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609-6

Ideal arithmetic and infrastructure in purely
cubic function fields

par RENATE SCHEIDLER

RÉSUMÉ. Dans cet article, nous étudions l’arithmétique des
idéaux fractionnnaires dans les corps de fonctions cubiques purs,
ainsi que l’infrastructure de la classe des idéaux principaux lorsque
le groupe des unités du corps est de rang 1. Nous décrivons
d’abord la décomposition des polynômes irréductibles dans l’ordre
maximal du corps. Nous construisons ensuite des bases d’idéaux,
dites canoniques, bien adaptées pour les calcul. Nous énonçons
des algorithmes permettant de multiplier les idéaux, et même de
les réduire lorsque le groupe des unités est de rang 1 et la ca-
ractéristique au moins 5, L’article se termine avec une analyse
de l’infrastructure de l’ensemble des idéaux fractionnaires réduits

principaux dans le cas des corps cubiques purs de groupe des unités
de rang 1 et de caractéristique au moins 5.

ABSTRACT. This paper investigates the arithmetic of fractional
ideals of a purely cubic function field and the infrastructure of the
principal ideal class when the field has unit rank one. First, we
describe how irreducible polynomials decompose into prime ideals
in the maximal order of the field. We go on to compute so-called
canonical bases of ideals; such bases are very suitable for compu-
tation. We state algorithms for ideal multiplication and, in the
case of unit rank one and characteristic at least five, ideal reduc-
tion. The paper concludes with an analysis of the infrastructure
in the set of reduced fractional principal ideals of a purely cubic
function field of unit rank one and characteristic at least five.

1. Introduction

The infrastructure of a number field of unit rank one refers to the struc-
ture of the set of reduced representatives in an equivalence class of ideals in
the maximal (or any) order of the field: informally speaking, while this set
does not form a group under the operation multiplication with subsequent
reduction - the associative law does not hold - it behaves "almost" like
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a group. First discovered for real quadratic fields by Shanks [3], who gave
it its name, it has since been used as the basis for many number theoretic

algorithms, including regulator, class number, and class group computa-
tion. More recently, it was discovered that elliptic and hyperelliptic (i.e.
quadratic) function fields share many similarities with their number field
counterparts, and that real quadratic function fields exhibit an infrastruc-
ture much like that of real quadratic number fields. As in the number field
case, this infrastructure can be used to compute the regulator and the ideal
class number of these fields ~6j.

While there are only three types of number fields of unit rank one -
real quadratic, complex cubic, and totally complex quartic fields - there
are function fields of arbitrarily high degree that have a representation
as a unit rank one extension of some field of rational functions over a
finite field; presumably, many or perhaps all of these fields exhibit some
kind of infrastructure. This is certainly the case for purely cubic function
field representations of unit rank one, the function field analogue of purely
cubic number fields. Ideal arithmetic and the infrastructure in purely cubic
number fields were investigated by Williams et al. in [11, 12, 10], and much
of the work in this paper was guided by these sources. As in the case of
quadratic function fields, the infrastructure can be used to compute the
regulator and the ideal class number, and hence the order of the group of
rational points of the Jacobian of a purely cubic function field.

For a general introduction to function fields, we refer the reader to ~7J .
Purely cubic function fields are discussed in detail in [5]. Let k = Fq be
a finite field of order q whose characteristic is not equal to 3. Denote by

and the ring of univariate polynomials and the field of rational
functions, respectively, over k in the indeterminate x. Let D = D(x) E 
be a cubefree polynomial, write D = GH2 with G, H E squarefree and
coprime. We choose a cube root p of D in some algebraic closure of 
Then the field K = k(x, p) is a purely cubic function field; it is the function
field of the plane curve y3 - D(x) = 0 over k and is an extension of degree
3 over k(x). We assume that the leading coeffcient sgn(D) of D is a cube
in k* = k 1 101; this can always be achieved by replacing k by a suitable
cubic extension of l~ if necessary.
The ring of integers functions or maximal order of is the integral

closure C~ of k[x] in .K. C~ is a k[x]-module of rank 3 that is generated by the
integrals basis 11, p, c~} where c~ = so c~ is a cube root of G2H. The
discriminant of is A = -27G2H2. - The unit group of k’/k(x), i.e.
the group of units O* of the ring 0, is an Abelian group with torsion part
1~*; it is equal to k* if deg(D) is not a multiple of 3 and infinite otherwise.
In the latter case, the unit rank of is the rank of this group; it is
1 if q - -1 mod 3 and 2 if q - 1 mod 3 (see Theorem 2.1 of [5]). An
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independent set of generators of the torsionfree part of C~* is a system of
fundamental units of 

If C~* is infinite, then it is possible to choose p in the field 
of Puiseux series over k; nonzero elements in have the form
a - EM - a-ixi. The degree valuation on ex-

tends canonically to (and hence to K) via deg(a) = m. We also set
lal = qdeg(a) and [aj = Emo a-ix’ (with 0 = 0 and 0).

