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On normal lattice configurations and

simultaneously normal numbers

par MORDECHAY B. LEVIN

Dedicated to Professor Michel Mendès France
in the occasion of his 65th birthday

RÉSUMÉ. Soient q, q1, ... , qs &#x3E; 2 des entiers et 03B11, 03B12, ... des
nombres réels. Dans cet article, on montre que la borne inférieure
de la discrépance de la suite double

coïncide (à un facteur logarithmique près) avec la borne inférieure
de la discrépance des suites ordinaires dans un cube de
dimension s (s,M,N = 1, 2,...) . Nous calculons aussi une borne
inférieure de la discrépance (à un facteur logarithmique près) de
la suite (problème de Korobov) .

ABSTRACT. Let q, q1, ... , qs ~ 2 be integers, and let 03B1i , 03B12 , ...
be a sequence of real numbers. In this paper we prove that the
lower bound of the discrepancy of the double sequence

coincides (up to a logarithmic factor) with the lower bound of the
discrepancy of ordinary sequences in s-dimensional unit
cube (s,M,N = 1, 2, ... ) . We also find a lower bound of the
discrepancy (up to a logarithmic factor) of the sequence ({03B11qn1},
..., {03B1sqns})Nn=1 (Korobov’s problem) .

1. Introduction.

1.1. A number a E (0, 1) is said to be normal to the base q, if in a q-ary
expansion of cx, cx - dl d2 ... (d2 E {0,1, " ’ q - 1}, i = 1, 2, - ~ - ), each
fixed finite block of digits of length 1~ appears with an asymptotic frequency
of along the sequence Normal numbers were introduced by

Manuscrit reçu le 2 mars 1999.
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Borel (1909). Champernowne (1935) gave an explicit construction of such
a number, namely

obtained by successively concatenating all the natural numbers.
1.1.1. We denote by N the set of non-negative integers. Let d, q &#x3E; 2 be two

Y II -......

We shall call w e Q a confaguration (lattice configuration ). A configuration
is a function w : : Nd - A. Let h, N E N‘ d , 7 h = (h 1, ... , hd ) , N =
(Nl, ... , Nd). We denote a rectangular block by

G = Gh is a fixed block of digits G = E [0, hj), j =
1,...,d~.
1.1.2. Definition. A lattice configuration, w E Q, is said to be normal

(rectangular normal) if for any h E I~d with h1 ~ ~ ~ hd &#x3E; 1 and block of

digits Gh,

where i = (ii, ... , id), and max(Nl, ... , Nd) ~ oo.
It is evident that almost every is normal. The constructive proof of
the existence of the normal lattice configuration is given in ~LS1~, (LS2~.

Below, to simplify the calculations we consider only the case of d = 2.
1.1.3. Let (x~) be an infinite sequence of points in an s-dimensional unit
cube = ~0,71) x ~ ~ ~ x [0,1’8) be a box in [0, 1); and Av(N) be a
number of indexes n E [1, N] such that xn lies in v. The sequence (xn) is
said to be uniformly distributed in [0, 1) if for every box v, 
7i " ’ 7s- The quantity

is called the discrepancy of 
It is known (Roth, [Ro]) that for any sequence in [0,1)~,

and according to the well-known conjecture (see for example [Ni, p. 32,33]),
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1.1.4. The double sequence E [0,1)8, (n, m = 1, 2, ... ) is said to
be uniformly distributed (Cigler, [Ci]) if

Kirschenhofer and Tichy [KiTi] investigated double sequences over finite
sets (see also references in [DrTi, p.364], [KN, p. 18]).
1.2. It is known (Wall, 1949) that a number a is normal to the base q
if and only if the sequence is uniformly distributed in [0, 1) (see
[KN, p. 70]). It is easy to prove similarly (see Appendix of this paper) the
following statement:

Proposition 1. Let q &#x3E; 2 be integer, E {0, 1, ... , q - 1}, m, n =

1, 2, .... The lattice configuration normal if and only if for
all s &#x3E; 1 the double sequence

is uniformly distributed in ~0,1)S, where

1.2.1. In [Le3] it was proved explicitly that there exists a normal number
a with

The estimate of discrepancy was previously known O(N -2/3 log4/3 N) (see
[Ko2],[Le2]). According to (3), the estimate (6) cannot be improved essen-
tially.

