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Determinants of matrices related to

the Pascal triangle

par ROLAND BACHER

RÉSUMÉ. On étudie les déterminants de matrices associées au tri-

angle de Pascal.

ABSTRACT. The aim of this paper is to study determinants of
matrices related to the Pascal triangle.

1. The Pascal triangle
Let P be the infinite symmetric "matrix" with entries = for

0  i, j E N. The matrix P is hence the famous Pascal triangle yielding
the binomial coefficients and can be recursively constructed by the rules
po,i = pz,o = 1 for i &#x3E; 0 and = pi-lj + for 1  z, j.

In this paper we are interested in (sequences of determinants of finite)
matrices related to P.
The present section deals with some minors (determinants of submatri-

ces) of the above Pascal triangle P, perhaps slightly perturbed.
Sections 2-6 are devoted to the study of matrices satisfying the Pascal

recursion rule = + for 1  i, j  n (with various choices
for the first row and column m;,o ) . Our main result is the experimental
observation (Conjecture 3.3 and Remarks 3.4) that given such an infinite
matrix whose first row and column satisfy linear recursions (like for instance
the Fibonacci sequence 1,1, 2, 3, 5, 8,13, 21, ... ), then the determinants of a
suitable sequence of submatrices seem also to satisfy a linear recursion. We
give a proof if all linear recursions are of length at most 2 (Theorem 3.1).

Section 7 is seemingly unrelated since it deals with matrices which are
"periodic" along strips parallel to the diagonal. If such a matrix consists

only of a finite number of such strips, then an appropriate sequence of
determinants satisfies a linear recursion (Theorem 7.1).

Section 8 is an application of section 7. It deals with matrices which
are periodic on the diagonal and off-diagonal coefficients satisfy a different
kind of Pascal-like relation.

Manuscrit recu le 18 octobre 2001.
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We come now back to the Pascal triangle P with coefficients pi,j = (it;).
Denote by Ps,t(n) the n x n submatrix of P with coefficients ($+$+s+t) i+s

i, j  n and denote by Ds,t(n) = det(Ps,t(n» its determinant.
Theorem 1.1. We have

..........

In particular, the function n ~ podynornivd of degree st
in n.

This Theorem follows for instance from the formulas contained in sec-
tion 5 of [GV] (a beautiful paper studying mainly determinants of finite
submatrices of the matrix T with coefficients tij = ei)). We give briefly a
different proof using the so-called "condensation method" (cf. for instance
the survey paper ~K1~).
Proof of Theorem 1.1. The definition a! b! and a short computa-
tion show that Theorem 1.1 boils down to 

° °

where Ak (n) has coefficients = (i+j+k)! for 0  i, j  n with k = s+t.
The condensation identity (cf. Proposition 10 in [Kl])

(with Mi3’,’---’?k denoting the submatrix of the n x n matrix M obtained
by erasing lines t 11... 7 ik and columns Ji,... allows a recursive (on n)
computation of det(Ak(n)) establishing the result. 0

Theorem 1.1 has the following generalization. Let
I I I I

t,2013u 
,,;;;;;;;;u - -

be a polynomial in two variables x, y and let Q(n) be the matrix with
coefficients = q(z, j), 0  2, j  n.

Elementary operations on rows and columns show easily the following
result.

Proposition 1.2. One has for all n

where CQ (n) has coefficients for 0  i, j  n and where Idn denotes the
identity matrix of order n.

In particular, the sequence of determinants



21

becomes constants where p = min(degree~(Q), degreey(Q)) with
degree~(Q) (respectively degreex(Q») denoting the degree of Q with respect
to x (respectively y).

In general, the function

seems to be polynomial of degree  st in n for n huge enough.
Consider the symmetric matrix G of order k with coefficients =

(.s) (,s) for 0   k. Theorem 1.1 implies det(G) = Dk,k (n)
(with Dk,k(n) given by the formula of Theorem 1.1).