Elements in K and in 0 are represented in terms of the integral basis
~1, p, of If a = a + bp + cc,v E K~, denote the conjugates of cx by
a’ = a+b¿p+c¿2w and a" = where t is a fixed primitive cube
root of unity. Since i E k if and only if q =- 1 mod 3, it follows that a’, a" E
K if q - 1 mod 3, whereas K, but a’a" E K, if q - -1 mod 3. In
the latter case, set deg(a’) = deg(a’a") /2 and la’l = qdeg(a’) = 
The norm of a is N(a) - = a3 + b3GH2 + c3G2H - 3abcGH E 
The above introduction enables us to compare purely cubic function

fields with their number field analogues and point out similarities as well
as differences between the two. We recall that a purely cubic number
field has the form K - ~( 3 D) with D = GH 2 where G, H E Z are
squarefree and coprime. While is always a cubic extension, regardless
of the generator, a purely cubic function field K can have representations
as an extension of some rational function field that are not cubic,
although K/k will always have transcendence degree 1. Once a purely
cubic representation has been fixed, the integral basis maximal
order C~, discriminant A, and the definitions of conjugates and norm are
essentially the same as in the number field setting. However, while purely
cubic number fields are complex cubic fields and thus always have unit rank
one, the corresponding function fields can have unit rank 0, 1, or 2. The
case of unit rank 1 is similar to the number field situation in many respects,
generally exhibiting large regulators (where the regulator is half the degree
of the fundamental unit of positive degree), small ideal class numbers, and
an infrastructure on the set of reduced principal fractional ideals that is

discussed in this paper. Embedding K into the field of Puiseux series is
akin to embedding a purely cubic number field into the reals; however, the
valuation [ . I is discrete, i.e. nonarchimedian. Consequently, the results on
ideal reduction and the infrastructure are somewhat simpler and cleaner in
the function field setting.
The discussion of ideals, their decomposition into prime ideals, ideal

bases, and ideal multiplication in Sections 2 - 5 is essentially the same as
for number fields, and the results in these sections hold for purely cubic
function fields of any unit rank. In Sections 6 (on ideal reduction) and 7
(on the infrastructure in the set of reduced principal ideals), we will restrict
ourselves to the case of unit rank 1 and characteristic at least 5.
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2. Ideals and fractional ideals

An ideal is a subset a of O such that a + /~ E a and 9a E a
for all a, ,Q E a and 0 E 0. A(n ideal is a subset f of K such
that there exists a nonzero d E k[x] such that df is an integral ideal. Note
that every integral ideal is also a fractional ideal. Every fractional ideal
f is generated by at most two elements 9, /J E K; that is, f = (a0 + 80 1

E (~~. Write f = (B, ~). If f is generated by only one element 0, then
f is principal; write f = (9). Nonzero fractional ideals are k(x~-modules of
rank 3; if IA, p, vl is a of a fractional ideal f, write f = [A, v] .
The discriminant of f is the rational function

it is independent of the choice of k(x)-basis of f up to a factor that is a
square in k*.

Henceforth, all ideals (fractional and integral) are assumed to be nonzero,
so the term "ideal" will always be synonymous with "nonzero ideal" . The
product of two fractional ideals fl = (81, 01) and f2 = (82, is the frac-
tional ideal flfa = ~Ble2, eu2, ~ie2, ~n2)~ Two nonzero fractional ideals
are equivalent if they differ by a factor that is a principal fractional ideal;
this is easily seen to be an equivalence relation. The set of equivalence
classes is a finite Abelian group under multiplication of representatives, the
ideal class group of K/k(x); its order h’ is the ideal class number of K/k(x).
An integral ideal is primitive if it is not contained in any nontrivial

principal integral ideal ( f ) with f E k[x]. The unique monic polynomial of
minimal degree contained in a primitive integral ideal a is denoted by L(a);
it is the greatest common divisor of all polynomials in a and can always be
included in a k[x]-basis of a (see Section 3 of [5]). Similarly, if a fractional
ideal f contains 1, then 1 can always be included in a k~x~-basis of f.

Primitive ideals and fractional ideals that contain 1 are in one-to-one cor-

respondence as follows: to a primitive ideal a = (L(a), a, /3~ corresponds the
unique fractional ideal fa = (L(a)-’)a = 1, a/L(a), //L(a). Conversely,
let f = (l, ~c, v~ be a fractional ideal where p = (mo + ryP + m2w)/d and
v = (no + nip + n2w)/d with mo, ml, m2, no, nl, n2, d E k[x], d monic, and

= 1. Then to f corresponds the unique prim-
itive integral ideal c~ = df = [d, dv]. The polynomial d = d(f) is unique
and is the denominator of f. We have d(f) = L(af) and L(a) = d(ta)-
The norm of a fractional ideal f = [1, (mo + + (no + nip +

(mo, Ml, m2, no, nl, n2, d E k[x] jointly coprime) is N(f) _
a(mln2 - k(x) where a E k* is chosen so that N(f) is monic.
N(f) is independent of the k[x]-basis of f. We have = for
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some b E k* and N ( f l f 2 ) = for fractional ideals f i , f 2 of O. If
a is an integral ideal, then L(a) ~ If in addition, a is primitive, then
N(a) ~ L(a)2.