Our goal is to find a lower bound of discrepancy of the double se-
quence (4). The main idea of the paper is the using of small discrep-
ancy sequences on the multidimensional unit cube to construct the se-

quence of reals (see (5) and (9)). Here we use a variant of Ko-
robov’s s-dimensional sequences (s = 1, 2, ... ) with optimal coefficient
(see [Ko3]). We provide the following construction of a normal lattice con-
figuration :
1.2.2 Construction. Let Pl, p2 be distinct primes; (q, plp2) = 1,
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where

Theorem 1. There exist integers aT ~~ (m, r - 1, 2, ... , v = 0,1 ) satisf y-
ing ( 11 ), such that f or all s, N, M &#x3E; 1 we have

with max(M, N) -+ oo, and the constant implied by 0 only depends on s.

We note that according to (3), the estimate (12) cannot be improved by
more than the power of the logarithmic multiplier.

Corollary. Let s, q &#x3E; 2. There exist numbers al, ... , as (simultaneously
normal to the base q) such that

The discrepancy estimate was previously known as O(N-’I’) [Kol] and
O(N-2/310gs+2 N) [Le2].
1.3. Let s, ql, ... , qs &#x3E; 2 be integers. Numbers al, ... , as are said to be
simultaneously normal to the base (ql, ... , qs) [Kol],[Ko3] if the sequence

is uniformly distributed in [0,1)~.
In [Kol], Korobov obtained the first examples of simultaneously normal

numbers using normal periodic systems, completely uniformly distributed
sequences, and estimates of trigonometric sums with exponential functions
(see also [Ko3]). In [Kol], Korobov constructed simultaneously normal
numbers with
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and posed the problem of finding simultaneously normal numbers with
a maximum decay of the discrepancy of the sequence (13). In [Lel], si-

multaneously normal numbers with DN = N) were con-
structed. Here we find simultaneously normal numbers with the discrep-
ancy estimate We note that according to (3), this es-
timate cannot be improved by more than the power of the logarithmic
multiplier.

1.3.1 Construction. Let p be prime; (qi, p) = 1, i = 1, ... , s;

where {

Theorem 2. Let s &#x3E; 2. There exist integers

We prove this theorem in Section 4. Theorem 1 is proved in Section 3.
Section 2 contains auxiliary results.

2. Auxiliary results

First, some further notation is necessary. For integers d &#x3E; 1 2,
let Cd(l) be the set of all nonzero lattice points (hI,..., hd) E Zd with

and

for h = (hi, ... , hd) E Cd(l). For real t, the abbreviation e (t) = is

used. Subsequently, four known results are stated, which follow from [Ko3,
Lemma 2], [Ei, Lemma 3], [Ko3, p.13, Ni, p. 35] and [Ni, Theorem 3.10],
respectively.
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Lemma 1. Let p &#x3E; 2, a be integers,

Then

Lemma 2. Let q &#x3E; 2 be an integer. Then

for any divisor v of q with 1  v  q.

Lemma 3. Let A, B, T be integers,

According to [
the proof of Lemma 3 repeats that of [Ko3, p.13~. 0

Applying this lemma twice, we get

Lemma 4. Let N &#x3E; 1 and P &#x3E; 2 be integers. Let tn = yn/P E [0, 1)d
with yn E {O, 1,... , P - for 0  n  N. Then the discrepancy of the
points to, tl, ... , tN_1 satisfies

Corollary 2. Let ’.
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where

where

Using (2), we obtain
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and

Hence

Similarly to [Ni, Lemma 3.9], the second sum is not more than
" "

and we obtain the first part of the lemma.
. It is easy to see that

and
1

Bearing in mind that max(

we find that

Now we obtain from (2) the second part of the lemma.
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Lemma 6. Let

It is easy to see that

and

Applying (2), we obtain:

and

and
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From (20) and (21) we get :

where ’ I

where cp(x) is a Euler function,

It is evident that

Now lE

Lemma 7. Let

Proof. We follow [Ko3, p. 191]. We denote the left side of (25) by al.
Changing the order of the summation, from (24) we get
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where