Let us also mention the following computation involving inverses of bi-
nomial coefficients. Given three integers s, t, n &#x3E; 0 let ds,t (n) denote the
determinant of the n x n matrix M with coefficients

Theorem 1.3. One has

Sketch of proof. For 0  k E N introduce the symmetric matrix Ak (n) of
order n with coefficients ajj = 1 , , 0  i, j  n. A small computation(i+j+k). -
shows then that Theorem 1.3 is equivalent to the identity

(with k = s + t) which can be proven recursively on n by the condensation
method (cf. proof of Theorem 1.1).

Let us now consider the following variation of the Pascal triangle. Recall
that a complex matrix of rank 1 and order n x n has coefficients (for
0   n) where a = and # = (,Qo, ... , in-1) are two
complex sequences, well defined up to aa,1 ~3 for A E C*.

Given two infinite sequences a = (ao, al, ... ) and ~3 = ({30, {31,... ) con-
sider the n x n matrix A (n) with coeff cients aij = + + 

for 0  i, j  n (where we use the convention ai,-, = = 0 for all i).
Proposition 1.4. (i) The coefficient aij (for 0  i, j  n) of the matrix
A(n) is given by

(ii) The matrix A(n) has determinant 
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Proof. Assertion (i) is elementary and left to the reader.
Assertion (ii) obviously holds if ao = 0 or ,80 = 0. We can hence sup-

pose (30 = 1. Theorem 1.1 and elementary operations on rows establish
the result easily for arbitrary a and ,8 = (1,0,0,0,...). The case of an
arbitrary sequence {3 with ,~o =1 is then reduced to the previous case using
elementary operations on columns. 0

Another variation on the theme of Pascal triangles is given by considering
the n x n matrix A(n) with coefficients = Pil = Qi, 0  i  n and
a~~j = +x ai-1,j-l, 1  i, j  n. Setting x = 0, p = a =1 we
get hence the matrix defined by binomial coefficients considered above. One
has then the following result, due to C. Krattenthaler ([K2] and Theorem 1
of [K3]) which we state without proof.

Theorem 1.5. One has det(A(n)) = (1 + ( x + p + 0, - p~ ) ’~-1 .
Let now B (n) be the skew-symmetric n x n matrix defined by ba,i = 0, 0 

The computation of the determinant of B(2n) is again due to Kratten-
thaler ([K2] and Theorem 2 of [K3]):

2. Generalized Pascal triangles
Let a = (ao, al, ... ) and # = ({30, (31, ... ) be two sequences starting

with a common first term Define a matrix P,,,,6 (n) of order
n with coefficients pi,j by setting pa,o = aZ, for 0  i  n and

pi, j = Pi-1,j for 1   n.

It is easy to see that the coefficient pi, j of is also given by the
formula

We call the infinite "matrix" Pa,f3(oo) the generalized Pascal triangle
associated to a, ~3.
We will mainly be interested in the sequence of determinants

Example 2.1. Take an arbitrary sequence a = (ao, aI, ...) and let {3
be the constant sequence {3 = ... ). Proposition 1.4 implies

(using perhaps the convention 0° = 1).
This yields an easy way of writing down matrices with determinant 1
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by choosing a sequence a = (ao = 1, a1,...). The finite sequence a =

( 
1 1 1 1

(1, -2, 5,11) for instance yields the determinant 1 matrix C 12 11 o i 1 . .

11 15 19 2411 15 1924

3. Linear recursions

This section is devoted to general Pascal triangles constructed from se-
quences satisfying linear recursions. Conjecturally, the sequence of determi-
nants of such matrices satisfies then again a (generally much longer) linear
recursion. We prove this in the particular case where the defining sequences
are of order at most 2.

Definition. A sequence Q = (oo, O’l, 0’2, satisfies a linear recursions of
order d if there exist constants D1, D2, ... , Dd such that

The polynomial

is then called the characteristic polynomials of the linear recursion.

Let us first consider generalized Pascal triangles defined by linear recur-
sion sequences of order at most 2:

Given we set ao = ~o - yo and consider the
square matrix M (n) of order n with entries

The matrix M(3) for instance is hence given by M(3) =

where rr~3 3 = 2a1 + 2(31 + Ala, + + A2’Yo + 
We have hence M(n) = Pa,,8(n) where Pa,,8 is the generalized Pascal

triangle introduced in the previous section.
We set d(n) = det(M(n)) for n &#x3E; 1 and introduce the constants
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Theorem 3.1. The sequence d(n), n &#x3E; 1 defined as above satisfies the
following equalities

Theorem 3.1 will be proven below.

