
JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX
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The Lehmer constants of an annulus

par DUBICKAS et CHRIS J. SMYTH

RÉSUMÉ. Soit M (03B1) la mesure de Mahler d’un nombre algébrique
03B1, et V un ouvert de C. Alors sa constante de Lehmer L (V)
est égale à inf M (03B1)1/ deg(03B1), l’infimum étant évalué sur tous les
nombres algébriques non cyclotomiques 03B1 dont tous les conjugués
sont à l’extérieur de V. Nous calculons L (V) lorsque V est une
couronne centrée en 0. Nous faisons de même pour la constante
de Lehmer transfinie L~ (V).

Nous démontrons également la réciproque d’un théorème de
Langevin, qui affirme que L (V) &#x3E; 1 si V contient un élément de
module 1, ainsi que le résultat analogue avec L~ (V).

ABSTRACT. Let M (03B1) be the Mahler measure of an algebraic
number 03B1, and V be an open subset of C. Then its Lehmer con-

stant L (V) is inf M (03B1)1/ deg(03B1), the infimum being over all non-
zero non-cyclotomic 03B1 lying with its conjugates outside V. We
evaluate L (V) when V is any annulus centered at 0. We do the
same for a variant of L (V), which we call the transfinite Lehmer
constant L~ (V) .

Also, we prove the converse to Langevin’s Theorem, which
states that L (V) &#x3E; 1 if V contains a point of modulus 1. We
prove the corresponding result for L~ (V) .

1. Introduction and results

Let V be an open subset of C. In 1985, Langevin [Lal] introduced the
following function, the Lehmer constantl of V (see [La3]), defined as

L (V) = 

where the infimum is taken over every non-zero non-cyclotomic algebraic
number a lying with its conjugates in Here M (a) is the Mahler

measure of a:

Manuscrit reçu le 9 novembre 1999.

1 Strictly speaking, we should call L ( V) the best Lehmer constant, according to Langevin’s
original definition
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where a = al has minimal polynomial aozd + ... + ad E Z [z], and the ai are
the conjugates of a. As M (a) ~ l, L (V) ~ 1.

We define also a variant of L (V), denoted Loo (V), which we call the
transfinite Lehmer constant of V, given by

where this time the infimum is taken over all a of degree &#x3E; d lying with
their conjugates in CBV. Note that here, as distinct from in the definition
of L (V), a may be cyclotomic.
The main aim of the paper is to evaluate both L (V) and Loo (V) when

V is an open annulus centered at 0. So, for 0  r  R let

Then our main result is the following.
Theorem 1. For 0  r  R we have

Corollary 1. Let R &#x3E; 1 and, &#x3E; 0. Then

Langevin [Lal] proved the remarkable result that L (V) &#x3E; 1 if V is an

open set containing a point of modulus 1. (See also [M] and [D] for other
proofs of Langevin’s Theorem.) As we show in the proof of Theorem 2 (b),
it follows immediately from this that also Loo (V) &#x3E; 1. So the new part of
our second result is that the converses also hold:

Theorem 2. Let V be an open subset of (C. Then

(a) L (V) &#x3E; 1 V contains a point of modulus 1.

(b) Loo (V) &#x3E; 1 V contains a point of modulus 1.

Furthermore, Loo (V) ~ L (V) .
Note that Theorem 2 is used in the proof of Theorem 1.

To date L (V) has been evaluated for certain sectors

A result of Schinzel [Sc] is equivalent to L (Yo) = 2 (1 + V5). Rhin and

Smyth [RS] evaluated for 0 belonging to nine subintervals of ~0, ~r~,
using a computational version of the method outlined in [La2]. In particular,
L (V¡r/2) = 1.12933793... was evaluated.
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Earlier, Langevin [La3] had found a lower bound for L (A) &#x3E; 1.08, where
A was the interior of the circumcircle of the triangle with vertices 0 and
(l ±z~/399) /20. This implied that L (V1r/2) &#x3E; 1.08. The results of [RS]
also give lower bounds &#x3E; 1 for L for 0 ~ () ~ 3 .

To our knowledge Theorem 1 contains the first exact evaluation of any
(V) &#x3E; 1. However, Mignotte [M] showed that, for 9 &#x3E; 0 there is

an effective positive constant c such that Loo (V~_a) ~ 1 + Also, it
is natural to conjecture that Loo (VO) = 22, where 1 = 1.31427... is the
constant given in [Sm], Theorem 1.

Langevin’s choice of the name ’Lehmer constant’ for the functions we
have called L (V) is because of Lehmer’s 1933 question [Lel] as to whether
there is an absolute constant c &#x3E; 1 such that M (a) &#x3E; c for any algebraic
number a with M (a) &#x3E; 1. Langevin’s result quoted in Theorem 2 (a)
shows that if a and its conjugates are slightly restricted to keep away from
a neighbourhood of a single point on the unit circle, then for some c (V) &#x3E; 1

an exponentially stronger result M (a) ~ c (V)deg(a) holds. In his review
of [La3], Lehmer [Le2] has some dry observations on his still-unanswered
question.

2. Proof of Theorem 1

For the proof, we need the corollary to the following lemma.
Lemma 1. Let C &#x3E; 2 and a, b E N‘ , the set of positive integers. Then
the polynomial + + 1 has b zeros in the annulus

and a zeros in the annulus

Proof. Since has, by Rouché’s
Theorem, a zeros in I  1, and so b zeros in Izl I &#x3E; 1. From z°+C+z-a = 0
we have for Izl I &#x3E; 1

and for lzl  1

whence the results. The condition C &#x3E; 2 ensures that the annuli do not

overlap. 0
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We apply the lemma to a polynomial which was obtained by slightly
perturbing the coefficients of the polynomial (Z mb + (Z ma + I

which clearly has rrzb zeros on lzl = Aa and rrza zeros on Izl = A-b.

