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On sums of Hecke series in short intervals

*par ALEKSANDAR 

RÉSUMÉ. On a GK1+03B5 pour

K03B5 G ~ K, ou 03B1j = |03C1j(1)|2(cosh03C003BAj)-1, et est le premier
coefficient de Fourier de forme de Maass correspondant à la valeur
propre à laquelle le série de Hecke est attachée.

Ce résultat fournit l’estimation nouvelle 

ABSTRACT. We have GK1+03B5 for

K03B5 ~ G ~ K, where 03B1j = and is the
first Fourier coefficient of the Maass wave form corresponding to
the eigenvalue to which the Hecke series Hj (s) is

attached. This result yields the new bound 

1. Introduction and statement of results

The purpose of this paper is to obtain a bound for sums of Hecke series
in short intervals which, as a by-product, gives a new bound for H~ ( 2 ). We
begin by stating briefly the necessary notation and some results involving
the spectral theory of the non-Euclidean Laplacian. For a competent and
extensive account of spectral theory the reader is referred to Y. Motohashi’s
monograph [13].

Let fAj = n? + 4} U 101 be the eigenvalues (discrete spectrum) of the
hyperbolic Laplacian

, - -,

, ,

acting over the Hilbert space composed of all r’automorphic functions
which are square integrable with respect to the hyperbolic measure. Let

be a maximal orthonormal system such that AjOj for each
j &#x3E; 1 and T(n),Oj = for each integer n E N, where

Manuscrit re~u le 28 juillet 1999.
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is the Hecke operator. We shall further assume that 1/;j( -2) = with

.Ej = ±1. We then define (s = Q + it will denote a complex variable)

which we call the Hecke series associated with the Maass wave form 
and which can be continued to an entire function. The Hecke series satisfies
the functional equation

which by the Phragm6n-Lindel6f principle (convexity) implies the bound

It is known that H~ ( 2 ) &#x3E; 0 (see Katok-Sarnak [8] and for the proofs of
(1.2)-(1.4) see [11] or [13]), and

Here as usual we put

where is the first Fourier coefficient of ~~(z). Moreover we have

and

with

Apart from its intrinsic interest, the asymptotic formula (1.4) has an im-
portant application in the theory of the Riemann zeta-function. Namely it
immediately implies that there are infinitely many x such that
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which is essential in establishing S2-results for the function E2(T), which
represents the error term in the asymptotic formula for the fourth moment
of ~~(2 + [ (see [13, Chapter 5]). Instead of the sum in (1.4) we shall
consider the sum E and seek an upper bound for it,3 2

which is especially interesting when G = KI. In that case it follows from
(1.1) and (1.2) (or from (1.3), or from (1.4)) that

where here and later 6 &#x3E; 0 denotes arbitrarily small constants, not neces-
sarily the same ones at each occurrence. We can suppose that

and it is reasonable to expect that (1.8) holds with a = 0. This is indeed
so, and is the content of the following
Theorem. We have

for

In view of the convention made above on the use of £’s, the above result
strictly speaking means that, for given - sufficiently small, the bound (1.9)
holds with and lim £1 = 0, provided that (1.10) holds.

£4-0

Corollary 1. We have (1.8) with cx = 0 .
From Hj(.1) &#x3E; 0 and the bound

of H. Iwaniec [6] we obtain

Corollary 2. We have

This seems to be the first unconditional improvement over (1.1), and rep-
resents the limit of our method. Note that H. Iwaniec [7] obtained (1.11)
assuming a certain hypothesis (the referee remarked that, using a trick-
ier amplifier based on the = 1, Iwaniec observed

5 
+,F

that his method actually gives unconditionally Hj(!) é n 12 but this
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result sharper than (l.l) does not seem to have appeared in print). His

paper contains several other interesting results, including a bound for sums
of squares of over "’j’S in short intervals.

We remark that W. Luo [10] proved the bound
’I

by exploiting some special properties of the Hecke series at the points 8 =

2 ~ but our method certainly cannot give such a sharp bound for

H~ ( 2 ), for which one expects the bound H~ ( 2 ) «e ,.;j, and more generally
one conjectures that +it) KE This bound may be viewed

as a sort of the "Lindel6f hypothesis" for H~ ( 2 ). Since Hj(s) bears several
analogies (i.e., the functional equation) to (2(s), then the bound (1.11)
represents the analogue of the classical estimate ((2 I + it) « Itll/6.