Example 3.2 (a) The sequence (det(Pa ~(n)))~,=12 _._ of determinants as-
sociated to two geometric sequences

is given by

Let a = (ao, U1, ...) and ~i = ({30, (3¡, ... ) be two sequences satisfying
ao = ~o = 7o and linear recursions

of order a and b.
Theorem 3.1 and computations suggest that the following might be true.

Conjecture 3.3. If two sequences a = (ao, a1,...), (3 = (~o, /31, ... ) sat-
isfy both linear recurrence relations then there exist a natural integer d E N
and constants Dl, ... , Dd (depending on a, (3) such that

Remarks 3.4. (i) Generically, (i.e. for a and ~3 two generic sequences of
order a and b such that ao = the integer d of Conjecture 3.3 seems to
be given by d = a+b-2
(ii) Generically, the coefficient Di seems to be a homogeneous form (with
polynomial coefficients in A1, ... , Aa, Bl, Bb) of degree i in 10, al, 
... , ~C3b-1. For non-generic pairs of sequences (try ,~3 = -a with a =
(o, al, ... ) satisfying a linear recursion of order 3) the coefficients Di may
be rational fractions in the variables.

(iii) If a = b &#x3E; 1 and if the recursive sequences cx, /3 are generic, then the
coefficients Do = - i , Di , ... , Dd of the linear recursion in Conjecture 3.3
seem to have the symmetry
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where q is a quadratic form in ai, {3i factorizing into a product of two
linear forms which are symmetric under the exchange of parameters ai with
{3i and Ai with Bi (this corresponds to transposing Pa~,~).

Theorem 3.1 shows that the generic quadratic form q2 working for a =
b = 2 is given by

The generic quadratic form q3 working for a = b = 3 seems to be
I . , . ’"’ , - , ’It.

Example 3.5. Consider the 3-periodic sequence a = (ao, al, a2, ... , ak =
ak_3, ... ) . The sequence d(n) = seems then to satisfy the
recursion relation

where 

’

n

In the general case

of two 3-periodic sequences (starting with a common value one seems

to have

where
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Let us briefly explain how Conjecture 3.3 can be tested on a given pair
of linear recurrence sequences.

First Step. Guess d.
Second step. Compute at least 2d + 1 terms of the sequence

Third step. Check that the so-called Hanket matrix

of order d+ 1 has zero determinant (otherwise try again with a higher value
for d) and choose a vector of the form

in its kernel. One has then by definition

for
Finally, check (perhaps) the above recursion for a few more values of

n&#x3E;2d+1.

3.1. Proof of Theorem 3.1. The assertions concerning d( 1 ) and d(2) are
obvious. One checks (using for instance a symbolic computation program
on a computer) that the recursion relation holds for d(3), d(4) and d(5).

Introduce now the lower and upper triangular square matrices
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of order n and set M = TA M TB. The entries inij, 0  i, j  n of M
satisfy = i-ni- ij + (i, j) 0 (2, 2) for 2  i, j  n. One has

where

Developing the determinant d(n) = det(M) along the second row of M one
obtains

where d(n - 2) = det (M (n - 2)) with coefficients mi,j = mi+2,j+2 for
0z,~~20132 (i.e. M (n - 2) is the principal submatrix of if obtained
by erasing the first two rows and columns of At) and where .P(?~ 2013 1) is the
square matrix of order (n - 1) with entries po,o = 0 and pij = for

O~J~-lJzJ)~(0,0).
The matrix M(m) (m  n - 2) is a generalized Pascal triangle associated

to the linear recursion sequences a = (-60, Zil, and ~9 = (/?o? ~i? - ") of
order 2 defined by

Induction on n and a computation (with A1 = B1 = 2, A2 = B2 = -1)
shows the equality
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Introducing the (n - 1) x (n - 1) lower triangular square matrix

.. ,

we get P = Tp P(n -1) Tp with coefficients iiij, 0  i, j  n -1 given by

Let P(n - 3) denote the square matrix of order (n - 3) with coefficients
j5i,j = Pi+2,j+2 , 0  i, j  n - 3 (i.e. P(n - 3) is obtained by erasing the
first two rows and columns of P(n -1)). One checks the equality

where M(n - 3) is defined as above. This implies the identity

Using the recursion relation d(rn) = D1 d(m -1) + D2 d(m - 2) (which
holds by induction for 3  m  n) we can hence express d(n) as a linear
function (with polynomial coefficients in qo , a1, A2, of d(n -
4) and d(n - 5).