3. Prime ideals

Voronoi [8] found bases of all prime ideals of a purely cubic number
field, their powers, and certain products of their powers. His results, easily
adapted to the function field setting, are stated here without proof:

Theorem 3.1. Let P E k[x] be an irreducible polynomials. Then the prin-
cipal ideal (P) splits into prime ideals in C~ as follows:
1. then (P) = p3 where p = [P, p, w] and p2 = p is

called a type 1 prime ideal.
2. If P H, then (P) = p3 where p = [P, p, c~~ and p2 = [P, p, pW]. p is

called a type 2 prime ideal.
3. If P f GH, D is a cube mod P, and qdeg(P) == -1 mod 3, then D has

a unique cube root X mod P in k[x]. In this case, (P) = pq where

or equival entl y, X 1 - mod PH

and

for i E N. Note that Xi, Y E k[x], Xi3 =- D mod P’ and Xi - 0 mod H
for all i E N. p and q are called type 3 prime ideals.

4. If P { GH, D is a cube mod P, and qdeg(P) =- 1 mod 3, then D has
three distinct cube roots X, X’, X" mod P in I~(x~. In this case, (P) =
pp’ p" where

for i, j E N with
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and

for i, j E ~T. Analogous congruences hold for Xi and Xi" (with corre-
sponding A~ and A", respectively), and similar bases can be found for

i E N. p and q are called type 4 prime ideals.
5. If D is not a cube mod P, then (P) = p is inert. 

called a type 5 prime ideal.

Note that if q == 1 mod 3, then K does not contain any type 3 prime
ideals.

4. Canonical bases and ideal multiplication
In this section, we introduce two special types of k[z]-module bases

(which we call "triangular" and "canonical" , respectively) that lend them-
selves well to computation. For primitive ideals, such bases always exist,
and the two types of bases will turn out to be the same. We describe how
to find such a basis, determine containment and equality of ideals using
triangular bases, and compute the product of two coprime ideals using tri-
angular bases. We also show that a nonzero is a primitive ideal
if and only if it has a triangular basis that is also canonical, in which case
all of its triangular bases are canonical. Several of the results in the next
two sections as well as their derivations are analogous to the number field
case discussed in [12], so we omit some of the details here.
We define a basis of a k~x~-module in O to be triangular if it is of the

form

Let {s, c~ /3} be a triangular basis of a primitive ideal a with a = s’(u+p)
and /3 = Then sp E a implies s’ ~ s; similarly, sw E a implies
s" ~ I s. Since a is primitive, we must have gcd(s’, s") = 1. Furthermore,
s = sgn(s)L(a), and ss’s" = sgn(ss’s")N(a).

Triangular bases provide an easy means for comparing modules and prim-
itive ideals.

Lemma 4.1. Let al = and a2 = [52?-S2(~2+
two k[x]-modules given in terms of triangular bases.
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1. al C a2 if and only if

2. If al and a2 are primitive ideals, then al = a2 if and only if

s 1 = aS2, si = a’s’ 2~ s" - 1 " (a &#x3E; a’ &#x3E; a" ~&#x26;*)? &#x3E;

Every primitive ideal in 0 has a triangular basis which can be easily be
found:

Lemma 4.2. Let a = [L(a), p, v] be a primitive ideal where J.L = mo +
= w2th k[x]. Then a

has a triangular basis which can be obtained as follows. Set

Then triangular basis of a.

Proof. Since N(a) ~ I L(a)~, we have s’s" ~ I s. Let U = (mon2 - nom2)/s",
Y - a’mo + b’no, and W = a’ml + b’nl. Then U, V, W E l~~x~, and if
a = (n2p - m2v)/s" = U + s’p and (3 = a’j,L + b’v = V + W p + s"w, then
~ s, cx, ~3 } is a basis of a. Since ~3 p E a, we have s" I W H; similarly, (3w
implies s" I V, and s I WGH. By expressing ap and aw in terms of s, a,
and ,~, we see that s’ ~ U.
Now suppose s’ and s" had an irreducible common divisor p E 

Then p 2 1 I W GH, so p ~ I W and hence (p) ~ I a, contradicting
the primitivity of a. So gcd(s’, s") - 1 and t as given above exists. Now
is, a, ,C3 - is the desired triangular basis. D

We note that by part 2 of Lemma 4.1, all other triangular basis (up to
constant factors in the basis elements) are given by

where
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be two primitive ideals given in terms of
triangular bases with gcd(‘
is a triangular basis of ala2 where