Cubic moments of automorphic L-functions L f (s, X) have been recently
investigated by J.B. Conrey and H. Iwaniec [1]. Although they also exploit
the idea of the nonnegativity of cubes of central values of automorphic L-
functions, their methods are quite different from ours. One of their main
results is the bound

- - , ..

where F* is the set of all primitive cusp forms of weight k (an even integer
&#x3E; 12) and level dividing q, where X(n) = (~) for odd, squarefree q.
Acknowledgement. I am very grateful to Prof. Matti Jutila for most
valuable remarks.

2. Beginning of proof
Before we begin the proof, some further notation will be necessary. If one

denotes the left-hand side of (1.4) by C (K, G), then with A = C log K (C &#x3E;

0) one has ([13, (3.4.18)], with the extraneous factor (1-(rc~/K)2)" omitted)

with (ho(r) is given by (1.6))
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where

and

is a sufficiently large integer,

where is a polynomial in w of degree  2Ni, whose coefficients
are bounded. A prominent feature of Motohashi’s explicit expression for
C(K, G) is that it contains series and integrals with the classical divisor
function d(n) only, with no quantities from spectral theory. Therefore the
problem of obtaining an upper bound for C(K, G) is a problem of classical
analytic number theory.
Now we are ready to begin with the proof of our result. We shall start

from the obvious bound
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so that the proof of the Theorem reduces to showing that

The delicate machinery of (2.1)-(2.3) was developed by Motohashi in order
to establish the asymptotic formula (1.4), where special care must be taken
in order to produce the (weak) error term 0(1/ log K). To achieve this,
Motohashi assumed the bound G &#x3E; K2 log5 K in (1.5), which immediately
rendered several contributions in (2.1) negligibly small. However, in (2.5)
we are not aiming at an asymptotic formula for G(K, G), but only at an
upper bound. To obtain this we could start from first principles, but it
seemed expedient to utilize the machinery of (2.1)-(2.3). First of all, by
going through the proof of (1.4), it is seen that it is the term v = 0 in (2.1)
whose contributions should be considered, because the bound for the v-th
term will be essentially the same as the bound for the term v = 0, only it
will be multiplied by (GIK)’. We note that the factors and

in (2.1) can be conveniently removed by partial summation. Next
we follow the analysis carried out in [13, pp. 120 and 128-129] to show
that the contribution of v = 1, 3, 5, 6, 7 in (2.3) to (2.1) will be ~ê 
Indeed we have

by [13, (3.4.20)-(3.4.24)], and in view of [13, (3.3.44)]

Finally to deal with HC7 ( f ; ho ) note that we have 1
.1 ... /".. -. . - -.

(see [4]) and

Consequently by the Perron inversion formula (see e.g., [4, p. 486])

Since the relevant range of r in ~-l7 ( f ; ho) is I r :f: K 1  G log K, it follows
that the total contribution of ~-l7( f ; ho) to (2.1) is «e GK3+e if G satisfies
(1.10). Thus it transpires that what is non-trivial is the contribution to
(2.1) of
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with m  2f (the terms with m &#x3E; 2f are negligible by [13, (3.4.21)]) and

We begin with the contribution of (2.6) for m  2 f , noting that by [13,
(3.4.20)] we have, for m  2 f and suitable c &#x3E; 0,

which clearly shows that the contribution of the portion of (2.6) with
m  2f is negligibly small if (1.5) holds. Our idea is to evaluate the
relevant integrals arising from ho ) explicitly and then to estimate
the ensuing exponential sums, which will permit us to obtain (2.5) with G
lying outside of the range given by (1.5). From (2.8) it follows that the
nontrivial contribution of (2.6) with m  2 f will consist of the subsum

where the sum over m is non-empty for G  N/3K log K. Henceforth we
suppose that

which is actually sufficient for the proof of the Theorem. Namely for the

range K2-E  G  K1-é the bound (1.9) follows from (1.4)-(1.5), and for
K1-E  G  K K 2 logc K, with an appropriate
change of e in (1.9). Now we shall use the formula after [13, (3.3.39)] with
x = m/f = 0(1) (as K - oo), namely

where F is the hypergeometric function. We shall apply a classical qua-
dratic transformation formula (see [9, (9.6.12)]) for the hypergeometric
function. This is