Comparing this with the linear expression in d(n - 4) and d(n - 5) ob-
tained similarly from DI d(n - 1) + D2 d(n - 2) finishes the proof. 0

4. Symmetric matrices

Take an arbitrary sequence a = (ao, a1,...). The generalized Pascal
triangle associated to the pair of identical sequences a, a is the generalized
symmetric Pascal triangle associated to a and yields symmetric matrices
Pa,a(n) by considering principal submatrices consisting of the first n rows
and columns of Po , a.
The main example is of course the classical Pascal triangle obtained from

the constant sequence a = (1,1,1,...). Other sequences satisfying linear
recursions like for instance the Fibonacci sequence
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and shifts of it yield also nice examples.
Conjecture 3.3 should of course also hold for symmetric matrices obtained

by considering the generalized symmetric Pascal triangle associated to a
sequence satisfying a linear recurrence relation.
The generic order ds (a) (where a denotes the order of the defining linear

recursion sequence) of the linear recursion satisfied by seems

however usually to be smaller than in the generic non-symmetric case. Ex-
amples yield the following first values

and suggest that perhaps ds(a) _ (3a-1 + 1)/2.
The coefficients Di seem still to be polynomial in ai and Ai.
The symmetry relation has also an analogue (in the generic case) which

is moreover somewhat simpler in the sense that it is given by a linear form
p (in ao, ... , a,,,- 1) and we seem to have

(where Do = -1).

Example 4.1. If a sequence

satisfies a linear recursion relation of order 3, then the sequence d(n) _
(the matrix Pa,a (n) has coefficients po,i = pi,o = ai, 0  i  n

and pi,j = pt-ij + for 1  2, j  n) of the associated determinants
seems to satisfy

where
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with

We conclude this section by mentioning the following more exotic exam-
ple :

Example 4.2. (Central binomial coefficients) Consider the sequence

of central binomial coefficients. For 1  n  36 the values of det(Pa,a (n) )
are zero except if n -1, 3 (mod 6) and for n -1, 3 (mod 6) the values of

have the following intriguing factorizations:

where p = 4893589.
The matrix Pa,a(n) seems to have rank n if n =- 1, 3 (mod 6), rank n -1

if n - 0 (mod 2) and rank n - 2 if n - 5 (mod 6).

5. Skew-symmetric matrices

Given an arbitrary sequence a = (ao, al, ... ) with ao = 0, the matrices
are skew-symmetric.

Determinants of integral skew-symmetric matrices are squares of inte-
gers and are zero in odd dimensions. We restrict hence ourself to even
dimensions and consider sometimes also the (positive) square-roots of the
determinants. Even if Conjecture 3.3 holds there is of course no reason that
the square roots of the determinants satisfy a linear recursion.
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The conjectural recurrence relation for skew-symmetric matrices has the
form

However the coefficients D1’...’ seem no longer to be polynomial
but rational for generic a. Moreover, the nice symmetry properties of the
coefficients Di present in the other cases seem to have disappeared too.

Proposition 5.1. (i) The skew-symmetric matrices Pa,-a(2n) associated
to the sequences a = (o,1, l,1,1, ... ) have determinants 1 for every natural
integer n.
(ii) The skew-symmetric matrices P,,,,,-,,(2n) associated to the sequence a =
(0, 1, 2, 3, 4, 5, ... ) have determinant 1 f or every natural integer- n.

Both assertions follow of course from Theorem 3.1. We will however

reprove them independently.

Proo f . Consider the generalized Pascal triangle
,. , ... , , , "

The matrices P(m) given by retaining only the first m rows and columns
of P(oo) are all of determinant 1 (compare the transposed matrix P(m)t
with Example 2.1).