Proof. Let ~s3, + p), + w3 p + c~) ~ be a triangular basis of a1 a2
and assume that are monic for i = 1, 2, 3. Since al a2 9 al, a2, by
part 1 of Lemma 4.1 I S37 sis2 , I s3, sls2 I s3- Examining N(ala2)
shows that these divisibilities are in fact all equalities. The congruences for
u3, v3, w3 also follow from part 1 of Lemma 4.1. 0
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We call a triangular basis Is, s’(u+p), s"(v+wp+w)} of a k[x]-submodule
of O canonical if and only if the following conditions hold.

where sG = gcd(s, G) and sH = gcd(s, H).
It is easily seen that all the prime ideals of types 1-4 and their primitive

powers have canonical bases. Canonical bases satisfy a number of additional
divisibility conditions:

Lemma 4.6. Let be a canonical basis of some
Then

Proof. (4.5) and (4.6) are immediate consequences of (4.1) - (4.4). (4.7) is
obtained by multiplying (4.2) by w and subtracting (4.4). Multiplying (4.2)
by (4.3) produces s I (Huw - Hv - u2)(v - Hw2). From (4.4), s I GH -
Hvw - uv + Huw 2. Multiplying the latter by 2Hw - u and taking sums
yields s ~ + Hw2) - 2GHw - u(Hw3 - G)), so both SISH and SH / s"
divide v(v +Hw2) - 2GHw - u(Hw3 - G). Since by (4.1), S/SH and sH/s"
are coprime, (4.8) follows. Multiplying (4.4) by H, (4.2) by u + Hw, and
taking differences generates (4.9). Finally, (4.10) follows directly from (4.3)
and (4.6). D

Canonical bases characterize k[x]-inodules as ideals:

Theorem 4.7. A a in a primitive ideal if and only if it
has a triangular basis that is canonical. In this case, every triangular basis
of a is canonical.

Proof. Let a be a in 0. If a is a primitive ideal, then a has a tri-
angular basis Is, s~(~u-f-p), by Lemma 4.2. By Theorems 3.1
and 4.4, gcd(s/sGsH, GH) = 1, and the fact that a is closed under multi-
plication by p and implies the rest of (4.1) and (4.2) - (4.4). Conversely,
if a has a basis Is, s’(u+p), that satisfies (4.1) - (4.4), then
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it also satisfies (4.5) - (4.10). In this case, a is closed under multiplication
by p and w, and a is primitive by (4.1). The remainder of the theorem
follows from part 2 of Lemma 4.1. 0

Given the correspondence between primitive ideals and fractional ideals
containing 1, all the above results can immediately be applied to the latter:

Theorem 4.8.
1. Every fractional ideal containing 1 has a canonical basis, i. e. a basis of

5. Ideal squaring
In this section, we describe how to find a canonical basis of the square

of a primitive ideal, given a canonical basis of the original ideal. We give
a more detailed proof of the following lemma as it is slightly different from
its number field equivalent due to the nature of our underlying finite field
k of constants.
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irreducible divisor of s, but not s~. Then (-1 :f: a)u mod p, so

Now by (4.2), Huw’ - u2 - Hv’ mod p, so since j
Thus, gcd(2v’ -f- H(w’)2, s) = 1.

In practice, it is easy to find a suitable f by trial and error. f = 0 or
f E k* is almost always sufficient.
We now have all the tools to compute canonical bases of ideal squares.

Theorem 5.2. Let be a canonical basis of an
ideal a. Set

Proof. Write a = ala2a3 where al is the product of type 1 prime ideals, a2
is the product of type 2 prime ideals, and a3 is the product of type 3 or
type 4 prime ideals. By Theorems 3.1 and 4.4, a3 = [9, s’ (u -~ p), v+wp+w]
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By considering that ; «
it can be shown that

Corollary 5.3. Let, be a canonical basis

tional ideal with canonical basis I

Proof. Let be as in the previous Theorem. ’

fractional ideal with canonical basis
- - -

Example 5.4. Let k, G, H be as in Example 4.3 and let

We have
and the given basis is canonical. We wish to compute a canonical

of the primitive ideal (F)f~ with

and replace w by
thereby achieving

Finally, it is easy to verify that
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6. Reduced bases and ideal reduction

For the remainder of this paper, we only consider the situation where
q - -1 mod 3, so K has unit rank 1, and char(k) &#x3E; 5. We use the notation
of [5]. Let 0 = 1 + mp + nw E K with l, m, n E k(x). We define

where t (g k) is a primitive cube root of unity. Then

If 0, 0 E K and a, b E k(~), then Ça8+bØ + b6,p, similarly for the other
quantities of (6.1). Also 6a = = 0 and (a = 2a.

For a fractional ideal f and an element 0 E f, set

Lemma 6.l. Let f be a fractional ideal containing 1. Then Nf(1) is finite.