- -’3-
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so that (2.11) will give

From the definition (1.6) it is seen that the integral in (2.13) will make a
negligible contribution unless ~r + G log K G log K.
Since the contributions of both ranges of r are treated analogously (the
presence of two exponentials in (1.6) is necessitated by the fact that Moto-
hashi’s approach requires ho (r) to be an even function of r), we shall treat
only the latter, noting that tanh(7rr) = 1 + O(e-K) for lr - G log K.
For Izl  1 one has, by the defining property of the hypergeometric func-
tion,

We insert (2.14) in (2.13) with

since m  yields x = m/ f = 0(1). In view of the absolute

convergence of the series in (2.14), the resulting relevant expression in (2.13)
will be

where
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1

with G  K’21-’. Note that (a)o - 1 and 1

uniformly in k. The contribution of k &#x3E; Kl/2 log2 K will be clearly negligi-
ble, by trivial estimation of the tails of the series in (2.15). The contribution
of each Ik will be analogous, hence it will suffice to consider in detail only
the case k = 0. Note that

if we use the well-known approximation

Therefore we obtain

Then the expression in (2.9) becomes, up to a negligible error,

where x = m/ f W Note that the expression containing x in (2.18)
can be conveniently removed by partial summation. For each k the double
sum over m and f in (2.18) (without the expression containing x) will be
«e uniformly in k (the key fact is that the oscillating factor does
not depend on k), as will be shown in the next section. Then using (2.17)
(with x different from x = m~ f , but certainly x « K-’) it follows that the
total contribution of (2.9) is «c GK3+E, as asserted.
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Thus it suffices to estimate the contribution coming from Io in (2.18),
and to simplify the gamma-factors in (2.16) we use Stirling’s formula in the
form (t &#x3E; to &#x3E; 0)

with the understanding that the O-term in (2.19) admits an asymptotic
expansion in terms of negative powers of t. Therefore we may replace the
gamma-factors in (2.16) by Cr-l/2e-2irlog2(1 + O(1/r)), and then make
the change of variable r = K + Gu to obtain that the relevant contribution
to Io will be a multiple of

We expand the first two expressions in I’ in power series, taking sufficiently
many terms so that the error term will, by trivial estimation, make a neg-
ligible contribution. The integrals with the remaining terms are evaluated
by using the formula

where is a polynomial in z of degree j, which may be explicitly
evaluated by successive differentiation of the formula

considered as a function of A. We note that in each integral over [- log K,
10gK] we may replace the interval of integration with (-oo, oo), making
a negligible error. Then we use (2.20) with

I , 1 .1 1

so that in view of the summation condition in (2.9) we have A G log2 K.
The main contribution to I’ will come from the term j = 0 in (2.20). This
is

and it is precisely the factor (JE + ý1 + x )-2iK which is taken into con-
sideration in our analysis and is crucial for the proof of the final result.
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3. Estimates of exponential sums

Now we shall insert the above expression in (2.18) (omitting summation
over k and disregarding the expression containing as was just explained),
to obtain that the relevant expression which is to be estimated is a multiple
of

Therefore we have reduced the problem to the estimation of the double
exponential sum appearing in (3.1). The exponential factor in (3.1), which
is

is harmless, and can be removed by partial summation, being monotonic
in m or f . The first idea that might occur in estimating the sum in (3.1)
is to treat it as E E d(m) d(m + f ) ... , namely as the binary additive
divisor problem weighted with an exponential factor. For this problem the
error term is precisely evaluated and estimated by Y. Motohashi [12], and
various averages of the error term by Y. Motohashi and the author [5].
However, summation over the "shift" parameter f in (3.1) is too "long"
for such formulas to be successfully applied. Other possibilities are to
use estimates involving one- and two-dimensional exponent pairs, coupled
with the Voronoi summation formula (see ~2~-(4~), to exploit the particular
properties of the function d(n). However all these approaches yield values
of G in a range not as large as the one in (1.10).