Corollary 2. Let &#x3E; 1 and e &#x3E; 0 be given. Then f or m
sufficiently large the polynomial

has ma zeros in the annulus

and mb zeros in the annulus

The corollary follows easily by applying the lemma to P (21/(m(a+b» z) /2.

We can now prove Theorem 1. We first do the case r  1  R. It is
convenient to consider this case in the Corollary 1 form, i.e. when r = R-7
for 7 = - log r/ log R &#x3E; 0. It is enough to prove that L (A (R-’R, R) )

and that Loo (A (R-7, R)) ~ R7~~1+’~~. For then the full result in
the case r  1  R follows from the inequality L of Theorem 2.

So, we first prove that L(.4(R"~R)) ~ R’~~(1+7&#x3E;, Let a, of degree d,
lie with its conjugates in CBA (R-’Y, R), with say ..., R and

..., R--t. Then on the one hand

while on the other hand

Hence

so that

giving the required inequality. Note that for the proof of this inequality
we have not made use of the arithmetical nature of the coefficients of the
minimal polynomial of a. Also, it is easy to see from the steps of the proof
that the inequality is an equality precisely when a is a unit lying with
its conjugates on the two circles Izl = R and Izi = R--t. See [DS] for a
complete characterisation of such a.
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For the other inequality Loo (A (R-’~, R))  R’Y/(l+’Y), we use Corollary 2
to prove the existence of monic irreducible polynomials with integer coef-
ficients having all their zeros close to one or other of the circles bounding
the annulus. To do this, we must choose values of A, a and b to apply
Corollary 2. Essentially, b/a will be a rational approximation to ~y, and A
a close approximation to Ri/a. To be precise, we want a, b and A so that

and

It is easy to check that all these inequalities will be satisfied provided that
b/a is in the interval

and, having chosen such a b/a, that log A is in the interval

Note that both of these intervals are non-empty!

Having chosen a, b and A in this way, we see from Corollary 2 that P (z)
has all its zeros outside A (R-~’, R) . Note too that P has rrLb zeros in the
annulus  Izl [  e A with, for e sufficiently small, the other ma zeros
inside the unit circle. Also, P is irreducible, by Eisenstein’s Criterion, so
for a a zero of P we have

using (1).
Since f (e, R) ~ as e -~ 0, we have L~ (A (R--t, R)) ~ 

as required. This completes the proof of the theorem when r  1  R.

The proof of the cases r ~ 1 or R ~ 1 follows immediately from Theo-
rem 2 (a), (b).
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3. Proof of Theorem 2

For this proof, we need to recall the nth Chebyshev polynomial of the
second kind, U~ ( x ) , defined by

It is well-known (and easily shown) that (x) is a monic polynomial with
integer coefficients, with all its zeros lying in the interval ~-2, 2J. So U~ (x)
is of degree n - 1 with leading coefficients n, and all zeros in (-2, 2).

Lemma 2. When n is even, the only cyclotomic factor of

is z2 + 1. When n is odd, the polynomial has no cyclotorrzic factors.

This is an example in [BS], where an algorithm is given for finding all
points on a curve whose coordinates are roots of unity. The algorithm is
based on the observation that any root of unity w is conjugate to one of
-w, w2, or -w2. Using this observation, it can be shown that any such

point on the curve also lies on another curve, so that, by intersecting the
two curves, all these points can be found. In the case of this lemma, we
apply the algorithm to a curve obtained from (z + 1 /z) essentially
by making zn a new variable.

Curiously, the result of Lemma 2 contrasts with the corresponding fac-
torisation with Un replaced by Tn the nth Chebyshev polynomial of the
first kind, defined by Tn (z + + z-n. Since Tn (x) = (x),
all of the factors of ( z + 1 /z) are cyclotomic!
To prove part (a) of Theorem 2, recall that, from [Lal], L (V) &#x3E; 1 if

V contains a point of modulus 1. Conversely, suppose that V contains no
such points.

Putting

we know that all zeros of P are on lzl = 1 and that, by Lemma 2, none of
the zeros are roots of unity for n odd.

Suppose that, for a fixed odd n &#x3E; 1, P factorises over Z as P = floj ,
j

where Qj has degree dj, leading coeflicient fj ) 1, and say {3j as one of
its zeros. As we have just seen, no {3j is a root of unity. Then flfj = n,

j

~~ = 2n - 2 and, since all the (3j and their conjugates have modulus 1,
i

M (’6j) = f.7
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Hence

Now as the weights (2n - 2) sum to 1, we must have

for at least one j . Hence

,w w--

To prove (b), suppose first that V contains no point of modulus 1. Then all
the nth roots of unity wn lie, with their conjugates, in But M 

1, so that Loo (V) = 1.
Now suppose, on the contrary, that V contains a point of modulus 1.

Then contains only finitely many conjugate sets of roots of unity.
Such a can therefore be ignored in the definition of Loo (V), showing that
Loo (V) ~ L (V) &#x3E; 1, using (a). This proves (b).

For the final remark, we have just seen that Loo (V ) ~ L (V) if V contains
a point of Izl = 1, while from (a) and (b) Loo (V) = L (V) if it does not
contain such a point.
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