An element 0 in a fractional ideal f is a minimum in f if Nf(B) = k0; that
is, Nf(8) contains only constant multiples of 0. f is reduced if 1 E f and
1 is a minimum in f, i.e. = k. An integral ideal a is reduced if a is

primitive and (L(a)-’)a is reduced, or equivalently, L(a) is a minimum in
a. Every ideal equivalence class contains at least one and at most finitely
many reduced representatives. If f is a fractional ideal and 0 E K*, then it
is easy to infer from the definition of a minimum that 0 is a minimum in f
if and only if (B-1)f is reduced. In particular, an element 0 is a minimum
in O if and only if the fractional principal ideal (0-1) is reduced.
We summarize some properties of reduced fractional and integral ideals:

Lemma 6.2.
1. If f is a fractional ideal containing 1, then I
2. If f is a reduced fractional ideal, then
3. If f is a reduced fractional ideal, then
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4. If f is a fractional ideal containing 1 with
then f is reduced.

Proof. For brevity, write d = d(f).
1. Follows from d = L(df) ~ = d2 and N(df) = d3N(f).
2. See Theorem 4.5 of [5].
3. See Corollary 4.6 of [5] for the first inequality. The second inequality

follows from Idl-1  
4. Let 0 E Nf(1) and set A (0) = ((0 - ~(~). Then

I  1. Let be a of f. Since do2 E f, there exists
a 3 by 3 matrix M with entries in k(x~ such that

Taking determinants and squares on both sides yields d2A(B) =
det(M)20(f), therefore 1 &#x3E; 2 

&#x3E; det(M)~.
So det(M) = A(0) = 0, implying 0 = 0’ = 0" and hence 0 E k.

D

Let f be a fractional ideal and let 0 be a minimum in f. An element § E f
is the neighbor of 0 in f if 0 is also a minimum in f, 101  1p1, and for no
~~f,~)~)~~ and 1"p’1  ([5] uses the terminology "minimum
adjacent to B"). By Theorem 5.1 of ~5~, ~ always exists and is unique up
to nonzero constant factors.

According to [5], the troronoi chain (0n)neN of successive minima in 0
where 01 = 1 and is the neighbor of On in () yields the entirety of
minima in 0 of nonnegative degree. This chain is given by the recurrence

= pn0n where An is the neighbor of 1 in the reduced fractional prin-
cipal ideal fn = (On-1) (n OE N) . The first nontrivial unit c = Op+l (p E N)
encountered in this chain is the fundamental unit of Klk(x) of positive de-
gree (unique up to nonzero constant factors). Since the recurrence for the
Voronoi chain implies = for m E No and n E N, {fl, f2, ~ ~ ~ , fP}
is the complete set of reduced principal fractional ideals in K. We call p
the period of E.
We will see later on that a process very similar to the computation of

the Voronoi chain can be used to obtain from a nonreduced fractional ideal
an equivalent reduced one. For this purpose, we introduce the concept of
a reduced basis of a (reduced or nonreduced) fractional ideal f; that is, a
k(x~-basis {1, ~, v} of f such that
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Voronoi ([9], see also pp. 282-290 of [2], and [12] for the purely cubic ver-
sion) essentially described how to obtain the equivalent of a reduced basis
of a fractional ideal in a cubic number field. A function field version for
reduced ideals was first given as Algorithm 7.1 in [5]. Here, we give a more
general version of the method which includes the nonreduced case.

Algorithm 6.3.
Input: A, f., where {1, A, v} is a basis of some fractional ideal f.
Output: p, v where {1, ~, v I is a reduced basis of f.
Algorithm:

3.2. Replace

I 1 1

3.3. If _ lq, 1, replace

where a = E k*.

4. While I  1, replace

While I &#x3E; 1, replace

Theorem 6.4. Algorithrn 6.3 computes a reduced basis of the input ideal.
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Proof. In Proposition 7.2 in [5], it was shown that steps 1-5 compute a
basis 11,1-t,vl such that &#x3E; I(ttl  1, I(vl  1,  1  lrvl.
Suppose 117v _ lvl = 1, so step 6 is entered. Set v = v - [v J , then I F/I  1,
lçvl I = = 117vl, and = ~~L - 2 LvJ I = 1. Hence at the end of the
algorithm, the basis is reduced. 0

If f is reduced, then p is the neighbor of 1 in f by Theorem 7.5 of [5],
so repeated application of Algorithm 6.3, beginning and ending with input
ideal f = O generates the fundamental unit c of Furthermore, it
can be shown that in this situation, the conditions in step 3.1, the first loop
of step 4, and step 6 cannot occur, so these steps can be omitted (see [4]).
The process of computing from the reduced fractional ideal f,, (n E N) a

reduced basis of the next reduced fractional ideal = where ~c~
is the neighbor of 1 in fn is referred to as a baby step.