Expanding the determinant along the first row one gets

The fact that skew-symmetric matrices of odd order have zero determinant
proves now assertion (i) for even m and assertion (ii) for odd m. 0

Remark 5.2. The coefficients of the infinite skew-symmetric matrix

have many interesting properties: One can for instance easily check that

(with the correct definition by (=~) = (Õ1) = 1 = 0

for k = 0,1, 2, 3, ... ). These numbers are the orders of the irreducible
matrix algebras in the Temperley-Lieb algebras (see for instance chapter
2.8, pages 86-101, in [GHJ]).
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There are other matrices constructed using the numbers (i+j-l) - 
whose determinants have interesting properties: Let Ak(n) and Bk (n) be
the n x n matrices with entries

for 0  i, j  n and k a fixed integer. It follows from work of Krattenthaler
([K2] and Theorem 5 in [K3]) that

Principal minors of ),-(0,1,1,1,... ) (~) associated to submatrices
consisting of 2n consecutive rows and columns and starting at rows and
columns of index k = 0, l, 2, ... have interesting properties as given by
the following result (cited without proof) which is an easy corollary of the
computation of det ( (a + j - i)r (b + i + j ) ) , 0  i, j  n by Mehta and
Wang (cf. [MW]).
Theorem 5.3. Denote by Tk(2n) the 2n x 2n skew-symmetric matrix with
coefficients,

The first polynomials

are given by
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The sequences (Dk(n))k=0,1,2,... (for fixed n) seem also to be of interest
since they have appeared elsewhere. They start as follows:

Geometric sequences provide other nice special cases of Theorem 3.1.

Example 5.4. (i) The sequence a = (0, 1, A, A2, A3, ... ) (for A &#x3E; 0) yields
det(Pa,_a(2n» = A2(n-1).
(ii) The slightly more general example a = (o,1, A + B, ... , ak = 

... ) yields (A - AB + B)2~~-1).

Finally, we would like to mention the following exotic example.

Example 5.5. The sequences

related to Catalan numbers and central binomial coefficients yield the se-
quences = and rB(n) = 

suggesting the conjecture rB(n) = 2n-1rc(n) for n &#x3E; 1.

5.1. The even skew-symmetric construction and the even skew-
symmetric unimodular tree. Given an arbitrary sequence ~3 = (/3o?/?i?
... ) we consider the sequence a = (0, /30, 0, /3i, 0, /?2 ?’" ) defined by a2n = 0
and = (3n. We call this way of constructing a skew-symmetric matrix

out of a sequence {3 = ({30, (31, ...) the even skew-symmetric
constructzon (of Pascal triangles).
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Example 5.1.1. The skew-symmetric matrix of order 6 associated to the
the sequence {3 = (1, 1, - 1, ... ) by the even skew-symmetric construction

is the following determinant 1 matrix

, 
_ - - - 

- I

The main feature of the even skew-symmetric construction is perhaps
given by the following result.
Theorem 5.1.2. (i) Let (~80, ~il, ... , ~3~-1 ) be a sequences of integers such
that

Then there exists a unique even integer ~~ such that

(ii) If /3 = (/3o"(im,(~2, ... ) and 8’ = (,~o"~i~ ~2~ ... ) are two infinite se-
quences of integers satisfying the assumption of assertion (i) above for all
n, then there exists a unique integer m such that {3i = {3~ for i  m and
13m = + f, = with Pm as in assertion (i) cabove ande E {:I: 1 } .
Proof. The determinant of the skew-symmetric matrix

is of the form D(x) = (ax + b)2 for some suitable integers a and b (which
are well defined up to multiplication by -1).

It is easy to see that it is enough to show that a = :1:1 in order to prove
the Theorem (the integer Pm equals then -ab and is even by a consideration
(mod 2)). This is of course equivalent to showing that the polynomial D(x)
has degree 2 and leading term 1.

Consider now the skew-symmetric matrix M of order 2n + 2 defined as
follows: The entries of M except the last row and column are given by the
odd-order (and hence degenerate) skew-symmetric matrix

The last row (which determines by skew-symmetry the last column) of M
is given by

It is obvious to check that det(M) is the coefficient of x2 in the polynomial
D(x) introduced above.