To prove the Theorem we shall proceed in the following, essentially el-
ementary way. First we change the order of summation in (3.1), keeping
in mind that m  f G-2 log2 K. Then with the help of Taylor’s formula
we replace I-I/2 by (m + f)-1/2, taking sufficiently many terms so that
the contribution made by trivial estimation of the error term is negligibly
small. The contribution of the term (nz + f)-1/2 will be dominant. We re-
place m+ f by n, use partial summation to remove the factor exp(-G2 ... ),
and let m and n lie in O(log2 K) subsums where M  m  2M,
N  n  Nl  2N. Then we are led to the estimation of the expression
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where we may assume that

The first condition in (3.3) is given by (2.10), and the next two are implied
by (3.1). Further, for N  K 2 1 (keeping in mind that M  N, because

f G-2 log2 K) or for MN  K we have, by trivial estimation, that the
contribution of (3.2) is

as necessary. Next the range of summation over n in (3.2) is divided into
O(N/No) subintervals I of length at most No, where No is a parameter
that will be suitably chosen a little later, and which satisfies

Hence the sum to be estimated is

where

By the Cauchy-Schwarz inequality we have

If Fm(m, n) denotes the partial derivative of F(m, n) with respect to m,
then 

--

and we obtain

By hypothesis n2~  No, thus we have
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if with suitable C &#x3E; 0 we choose

Therefore by standard estimates (see e.g., [4, Lemma 1.2 and Lemma 2.1])
we have

Hence by using (3.8) we obtain

Consequently the contribution of (3.5) will be, since M  N by (3.3),

It remains to check that No, given by (3.7), verifies (3.4). We have

for C Nl/2 Ml/2 :s; K, which is true in view of M  N  K. Also NM &#x3E; K
may be assumed in view of (3.3), and therefore

holds for NK-1~2 &#x3E; 1, that is for, N &#x3E; Kl/2,
which is again true by (3.3). Thus the contribution of (3.1) is WE 
and consequently the total contribution is also ~£ G K3+£, as
asserted.

4. Completion of proof
To finish the proof we have yet to deal with the sum in (2.7). For

0

with h(r) given by (1.6) and (2.2). Similarly as in the analysis concerning
(2.11), for h = ho, we may consider only the ranges I r + K[ I  G log K and
I r - K~  G log K, and we turn our attention to the latter. Namely for
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I r ± G log K we interchange the order of integration and in the y-
integral we integrate the subintegral over (0, 1] by parts to obtain that the
contribution is ~ xa exp(- 2 log2 K). Therefore the dominant contribution
of the r-integral will be

We simplify the expression in the first two brackets in the last integral and
use (2.20) with A = iG log y/(y + 1) and Pl (A) = Then the above

expression equals O(exp(-2 log2 K)) plus

In view of the exponential factor in (4.2) we may truncate the y-integral
in (4.1) at G/ log K with a negligible error. Therefore the contribution of
the O-term in (4.2) is, with # = - - 3/2,

The total contribution of this expression is ~ê K3+êG-l. The main terms
in (4.2) are treated analogously, and it is the first one which will make a
larger contribution, so it will be treated in detail. The relevant part of
~- (x; h) will be

In view of Stirling’s formula and

it follows that the contribution of I &#x3E; log2K in (4.3) will be

negligibly small. For we write the
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integral over y in (4.3) as

with

so that

for y « K log-2 K. We further write

by estimating 12 trivially. In I, we write and

integrate by parts. Note that the integrated term at y = G/ log K will be
negligibly small in view of the second exponential factor in (4.4), and at
y = Kl-’ it will be «é We obtain

The expression in curly brackets is, since in 11 we have F’(y) W Ky-2 and
- , . --

Thus we obtain the same type of exponential integral again, only in place
of the factor (y2 + y)/3-l we obtain an expression whose order is given by
the right-hand side of (4.5). Since 201332/320131, this means that if repeat
five times integration by parts we shall obtain an integral which, when
majorized, will have a nonnegative exponent of y in the integrand. Trivial
estimation of this integral will yield then
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and taking /3 _ ~ - 2 we obtain that (x = m/ f ) for I in (4.4) we have

x -,- /

By using (2.7) we see that this makes a total contribution of «:c GKl+ë to
(2.1), and thus the proof of the Theorem is complete.
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