This yields that there E [0, 2s - 1] such that
If &#x3E; = v, then

Now let A 0 v.
We find for integers vl, v2 and v3 (with (vi, plp2) = 1, i = 1, 2), that

where

and

and
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Hence

From (27) we see, that

Now, applying (29) for the case of p,=v and (30), (31) for the case of
p, =f:. v, we get

We obtain from (26) that

Applying Lemma 2, we get

and
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Now, from (33) we obtain :

Let

Lemma 8. With the notation defined above we have:

Proof. It follows from Lemma 7 and (35) that

where v E [0, tm) ,
Hence
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and

Changing the order of the summation, we find that

Now, from (36), we obtain the assertion of the lemma.

Put

and for v E ~1, s - 1)

Lemma 9. Let I

integers. Then
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and

Proof. We will prove the statement (41). The proof of (40) repeats that
of (41). We denote the left side of (41) by Changing the order of the
summation, from (39) we get

where

Let , and let

Then there is i

It is easy to see that

where

We find that if 1

Now let (mod
From (44) we find that
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and

where

It is easy to verify that

and

According to (7), we have

Bearing in mind that ( we obtain from (46) that

Now, (45) and (43) imply that

From (42) we obtain
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Applying Lemma 2, we get

Lemma 10. Let

and

Then

Proof. Let v = 2. It follows from Lemma 9, and (39) that



500

Changing the order of the summation we obtain that

Now, from (50) we obtain the desired result. Using (49), we similarly obtain
(51) for the case of v = 1. 0

Now, from Lemmas 8 and 10 we get:

Corollary 4. Let

Then

Put
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Lemma 11. With the notation defined above, we have:

Proof. Let
and let = 1 for some io E [0~-1]. We denote the left side of
(55) bya. Changing the order of the summation we get from (54)

where

It is easy to see that

where

Hence
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It is evident that if f fl 0 (mod p2 ), then W (l~_2, h) = 0.
Let f - 0 (mod f = Bearing in mind that = 1,
we obtain

Equation (57) shows that

Then equation (56) implies that

Now from (38) we obtain the assertion of the lemma.

Corollary 5. Let

Then
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Proof. Changing the order of the summation, from Lemma 11 we have

We denote the right side of (60) by Q. Bearing in mind (8) and that
we find that

Taking into account (49), (52), and that b~"2~ ¢ Qm,3, we deduce that

Now, from (58) and (60), we obtain the desired result.

Let ~2~3?~5~6?!/2?!/4 be integers,
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Lemma 12. Let s . Then

We denote the left side of (62) by Q. Changing the order of the summation,
we obtain from (61) that

where

We now obtain

where
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It is easy to see that if f fl 0 mod (pf), then 11

Bearing in mind that (
we have

Hence

Now, from (63) and (39), we obtain the assertion of the lemma.

Then

...

Proof. Changing the order of the summation, from Lemma 12 we have
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1}. Hence

Bearing in mind (50), (52), and that b(m) 0 ~3, we deduce that the left
side of (67) is less than (m + 2)/(8(m + 1)) ~1/4. Then from (64) we
obtain the desired result. D

Now we choose vectors (m = 1, 2, ... ) for the construction in (9) in
the following way:
According to (53),

We take arbitrarily from the set 
Taking into account (53),(59), and (65), we obtain that the set

is not empty. Let a(l),..., be chosen. Then we choose arbi-

trarily so that

The sequence of vectors (m = 1, 2, ... ) is constructed inductively.
Next we fix s &#x3E; 1, and we consider integers m such that s.
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Main Lemma. With the notation defined above, we have:

where

Proof. The proof follows from (7), (8), (36), (52), (58), (64), (68) and
(69). D

3. Proof of Theorem 1.

In this section, the integer s is fixed. For m = 1, 2, ... , let

and let

It is easy to see that is rectangular domain (i = 1, 2) andt

Thus, to compute DGm,,, it is sufficient to find the estimate of DF, where F
is an arbitrary rectangular domain in vm, m = l, 2, .... According to (9),
the analytic expression of depends on the position of (x, y) in Ym.
We will consider three possibilities for the position of F in Vm: the middle,
the right bourne and the upper bourne. Next we will consider sub-domains

f (x, y) E F I i mod (21~~), y * j mod (tm) I of rectangular
domain F, and we will compute the discrepancy on the sub-domain Fi,j for
all (i, j) E [0, 2km) x [0, tm ) , with m = 1, 2, ....
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First we obtain a simple expression for fayqxl, where (x, y) belongs to a
middle domain of V",,:

