as a &#x3E; 1, Lemma 2 applies and
X/y is a convergent to ar.
Case (ii). Suppose QX + Py = 0. On substituting for QX in (3.4), we get

Hence
Hence

Hence X/y = Lw* J is a convergent to c~* if D ~ 5. ,

] (s = 0) and a; = [X - 1, 2, f ] (r = 1).
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Then

Also QX2 + (2P + 1)X + R = 1 and P = -QX together give

Hence

- I - - -, -

and hence Q  0.
Case (iii) (a) Suppose QX + Py  0. Then -(QX + Py) &#x3E; 0 and

where -a* &#x3E; 1 if D ~ 5.
Hence X/y is a convergent to w*, unless D = 5.
(b) If D = 5 and -(QX + Py) &#x3E; y, then

and again X/y is a convergent to w* by Lemma 2.
In all cases where X/y is the convergent to cv (resp. w*), it

follows from (3.3) and equation (3.2) of Lemma 1, with Po = -n, Qo = 2Q
(resp. Po = n, Qo = -2Q), that

and consequently (-l)’Q,, = 2 (resp. -2) in all cases.
(c) Now suppose D = 5 and y &#x3E; -(QX + Py) &#x3E; 0.

Now, from (3.5), Lemma 2 tells us that
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Hence w* = ~ao, ... , where s = i + 1 and as = k + 1.
Hence (3.6) gives

Next we prove that Q  0. We have from equation (1.1)),

However

so

and hence

Then equation (3.7) gives Q  0.

4. The main result

Theorem 1. Suppose

where N ~ 0, gcd(x, y) = 1 = gcd(a, N) and y &#x3E; 0 and D = b2 - 4ac &#x3E; 0
is not a perfect square.

Let 0 satisfy x - v0 (mod INn, 0  6  Then
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which is not a convergent to w or w*.
Also aN  0.

Conversely,

then (x, y), with x = yO + INIX, will be a solution to (4.1), possibly im-
primitive.

Proof. Suppose

where gcd (x, y) = 1 = gcd(a, N) and y &#x3E; 0. Then clearly gcd(y, I N 1) = 1.
Let x - y8 (mod and

Then

Also

where Q = aiNI, R = (ao2 + b8 + c)/INI and n2 - 4QR = D.
The conclusions of the theorem then follow from Lemma 3, applied to

the equation + n’Xy + R’y2 = 1, where Q’ = EQ, n’ = en, R’ = eR
and e = INIIN. 0
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5. The algorithm
Let A = D/4 if b is even and let the i-th complete convergent to W or

W* be denoted by + -,/A-)/Qi or (Pi according as b is even
or odd.

If equation (4.1) is soluble with x =- y0 (mod &#x3E; 0, there will
be infinitely many solutions because of equations (2.2). It follows that if
w and w* are not purely periodic, we need only examine the first period

the continued fractions for w and w* to determine

solubility of (4.1). For, with cv (resp. w*) being (-P :f: (resp.
(-(2P + 1) t VD)/2Q), the equation Qi = (resp. f2) will hold for
infinitely many i by periodicity and so there will be at least one such i in
the range m  i  m + l. Any such i must have Qi = 1 (resp. 2), as
(Pi + 01) /Qj (resp. (P~ + is reduced for i in this range and so

Qi &#x3E; 0. Moreover if I is even, the sign of is preserved from
one period to the next. If I is odd, then the first or second period will
produce a solution. If w or w* is purely periodic, we must examine Q2,
which corresponds to the third period.

Moreover there can be at most one i in a period for which Qi = 1 (resp.
2). For if Pi + d1 (resp. (Pi + VD)/2 is reduced, then Pi = (resp.
Pi = 2L(VD -1)/2J + 1) and hence two such occurrences of Qi = 1 (resp.
2) within a period would give a smaller period.

Hence we have the following algorithm essentially due to Lagrange, apart
from stage 1:

1. If gcd(a, N) &#x3E; 1, find a unimodular transformation of the given
quadratic form into one in which gcd(a, N) = 1. (See the last paragraph of
the Introduction.)