Example 6.5. For illustrative purposes, we compute the fundamental unit
E of an extension with an unusually short period. Let q be any odd
prime power with q &#x3E; 7 and q - -1 mod 3 and let D(x) = G(x) _ ~6 - ~
and H(x) = 1. Then p = ~2 + O(x-3) and w = p2 = x4 + O(X-1). We call
Algorithm 6.3 on the input p = p and v = p2. After step 2, we have p = -p2
and v = p, and we proceed to step 3.2. We have -~2,
so we obtain p = p and v = -x2p + p2. Since In.1 = lpl = q2 &#x3E; 1

and 117vl q4 we enter the second while loop of step 4. Here,
= L - x2 _ pj = -2x2, so after the first iteration Ec = -x2p- p2 and

v = p. Now [ = Ix2p - p2~  I  1, so we go on to step 5. We see

that - L(ttJ/2 = -~4 ~2~2, so we have p = -(x4 +~Zp+ p2)
and v = x2/2 + p. The inputs to our next call of Algorithm 6.3 are =

~-~2 + and = (-~4 - ~2p + 
The following table shows the complete computation of the Voronoi chain

up to E. For simplicity, certain constant factors (such as -1 and 1/2) of the
basis elements have been removed. Here, f i is the input ideal of the i-th
round of the algorithm.
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At this point, the input ideal has denominator 1, hence f4 = O and p = 3.
The Voronoi chain up to the fundamental unit E is given by

A reduced basis provides an easy means for recognizing whether or not
the ideal generated by this basis is reduced:

Theorem 6.6. Let {1, p, v} be a reduced basis of a fractional ideal f . Then
f is reduced if and only if 1p,1 &#x3E; 1 and &#x3E; 1.

Proof. By (6.2) and (6.3) 1p,/1  1. If 1p,1  1, then p E Nf(1), so f is
not reduced. Similarly, if maxfivl,  1, then by (6.2) lv’l  1, so
v E Nf ( 1 ) and again, f is nonreduced.

Conversely, suppose that 1p,1 &#x3E; 1, &#x3E; 1, and let 6 = 1 +
mp -f- nv E with l, m, n E k(x~. By (6.1) ~~e~, 1 and by (6.2)

 1. Assume Imi  lnl, then  In17vl, so 1  In17vl =
+ n17vl = 1, implying 117vl _ Inl = 1. It follows that m = 0 and

H &#x3E; 1; also Ill = ~~8 - 1. But then 1 = Inl  Invl = 10 - 11  1, a
contradiction. So Inl.

Suppose m ~ 0, then Inçvl  so 1  Iml  lçol  1, a
contradiction. Hence, m = n = 0 and 111 = 181  1, implying 1 = 0 E k. 0

Corollary 6.7. Let ~1, p, vl be a reduced basis of a fractional ideal f. Then
f is nonreduced if and only if 1 or Iv I  = 1.

Let f be any nonreduced fractional ideal and define a sequence 
of fractional ideals as follows.

, ....1 I..

and 11, v,,, I is a reduced basis of fn. Clearly, all the fn are equivalent.
Here, the process of obtaining f,,+, from f,, is also called a baby step; the
difference to the reduced case is that by Corollary 6.7, the ideal f,, is always
divided by an element of nonpositive degree, whereas in the reduced case,
one divides by the element of positive degree. We note that as in the
recursion for the Voronoi chain, we always divide by pn except for one
special case where we do not need Algorithm 6.3 to produce a reduced
basis (see [4]):
Lemma 6.8. Let 11, M, vl be a reduced basis of a nonreduced ideal f with
1p,1 &#x3E; 1. Then reduced with a reduced basis 
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From (6.4), we see that

If fn is nonreduced, then it follows from (6.4), Corollary 6.7, and the fact
that [  1 for all i E N that one of [ and [ is always strictly less
than 1, while the other is no bigger than 1. Therefore 1 and yr/y ~  1,
where at least one of the inequalities is strict. Furthermore, on E f 1 implies

so IN(fl)1 and IN(fl)ll/2, where again
inequality holds in at least one of the two cases.
We claim that a finite number of baby steps applied to a nonreduced

fractional ideal will yield an equivalent reduced one:

Lemma 6.9. Let f = f 1 be a nonreduced fractional ideal. Then there exists
m E N‘ such that fm is reduced, where fm is as in (6.5).

Proof. From our above observation, [  [ for all n e N. If

no (n E N)were reduced, then would be an infinite sequence of

pairwise distinct elements in contradicting Lemma 6.1. D

Theorem 6.10. Let be such that fm is reduced and fn is not reduced
for n  m, as in (6.5) for n E N‘. Then

Proof. If f 1 is reduced, then m = 1, so suppose f 1 is not reduced and set

dn = deg(N(fn)) for n E N. By Lemma 6.8, On = pn for 1  n  m - 2, so
dn &#x3E; + 2 for 2  n  m - 2 and dm-2 + 1. Hence inductively,
d~-2 &#x3E; dl + 2(m - 3) and dl + 2m - 5, so m  (5 - dl + 

Since is not reduced, by part 4 of Lemma 6.2 
By part 1 of the same lemma 1,

so together, we obtain or 0

Corollary 6.7, together with Lemma 6.8 gives rise to the following ideal
reduction algorithm. The number of iterations of the while loop in this
algorithm is given by Theorem 6.10.