Proof. From (8) we obtain

Let (;
Then equation (8) implies that r(y) = m.
According to (9), we find that

where y and

Bearing in mind that
we obtain that

Hence
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Now
, - - - 

- _

equation (77) and the conditions of the lemma show that r(y)  m. From

(9) we get

where 0 is an integer. It is easy to see that, here,

Hence we can repeat the calculations (77) - (79). Thus we obtain the desired
result. 0

Define G, =

Lemma 14. Let (
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Proof. Let (x, y) E Gi ,

and let

(We continue periodically the coordinates of vector a~~~.) From Lemma 13
we have that

We denote the left side of (82) by u. Applying Lemma 5 with k = I~~i~ =
andqi=q 

Using Lemma 6 with
, we obtain from (84)

Then Corollary 3 (with j .J
and r = m) implies that
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where : and

It is easy to see that

where Ml pm - and M2p2 T 1 (modpm) . Taking into account
that XIP2 + ylp’ passes the complete residue system and using
Lemma 1, we have that

Now from (24),(35) and (86) we find that

Applying (7), (81) and the condition of the lemma, we obtain the desired
result. D

We can now use Lemma 14 to compute the discrepancy of the considered
double sequence in the rectangular domain E C V.

where the constant implied by 0 only depends on s.

Proof. We consider following rectangular domains:
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where K, K2, K3, K5, L, L2, L5 &#x3E; 0 are integers, and

It is evident that

Using (2) and (75), we obtain

From (81) we obtain :

We obtain from (89),(88),(7), and (8) that

Applying (75), (70), and Lemma 14, we get from (7) and (91) that

Similarly, estimates are valid for the cases of sets E2 and E4. Thus
- . - -

Now from (90) we obtain the assertion of the lemma.
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Consider the right bourne of Vm . Define

Proof. Let (x, y) E G2. Thus y  tmp2:, and from (77) we find that
r(y)  m. Similarly to (78) and (80) we have that

Hence

with and

Therefore
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apply (94) for the pair (x, y + i). Bearing in mind (83), we obtain

with
and xo = (PI - 1)p-. We denote the left side of (93) by ~. Applying

obtain from (19)

Using Lemma 6 with i
we obtain from (95)

Here we now replace fractions with denominators PIP2 and pr+1pr+l
with fractions with denominator p2 +1, and we again apply Lemma 5 with
the parameters 2s instead of s, p2 instead of qi, and m + 1 instead of k~z~

where
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Then Corollary 2 (
that

implies

Taking into account (7), (54), (92), Lemma 1, and the conditions of the
lemma we obtain :

Thus we obtain the assertion of the lemma.

It is evident that

Using (2) and (75), we find that

From (7) and (8) we obtain :
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It follows from (75) that

where G2 - G2 (m, X3, y4, L2, L3), and z = K6 - K4  km . Bearing in
mind that (98) is true, we can apply Lemma 16:

Now from (71), (99), and (100) we obtain the assertion of the corollary.

We now consider the upper bourne of 

form= 1,2,...
Then

where : 1

Proof. Let (x, y) E G3 and let i E (0, t,,t - y2). The equality (83) and the
conditions of the lemma show, that Bm(Y2, i) = 0 . The pair (x, y + i)
satisfies the conditions of Lemma 13. The equation (84) implies that

where
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Now let i E [tm - y2, s - 1]. Then y + i &#x3E; and r(y + i) = m + 1
(see (8) and (77) ). The pair (~,?/+z) satisfies the conditions of Lemma 13
(with m + 1 instead of m). Hence, we have from (84) and (104) that

where

Using Lemma 6 with

obtain from (103), and (105)

where Xl = + + 

Here we now replace fractions with denominators PIP2 and 
with fractions with denominator and we again apply Lemma 5 with
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the parameters 2s instead of s, PI instead of qi, and m + 1 instead of 
i - I

where for

and for

Then Corollary
implies that

Using Lemma 1, (7), (101), and the conditions of the lemma, we find that
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We obtain from (61) that

Thus we derive the desired result.