2. Find all solutions 0 of the congruence (4.3) in the range 0  0  
(This can be done as follows:

First solve t2 = b2 - 4ac (mod 4INt), -INI  t  (If there are no
solutions t, then there is no primitive solution of (4.1) corresponding to t.)
Then solve a8 - t26 (mod INI), 0  0  
For each 0, let n = 2aO + b, P = Ln/2j and Q = 
3. For each of the numbers c~ = (resp. -~2P2Q+‘~), test the

first period to see if Qi = 1 (resp. 2) occurs. If 1 is even, test additionally
for 1 = (-I)iN/INI (resp. 2 = to hold.

Similarly for each of the numbers w* - -p- A (resp. -~2 ,
with i replaced by i + 1.

If D = 5, test additionally to see if aN  0 holds.
4. For each 0 and corresponding for which test 3 succeeds, find the

least i for which the condition Qi = (resp. Qi = 
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holds. If 1 is even, this will occur in or before the first period, while if I is
odd, this will occur in or before the second period. Similarly for W*.

For the corresponding convergent to w or w*, write X = 
y = B$_1. If D = 5 and aN  0, in relation to w, write X = Ar - Ar-l, y =
Br - Br-i . Then x = y0 + produces a solution of (4.1) with x - y8
(mod IND.

Choose the solution (x, y) with lesser of the y values.
The algorithm will produce a solution (x, y) from each class, with the

additional feature that the least positive y is chosen, if the quadratic form
satisfies gcd (a, N) = 1.

6. Examples

Example 1 (Gauss, Article 205). [3, p 189]

As gcd (42, 585) = 3 = gcd (21, 585), we make a suitable transformation

which gives

The latter form has A = 79 and gcd(2, 585) = 1.
We list the roots of 262 + 180 + 1 - 0 (mod 585) and corresponding

values P = 20 + 9:

We find that only P = 157 and 1013 give solutions of equation (6.1):
(i) or = (-157 + Jfi) /l170 gives Q3 = l, A2/B2 = -1/7.
Then y’ = 7 and x’ = 7 - 74 - 585 ~ 1 = -67. Hence (x, y) = (74, -141)

is a solution of (6.1).
c~* = (-157 - 79)/1170 also gives the solution (74, -141).
(ii) c~ = (-1013 + 79)/1170 gives Q2 = 1, AI/ B1 = -6/7. Then y’ = 7

and x’ = 7 - 502 - 585 6 = 4. Hence (x, y) = (3,1) is a solution of (6.1).
w* = (-1013 - v’79)/1170 also gives the solution (3,1).
In fact Gauss gave solutions (83, -87) and (3,1). In the notation of (2.2),

the solutions (x, y) = (83, -87) and (x’, y’) = (74, -141) are related by the
solution (u, v) = (-80, 9) of the Pell equation x2 - 79y2 = 1.

Summarising:
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Example 2. 3x2 - 3xy - 2y2 = 202.

Here D = 33.
The solutions of 392 - 30 - 2 - 0 (mod 202) are 39, 63,140,1fi4, with

corresponding n values 231, 375, 837, 981.

Summarising:

There are 4 equivalence classes of solutions.

Example 3. =19x2 - 85xy + 95y2 = -671.

Here D = 5.
The solutions of 1982 - 850 + 95 - 0 (mod 671) are 443,454,504,515,

with corresponding n values 16749,17167,19067,19485.
The exceptional solutions give the solutions with smallest y:

(i) 8 = 443: w = (-16749 + V5)/25498 = [-1,2,1,10,1,1,2, I],
Q7 = 2, A5 /85 = -44/67. Also A6/B6 = -111/169.
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Exceptional solution:
. -- .... _

Exceptional solution:

Exceptional solution:

Exceptional solution:

Summarising:

There are 4 equivalence classes of solutions.

7. Appendix
Lemma 4. Let
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Proof. We have

and hence

Then (7.1) gives

and (7.2) and (7.3) give

Hence

Also (7.2) and (7.3) imply

Hence

Similarly with
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It follows from cases (ii) and (iii)(c) in the proof of Lemma 3, that

and
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