Algorithm 6.11.
Input: ft, v where {1, ~c, v} is a reduced basis of a fractional ideal fi.
Output: p, v where 11,1-L,vl is a reduced basis of a reduced fractional

ideal equivalent to f .
Algorithm:
1. Set tz=p, v=v.
2. While lpl  1
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, - ,- . _

2.2. From the compute a reduced using
Algorithm 6.3.

7. The infrastructure of the principal class

According to Section 6, every reduced principal fractional ideal is gen-
erated by the inverse of an element of the Voronoi chain (8n)nEN. - For

fn = (8;1) with 1  n  p (where p is the period of the fundamental unit
E), we define the distance of f,~ to be 8(fn) = 6n = deg(8n). Then the dis-
tance is a nonnegative function on the set of reduced fractional ideals that
strictly increases with n and is easily seen to satisfy the properties

for any n E {2,3,... p~, where, as usual, is the neighbor of 1 in
f n-1. Here, the last inequality follows from the fact that by
Theorem 7.6 of [5]. It follows that for all n E N:

Let fi = (Oil) and fj = be two reduced principal fractional ideals

(I  i, j  p) such that 6; -f- 8~  deg(E). Then the product ideal fi fj
is generally not reduced; however, there is a reduced principal fractional
ideal fm "close to" it, i.e. + 6j, and from (7.2) m z I + j. Shanks
first observed this behavior for the set of principal ideals of a real quadratic
number field and coined it the infrastructure of the principal class [3]. More
exactly:
Theorem 7.1. Let fi and fj be two reduced principal fractional ideals with

= 1 and Ji + 8~  deg(E). Then there exists a reduced

principal fractional ideal fm which we denote by fi fj such that 6m =
ai
Proof. Let f = jjj. By Lemma 6.9, there exists 1b = 1j;m E f such that

fm = (1j;-l)f is reduced for some m E f 1, 2,. p}. Then f"!1 so

A has even degree), so 8 ~ 2 - deg(0). D

Theorem 7.2. Let fi be a reduced principal fractional ideal with 8i 
deg(E)/2. Then there exists a reduced fractional principal ideal fm which
we denote by fi * fi such that 8m = 2Ji + 8 where 0 &#x3E; 8 ~ 3(l - deg(A)/2).
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Proof. Let {1, s’(u + p)/s, s"(v + wp + w)lsl be a canonical basis of fi. By
Corollary 5.3, fr = (F-1) f, where f is a fractional ideal containing 1 and F =
gcd(s, GH)/ gcd(s’, G)s". We have 0  deg(F) :~ deg(s) = deg(d(fi)) C
deg(0)/2 - 1 by part 3 of Lemma 6.2. As in the proof of the previous
Theorem, there exists m e N E f such that f,",, = =

is reduced and 0 &#x3E; deg(~) &#x3E; 2 - deg(A). Then 6m = 2c5i + c5
where 6 = deg(~) 2013 deg(F) satisfies the bounds of the Theorem. D

By (7.2), distances can be as large as 8(p) 1. Since by Theorem 6.5 of [5],
p = O(q(deg(,::l)/2)-2), the quantities 6 in Theorems 7.1 and 7.2 are gener-
ally logarithmically small relative to the distances of the initial fractional
ideal(s). In other words, the ideal fm is essentially where one would expect
it to be, namely 6m is very close to b2 + respectively, 26i. Furthermore,
fr", can be obtained quickly:

Corollary 7.3.
1. Let fi, fj, f,",, be as in Theorems 7.1. Then the number of baby steps

required to compute fm from fifj is at most L3(deg(A) + 4)/8J.
2. Let fi be as in Theorem 7.2. Then the number of baby steps required to

compute f."L from f = (p-l )fr is at most [3(deg(A) +4)/8J.
Proof. From the proof of Theorem 7.1, we have 2 - deg(A)
in the situation of Theorem 7.1; similarly, deg(N(f)) = 2deg(N(fi)) +
3 deg(F) &#x3E; 2 - deg(A) in the case of Theorem 7.2. The corollary now
follows from Theorem 6.10. 0

Note that we did not specify how to multiply two distinct fractional
ideals fi and fj whose denominators are not coprime. It is possible to
develop multiplication formulas for this situation; however, the details are
very tedious. Instead, we compute a reduced fractional principal ideal very
close to fi * fj as follows. Begin by finding the first reduced fractional ideal
fi-n (0  n  i) such that d(fj)) = 1. In many applications,
such as the computation of the fundamental unit (or the regulator), the
infrastructure is used in such a way that fi is fixed, and usually, some or
all of the ideals f i = 0, f 2, ... , fZ-i, fi are precomputed and stored, so it is
easy to find our desired ideal 

- - - - -. - , - - , - - - . =

1 For two functions f (n), g(n) defined on N, we say that f (n) = 8(g(n)) if there exist positive
constants c, d such that cg(n)  f (n)  dg(n) for sufficiently large n E N, i.e. if f (n) = O(g(n))
and g(n) = O( f (n)).
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so by (7.1),  - ndeg(A)/2 and hence -n &#x3E; J &#x3E; 2 -

(n + 2) so * fj is within n baby steps of the ideal fi * fj.
n is generally very small; most of the time, n = 0 or 1 will be sufficient.