Proof. Let
It is easy to see that

If K3 f 0, then

Now let I~3 &#x3E; 0. Put

It is evident that

Using (2) and (75), we find that

From (7) and (8) we obtain :

It follows from (75) and (101), that

where G3 = G3(m, XS, X6, Y2, K2, K3) .
Because (107), we can apply Lemma 17. Thus from (72), (108), and (109),
we obtain (106). 0

Now, combining (87),(97), and (106) we obtain :
Lemma 18. Let Kl, K6, Li, L6 &#x3E; 0 be integers and E = K6) x
[tmll, L6) C Then

where the constant implied by 0 only depends on s.
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Proof. Let

and let

It is easy to see that

Now equations (7) and (75) imply that

From Lemma 15, Corollary 7, and Corollary 8, we get

From (110), we obtain the assertion of the lemma. 0

End of the proof of Theorem 1. We use notations (73), (74), and (75).
Let

It is evident that

and is the rectangular domain (z

be coordinates of the vertex of Gm) :
2

From (7), (8), and (48), we see that

Hence

Applying Lemma 18, we obtain
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Using (2), (75), and (111), we find that

Thus we obtain the assertion of Theorem 1. 0

Remark. Using (76), (95), and (103) we can find specifically digits 
(i, j = 1, 2, ... ) of a normal lattice configuration (see (5)). With the no-
tations defined above, if (x, y) = + + x3, tr,.tyl + y2) E 
then

f-% B

4. Proof of Theorem 2

Let

Lemma 19. Let

Then

and
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Proof. We will prove the inequality (114). The proof of (115) repeats that
of (114). We denote the left side of (114) by Q. Changing the order of the
summation, from (112) we obtain

where

Bearing in mind that ( and

we find that

Applying Lemma 2, we obtain
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Corollary 9. There exist integers

and

We use such integers l

numbers aI, ... , as (15).
to construct the real

Proof. We denote the left side of (118) by 0152. Equation (2) implies that
7_ 1 1

with

We apply to Lemma 5:

where q = min(ql, ... , qs). Using (15), we obtain, similarly to (79), that
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Then Lemma 6 (with ki = 1~?.,z - X3 and li = = 1, ... , s) shows that

Now Corollary 2 (with T = P = pm) implies that

Applying Lemma 1, (14), and (112), we obtain

From (14), (116), (120), and Corollary 9, we get (118). Using (117), we
similarly obtain (119). 0

End of the proof of Theorem 2. Let N be in Define

D(N1, N2) = 0 for 0, and

Using (2), (14), and Lemma 20 we have for M E that

Applying (2),(14), (118), (119), (121), and (122), we get the assertion of
Theorem 2:

5. Appendix
The proof of Proposition 1. We follow [KN p.70]. Let ~1~2 &#x3E; 1 be

integers. Consider a box v C [0,1)~, a block of digits = 
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a configuration w =
and real numbers

Now let

The block ( is identical with if and only if

or

or

It follows that

Now suppose that the double sequence

uniformly distributed in [0,1)81. Then

and so cv is a normal lattice configuration.
Conversely, if cv is a normal configuration, then

where &#x3E;

holds for all G 81 ,S2. Therefore

for all boxes with
and max(
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Now let v be a box with arbitrary Ii E (0, 1] (i = 1, ... , sl ), and let
f E (o,1) be given. Put s2 = and put hi = = 1,... ,81.
Then

where
It is easy to see that

According to [Ni, Lemma 3.9 ]
max(i mes vl-rnes Imes v2-rraes vI) :
From (123) and (124) we deduce that

where jcij I  and max(M, N) -- oo . Hence for all 1 and all boxes
v C [0,1)~, Av (M, N) - MNmes v + o(MN), with max(M, N) - oo,
and so is a uniformly distributed double

, _

sequence in 0,1 ) s 1. D

Acknowledgment. I am very grateful to the referee for many corrections
and suggestions which improved this paper.
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