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Newforms, inner twists, and the inverse Galois

problem for projective linear groups

par LUIS. V. DIEULEFAIT

RÉSUMÉ. Nous reformulons de manière plus explicite les résultats
de Momose, Ribet et Papier sur les images des représentations ga-
loisiennes attachées à des newforms sans multiplication complexe,
en nous restreignant aux formes de poids 2 et de caractère tri-
vial. Nous calculons deux tels exemples de newforms, possédant
une unique tordue conjuguée à la forme, et nous démontrons que
pour tout nombre &#x3E; 3, l’image est aussi grosse que
possible. Nous utilisons ce résultat pour prouver que les groupes

~ 3,5 (mod &#x3E; 3) et ~ 0, ± 1
(mod &#x3E; 3) sont groupes de Galois sur Q.

ABSTRACT. We reformulate more explicitly the results of Mo-
mose, Ribet and Papier concerning the images of the Galois repre-
sentations attached to newforms without complex multiplication,
restricted to the case of weight 2 and trivial nebentypus. We com-
pute two examples of these newforms, with a single inner twist,
and we prove that for every inert prime greater than 3 the im-
age is as large as possible. As a consequence, we prove that the
groups PGL(2, for every 3, 5 (mod 8), &#x3E; 3 ,
and PGL(2, for every prime 0, ±1 (mod &#x3E; 3, are
Galois groups over Q.

1. Introduction

Let f = ¿~1 anqn be a weight 2 newform on ro(N). In particular f is
a normalized eigenform for the whole Hecke algebra. Let Qj be the number
field generated by its coefficients an and 0 its ring of integers. For every
prime £ put: Ot = 0 0z 7Ge = Qj 0Q Qt -
By Deligne’s theorem (see [D71]), there exists a continuous Galois repre-
sentation :
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unramified outside iN satisfying, for every prime p f 2N :

Let G = Gal(Q/Q) and Gi = closed subgroup of GL(2, Ot). From
the decompositions: Qj,t = fl xjt and Oi = fl xjt Ox we obtain a de-
composition of Pi as direct sum of the representations:

From now on, we will assume that the newform f does not have complex
multiplication (CM); see [R80], page 48, or [S71b] for a definition.
Let A be a prime in Qj . Consider the reduction pa of pA, obtained by
composing pA with the reduction map: GL(2, Ox) - GL(2,1FÀ)’ where 1Fa
is the residue field of A. Let Q = f(A) be the rational prime such that
A I t and let Ga be the image of pa. In order to determine the images
of the representations pa we will need the following result of Ribet ([R85],
theorem 2.1):
Theorem 1.1. Let H be an open subgroup of G. Then for almost every A
me have:

a) The representations PÀIH is an irreducible 2-dimensional representation
of H over 
b) The order of the groups Ha = is divisible by e.

For every automorphism -y of the field Qj consider the newform:

Suppose that there exists a Dirichlet character X such that:

for almost every p. This character must be unique (because we are assuming
that f does not have CM) and we will call it xq. In general, for a cusp
form f E s2(ro(N),,-) it holds: = ,(E). In our particular case (E = 1)
this implies that xq is a quadratic character. When such a character exists
we say that, I is an inner twist of f .
Let r be the set of those y giving an inner twist. We recall some properties
ofr:

~ For every, E r the conductor of xq is divisible only by the primes
dividing N.

~ r is an abelian elementary 2-group.
. Let Ff = Qj, the fixed field of r. Then Ff is the field generated by

f a~} , with p ~’ N ranging over a density one set of primes.
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o Whenever N is square-free, no f E S2(ro(N)) has CM or inner twists,
so that r = {1}.