Given two reduced fractional ideals fi and fj, it is now easy to compute
the reduced fractional ideal fi * fj, or at least one that is only a few baby
steps short of fi * This process is called a giant step. Note that a giant
step does not use distances explicitly.

Algorithm 7.4.
Input: Reduced bases of two reduced principal fractional ideals fi and f~.
Output:
If fi = fj: a reduced basis of a reduced principal fractional ideal f and

5 = 8(f) - 26(fi) with 0 &#x3E; 8 &#x3E; 3(1 - deg(A)/2).
a reduced basis of a reduced principal fractional ideal f ; also n E

N and 6 = 6(j) - 8( f i) - with -n &#x3E; J &#x3E; 2 - (n + 2) deg(A)/2
(n = 0 if and only if gcd(d(fi), d(fj)) = 1).

Precomputed: Reduced bases of a list of ideals fi-i, ~ ~ ~ with m 
i-1 sufficiently large (required only if fi =1= fj and gcd(d(fi), d(f~)) ~ 1).

Algorithm:
1. 

2. 

while 

2.1. Replace n by n + l.
2.2. Replace f i by 

3. Compute canonical bases of fi and fj using Lemma 4.2.
4. If fi # compute a canonical basis of f = fifj using Theorem 4.4.

If fi = fj, compute a canonical basis of f = (F)ft using Theorem 5.2,
where F is given as in Corollary 5.3. Replace J by 6 - deg(F).

5. Compute a reduced basis {1, ~, v} of f using Algorithm 6.3.
6. While deg(p)  0

6.1. Replace J by J + deg(p,).
6.2. Replace f by (i.e. compute the basis 11, M-1, vIL-1 1).
6.3. Compute a reduced basis 11, p" v} of f.

7. If deg(v)  deg(17v) = 0
7.1. Replace J by J + deg(v).
7.2. Replace f by v-1 f (i.e. compute the reduced basis 11, V-11).
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8. Conclusion and open problems

Equation (7.2) implies Jn = 8(n), or informally, n. The motivation
of the terms "baby" and "giant" step is now clear: by Theorems 7.1 and
7.2, a giant step fi * fj represents a gain of approximately i -+- j in distance,
about as much as i -+- j baby steps. Thus, giant steps allow for much faster
travel through the set of reduced fractional ideals than baby steps. This
fact can be exploited to compute the fundamental unit E of 
The naive way to compute E (and the method employed in [5]) is to apply

baby steps to the ideal fl = 0 until a unit is encountered, thus obtaining
E = Op+l after p baby steps. Instead, one can apply approximately ~
baby steps to tl to find an ideal f m with m ~ and subsequently
execute m giant steps g, = g2 - gl * f ~, ... , gm = gm-, * jz, each
resulting in a distance jump of approximately m. Then the total advance
in distance is roughly p ~ deg(E). This reduces the run time from
order p to order and it is likely that further improvements are possible;
for example, clever search techniques find the fundamental unit of a real
quadratic function field in The difficulty here is that one
needs to know a good approximation of p ahead of time.

Similar methods generate the ideal class numb er h’ and hence
the order h = h’ deg(E)/2 of the group of k-rational points of the Jacobian
of K/k; work on finding h is currently in progress. We point out that h
is independent of the transcendental element x and hence the particular
purely cubic representation of it is a true invariant of K.
We expect that our results in [5] and in this paper extend to arbitrary

cubic function fields - function fields of curves F(x, y) - 0 of degree
3 in y - of unit rank 1 and characteristic different from 3. While the
characterization of these extensions according to unit rank will not be as
beautifully simple as the one given in Theorem 2.1 of [5] for the purely
cubic case, much of the arithmetic may be similar, particular if one uses
a basis of the form 1, p, w with pw E as described by Voronoi in the
number field case (see [2, pp. 108-112~ ) . Furthermore, it may be possible
to use elements of Algorithm 6.3 in the case of unit rank 2, where the
two fundamental units correspond to two different embeddings of K into

We also mention that purely cubic function fields of unit rank 0
are currently being investigated by M. Bauer, currently a Ph. D. student
at the University if Illinois at Urbana-Champaign, who gave an efficient
algorithm for finding the unique reduced representative in every ideal class
if D is squarefree, i.e. the curve representing is nonsingular [1].
Finally, it is as yet unclear how to define and compute a reduced basis in
the case of even characteristic. Preliminary investigations suggest that an
approach quite different from the one given in Section 6 is needed; work on
this case is ongoing. Lastly, cubic function fields of characteristic 3 have
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not yet been explored; their arithmetic is likely somewhat different from
their counterparts of characteristic different from 3.
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