Subtract now row number 2n - 1 from row number 2n of M (with rows
and columns of M indexed from 0 to 2n + 1), subtract then row number
2n - 2 from row number 2n - 1, etc until subtracting row number 0 from
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row number 1. Do the same operations on columns thus producing a skew-
symmetric matrix M which is equivalent to M and whose last row is given
by ( 1, o, o, ... , 0,0). The determinant of M equals hence the determinant
of the submatrix of M obtained by deleting the first and last rows and
columns in M. This submatrix is given by

- 1- ,

thus showing that det(M) = 1 = a2. 0
The set of sequences

associated to unimodular skew-symmetric matrices thus consists
of integral sequences and has the structure of a tree. We call this tree the
even skew-symmetric unimodular tree.

Table 5.1.3. (Part of the even skew-symmetric unimodular tree).

The beginning of this tree is shown above and is to be understood as
follows:

Column i displays the integer {3i of the Theorem. Indices indicate if

{3i = {3i + 1 or ~3Z - 1. Hence the row

corresponds for instance to the sequence ~

implying #5 = 434748 (the sequence (1,1, -1, -7, 69) can hence be ex-
tended either to ( 1,1, -1, -7, 69, 434749) or to ( l,1, -1, -7, 69, 434747) ) .



36

We have only displayed sequences starting with 1 since sequences starting
with -1 are obtained by a global sign change.

6. A "skymmetric" tree?

The construction of a generalized Pascal triangle needs two

sequences a = (ao, al, ... ) and ,~ = (#o , ~31, ... ). Starting with only one
sequence a = (ao, al, ... ) and considering we get generalized
symmetric Pascal triangles and considering we get generalized
skew-symmetric Pascal triangles. Since the sequence &#x26; = (&#x26;o = ao, al =

= a2,..., äi = ( -1 ) i az, ... ) is half-way between a and - a, we
call the generalized Pascal triangle the generalized "skymmetric"
Pascal triangle.
The two sequences

and the associated sequences a satisfy all linear recursions of order 2. Theo-
rem 3.1 and a computation of the first few values show that both sequences

equal 0,1, 2, 22, 23, ... , 12 n-2 7.... All the following finite se-
quences yield matrices Pas (n) with determinants 0,1, 2, 4, 8,16, 32, 64 (for
n =1, 2, 3, ... ) too:

Problem 6.1. Has the set of all infinite integral sequences a = (o, l,1, a3,
... ) such that det(Po,õ(n» = (o,1, 2, 4, ... , 2n-2, ... )n=1,2,... the structure
of a tree (i.e. can every finite such sequence of length at least 3 be extended
by one next term in exactly two ways)?
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7. Periodic matrices

In this section we are interested in matrices coming from a kind of "pe-
riodic convolution with compact support on N" .
We say that an infinite matrix A with coefficients a~~ j, 0  i, j is

(s, t) - bounded (s, t E N) if = 0 for ( j - i) ft [-8, t~.
We call a matrix with coefficients 0  i, j p-periodic if -

ai-p,j-p for i, j &#x3E; p.
An infinite matrix P with coefficients 0  i, j is a finite perturbation

if it has only a finite number of non-zero coefficients.
As before, given an infinite matrix M with coefficients mi,j, 0  z, j we

denote by M(n) the matrix with coefficients m$~j, 0  z, j  n obtained by
erasing all but the first n rows and columns of M.

Theorem 7.1. Let A = A + P be a matrix where A is a p-periodic
(s, t)-bounded matrix and where P is a finite perturbation. Then there

exist constants N, d  ~S s ~), C1, ... , Cd such that

We will prove the theorem for p = 1, s = t = 2 and then describe the
necessary modifications in the general case.
Proof in the case p =1, s = t = 2. Suppose n huge. The matrix A(n) has
then the form 

x/ ,

Developing the determinant possibly several times along the last row one
gets only matrices of the following six types
 , ,
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and writing ti(m) = det(Ti(m)) we have the identity

for m huge enough. Writing R the above 6 x 6 matrix relating ti(m) to
1) we have t(n) = R"-Nt(N) for n &#x3E; N huge enough and for

t(m) the vector with coordinates tl (rr~), ... , t6 (m). Choosing a basis of a
Jordan normal form of R and expressing the vector t(N) with respect to this
basis shows now that the determinants ti(n) (and hence det(A(n)) = t1(n»
satisfy for n &#x3E; N a linear recursion with characteristic polynomial dividing