For all but the first of these properties, see [R80], page 49. The first prop-
erty follows from the equality q(p£) = that will be proved later.
Using the fact that the Galois representation q(p£) is unramified outside
iN it follows that x,y can only ramify at primes dividing N.
Every character Xy may be thought of as a character on the Galois group
G, so its kernel H.y is an open subgroup of G. Let H be the intersection of
the E r , and let K be its fixed field (cf. [R85], page 190).
Let He = pE(H) and let

where R is the ring of integers of Ff and RI = R 0z 7Ge.
The following theorem of Momose ([M81]; [R85], theorem 3.1) determines
the image of these modular f-adic Galois representations:

Theorem 1.2. For almost every prime f we have Ht = At.

What is known for every prime £ is that pt restricted to H gives a map:

where D is a quaternion division algebra over Ff (this quaternion algebra
is related to a central simple algebra over Ff defined by a certain 2-cocycle
on r with values in Q*f ). This implies that, first of all, we should restrict
ourselves to those primes such that:

For these primes, HE is an open subgroup of At (condition (0) holds for
almost every E, the exceptions are the primes dividing the discriminant of
D).
Then the theorem is proved after applying a result of [R75] (cf. [R75],
corollary 2.2 and theorem 3.1, and [R85], page 192) stating that Ht = At
if the following hold:

(1) The determinant map Ht - 7Le is surjective.
(2) ~ &#x3E; 5.
(3) Ht contains an element xi such that: (trace Xl)2 generates Rt as a

Z,,algebra.
(4) For each A 1£, the group px (H) is an irreducible subgroup of GL(2, JFÀ)

whose order is divisible by t.
To see that these conditions hold for almost every prime, theorem 1.1 is

applied (to deal with condition (4)) together with the following facts:
o There exists an integer v such that v is relatively prime to N, Frob v E H
and a 2generates Ff over Q (condition (3)).
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o The determinant of pt coincides on H with the f-adic cyclotomic character
Xe (condition (1)).
We are interested in the image of G, Gi = pe(G). pP is a continuous

homomorphism

whose restriction to H takes values in At 9 GL(2, Ri), if i satisfies condi-
tion (0).
For y E r let us consider qp£ and Pi ø Xy. These two representations are
isomorphic (semisimple with the same character). Thus there is a matrix
X E such that:

X-t being trivial on H and -y on Hi C Ai, X commutes with Ht. Then X
is a scalar matrix and we obtain the equality:

For g E G let a(g) E Qj be an element such that: -y(a(g)) = xy(g)a(g)
for all 7 E r, whose existence is guaranteed by Hilbert’s Satz 90, and a(g)
does not depend on i. Moreover, it only depends on the image g of g in
G/H. Therefore, we have only a finite number of a(g), and they belong to
0e for almost every E.
The matrices pe(g)a(g)-1 are r-invariants (because 7 E r acts on both pi
and a by multiplication by X,y ), so they are in GL(2, Ri). In the equality:

, . - , , -

let us call Bt the subgroup generated by the products in curly brackets,
when g ranges over G. It is contained in At because it is in GL(2, Rt) and
has determinant Xi. Note that a2 (g) E Ri because it is r-invariant:

For an element g E H we can take a(g) = 1, so that Hi C Bt.
An application of theorem 1.2 proves the following theorem of E. Papier
([R85], theorem 4.1):
Theorem 1.3. For almost every prime E, the image Gt of pt is the sub-
group of GL(2, generated by the group Ai and the finite set of matrices:

Now, let us introduce a variant of this theorem that will allow us to

compute the exceptional primes in some examples.
The key observation is that we can replace the condition by
the weaker equality Bi = At, because for every prime verifying this last
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condition theorem 1.3 applies. To check which primes verify this equality,
we will use the conditions (0) to (4) of theorem 1.2, this time applied to
Bi.
Condition (0) is needed a priori to ensure that He ç Ai and (see the proof
of theorem 1.3) it also implies Be C Ae . In [Q98] J. Quer gives a formula
for the quaternion algebra D (see also [C92]) and condition (0) holds for
all primes i such that:

Besides, as pointed out in the proof of theorem 1.3, the prime must verify:

For ease of notation, let us write: IX, y] for the diagonal matrix: ( ).(0 y
As a consequence of (1.1), condition (1) for Be is satisfied by every primes
because the matrices [a(g), lla(g)] have determinant 1 and so all we need
is the determinant map of Gt to be surjective; this is equivalent to the
surjectivity of the cyclotomic character xe : G - 7Ge_
Again, we look for the element specified by condition (3) in He, this is more
than enough because HQ C Be. Then if v is such N, Frob v E H
and a 2generates Ff over must verify:

Condition (4) is the hard one. In spite of theorem 1.1 the determination of
the finite exceptional set of primes is not trivial, even for G itself (see the
next section). Taking Be instead of Ht we can at least reduce the problem
to verifying the condition on Gi, avoiding the restriction i &#x3E; (G : H) (see
the proof of theorem 2.1 of [Ri85]), not to mention the gain in condition
(1). 

_

Let us call the reduction mod A’ of the A’-component of B~, where
A’ 1£ is a prime in R , and let ..., Ài be the primes dividing A’ in O.
Assume that for the prime i theorem 1.1 applied to G holds. Then from
the irreducibility of all the and formula (1.1) it follows that B)..’ is

an irreducible subgroup of GL(2, 1FA’). In the same way we see that if the
groups (G) have orders multiple of £ the same holds for because in

(l.l) the matrices [a(g), a-’ (g)], after reducing their coefficients modulo
any prime dividing 2, have orders relatively prime to £.
Thus, we have proved:

Theorem 1.4. Let ~ &#x3E; 5 be a prime such that for every place A lying
above i, the following holds: Gx is an irreducible subgroup of GL(2, 1F).)
whose order is a multiple of t. If, furthermore, f satisfies conditions (i),
(ii) and (iii) (see the previous discussion), then:
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Gi is the subgroup of GL(2, generated by the group Al and the finite
set of matrices:

Remark. This result applies to almost every prime.
Let A be a prime in 0 dividing t for a prime i satisfying the hypothesis

of theorem 1.4.
Let us call P(pa(G)) the image of in PGL(2,1FÀ). It is well known

(cf. [RV95], lemma 2.2) that the inclusion At C G~ implies:

where A’ = AnR, and PXL = PSL if r = [Fx, : F£] is even and PXL = PGL
if r is odd. 

__ ____

Now observe that as elements of PGL(2, the matrices (a(g), a-1 (g)~ and
[a2(g), 1] can be identified, and this is useful because a2 (g) E Rt implies
[a2(g), 1] E From this and formula (1.2) we see that if r is
odd we already have:

If r is even, we have to determine if all the matrices ~a2(g),1~ are in
PSL(2, FA,), in which case we will have:

or if any one of them is not in PSL(2, F~), in which case we will again have
(1.3). 

___

The determinant of these matrices being a2 (g) , we easily distinguish be-
tween these two cases, and we obtain:

Proposition 1.5. Let £, A, A’ and r be as in the previous discussion. Then

2. Exceptional Primes for theorem 1.1

We will review the proof of theorem 1.1 given in [R85], finding conditions
as explicit as possible for the determination of the exceptional primes.
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2.1. Reducible Representations. Let us suppose that for a prime A E
0 dividing t, PÀ(G) is a reducible subgroup of GL(2,lFa). Then

with l/Ji = for i = l, 2, El, E2 Dirichlet characters unramified outside
N with image in Fx and Ti the cyclotomic character mod .~.
By Deligne’s theorem, for every prime p ~’ iN we have:

From the last formula we see that ml+m2 - 1 (mod e-1) andel (P)IE2 (P)
1 for every p f N, so that we can choose 0 :::; ml  m2  £-1. Generalizing
results of [S73] to the case of general level, Faltings and Jordan proved in
[FJ95] the following result, which we will state for general weight, i.e., when
the representation comes from a newform f E Sk(N):

Theorem 2.1. Suppose that the representation pA is reducible. Then if
i &#x3E; N, pa = 61 s3 with the characters Ei unramified outside N.