Proof of the general case. Let us first suppose p = 1. There are then

(s+t) (count the possibilities for the highest non-zero entry in the last s3

columns) different possible types Ti obtained by developing the determinant
det (A(n) ) for huge n several times along the last row and one gets hence a
square matrix R of order ( s ) expressing the determinants det(7i(n» lin-
early in for n huge enough. This shows that the determinants
det(1i(n» satisfy for n huge enough a linear recursion with characteristic
polynomial dividing the characteristic polynomial of the square matrix R.

If p &#x3E; 1, develop the determinant of det(A(n)) a multiple of p times
along the last row and proceed as above. One gets in this way matrices
Rio, ... , according to n (mod p) with identical characteristic polyno-
mials yielding recursion relations between det ( A (n ) ) and det ( A (n - i p) ) . 0

8. The diagonal construction

Let y = (’0, 7i?729’" J be a sequence and let be four con-

stants. The diagonal- construction is the (infinite) matrix with
entries

and we denote by D(n) = the n x n principal submatrix
with coefficients dtj, 0 ~ i, j  n obtained by considering the first n rows
and columns of 
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The cases where = 0 are degenerate. For instance, in the case
u2 = 0 one sees easily that the matrix has determinant

The other cases are similar.
The following result shows that we loose almost nothing by assuming
u1

Proposition 8.1. For A, p two invertible constants we have

where

Proo f . Check that the coefficients iij are given

by dij = IA-’A3 dtj where d,-,j are the coefficients of -1, (n). · This

implies the result easily. D

Proposition 8.2. For n &#x3E; 1 the sequence

assocaated to the geometric sequence 1 = (1, x, x2, x3, ... ) is given by

A nice special case is given by ul = u2 = 11 = 12 = 1. The associated
matrix D (4) = D~1~1,1,1) (4) for example is then given by

and the reader can readily check that the coefficient of is given
by

Proposition 8.2 shows that the determinant det(D,y(n)) is given by

forn&#x3E;1.
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Setting x = 1 in this special case ul = u2 = 11 = l2 = 1, we get a matrix
M with entries = 2li-jl for 0 :5 i, j  n. Its determinant is (-3~’~-1.
It is easy to show that the matrix M a of order n with entries mjj = I

 n has determinant ( 1- a2 ) n-1.
A similar example is the special case -ul = u2 = -11 = l2 = 1 which

yields for instance the matrix D (4) = D~T ’ ’" ’ ~(4) given by

and the reader can readily check that the coefficients of D,y(n) is given
bv

The determinant is given by

forn&#x3E; 1.

Proof of Proposition 8.2. By continuity and Proposition 8.1 it is enough to
prove the formula in the case ul = U2 =1.

This implies = + for i  j .
Subtracting (1 + x) times column number (n - 2) from column number

(n - 1) (which is the last one), etc until subtracting (1 + x) times column
number 0 from column number 1 transforms the matrix D (n) into a lower
triangular matrix with diagonal entries

Theorem 8.3. Let q = (~o, ... , "p-1"O,... ~yp-1, ... ) be a p-periodic
sequence and let 

- -.

be the determinants of the associated matrices (for fixed (~ul, u2, ll, l2)).
Then there exist an integer d and constants C1,... Cd such that

",-.,L

for all n huge enough. 

’

Remark 8.4. Generically, the coefficients Ci seem to display the symmetry
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(with Co = - 1) for some constant p which seems to be polynomial in
’~p, ... ,’~p_1, ~1, ~2~ ll ~ ~2·
Proof of Theorem 8. 3. For k &#x3E; p add to the k-th row a linear combina-
tion (with coefficients depending only on of 

2,..., k - p such that = 0 for i &#x3E; p. Do the analogous operation on
columns and apply Theorem 7.1 to the resulting matrices. 0

I thank D. Fux, P. de la Harpe and especially C. Krattenthaler for many
useful remarks and important improvements over a preliminary version.
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