Carayol and Livn6 ([C89] , [L89]) have given bounds for the conduc-
tors of modular Galois representations. Using this result, together with
theorem 2.1, we have (cf. [FJ95], pages 13 and 46) :

Corollary 2.2. Let f be a newform of weight 2 and level N and À 1£ a
prime in C~ such that pa is reducible. Then if e &#x3E; 2, 1 f N, we have, for
every p ~’ fN:

with E a character unramified outside N whose conductor c verifies: c2 N.
In particular if p # £, p m 1 (mod c) , then: ap z 1 + p (mod A) and if

p # ~,P - -1 (mod c) , then: ap -= ~(1 +p) (mod A).
These congruences cannot be equalities, because: [  so that only
finitely many A can satisfy them.

2.2. The second condition. We now turn to the second condition in
theorem 1.1.
Let A and E be as before and suppose that the order of Ga is not divisible
by ~. Its image P(Gx) in PGL(2, IF,X) has to be :

1) cyclic,
2) dihedral, or
3) isomorphic to one of the following: A4, S4, A5.
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1) In this case, using the fact that the representation px is odd, we conclude
that it would be reducible, so it is covered by the above results.

2) In this case there exists a Cartan subgroup CA of GL(2,lFa) such that
GA is contained in the normalizer Na of CA, but not in CA.
Let px : G - be the composition:

.. - -- , -- , ,

The kernel of p x is then an open subgroup of G of index 2, so its fixed field
KA is a quadratic field unramified outside IN. We impose: t f N .
Suppose that Ka ramifies at t. Let ~3 = (2t) - a be the Dirichlet character
corresponding to KÀ, with cx unramified outside N.
We have, for every p ~’ IN

As in [S73], page 17, we will use these congruences to restrict the possible
values of t. The problem is that we need (2.1) to hold also for the primes
piN. They obviously because ap = 0 for these p ([AL70]).
The trick for dealing with the other prime factors of N is to raise the level
to reduce the situation again to the case ap = 0. More precisely, for a
prime p 11 N we replace f by : f ’ = anqn. Applying theorem 3.64
of [S71] we conclude that f’ has level plV. Repeating these procedure for
every such prime factor of N we see that we can suppose that:
For every prime piN, ap = 0 and p2 ~ N.
Therefore, we can (and will) assume that (2.1) holds for every ~.

Let 8 = be the derivation for mod t modular forms introduced by Serre
and Swinnerton-Dyer. The existence of an operator satisfying the same
properties in the general case of level N mod i modular forms was proved
by Katz in [K77] , provided that e ~ N.
Applying 0 to both sides of (2.1) we obtain the equality, as modular forms
over Fa :

for f t N. Comparing the filtration of both sides of this equality we conclude
that t  3 (see ~573)).
Lemma 2.3. Suppose that A is such that P(Ga) is dihedral. Then if ~ &#x3E; 3

and f t N, we have:
I I , 11 " I

for every p f £N; where a is a quadratic character unramified outside N.

3) In this case it is known (see [R85], page 189) that for every p f eN,
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In [R85] it is proved that this can hold only for finitely many i. For us,
formula (2.2) will suffice in the examples to detect the finitely many inert
primes that fall in this case.

3. The Examples
We will apply the last two results of section 1 to the realization of projec-

tive linear groups over finite fields as Galois groups over Q. We are going to
study two examples of newforms without CM having a single inner twist.
Our goal is to check the conditions of theorem 1.4 for the inert primes in
the extension In our examples Ff will be a quadratic or a real
cyclotomic field, in order to obtain an expression of these inert primes in
terms of congruences. In the first example, the existence of the inner twist
given by an odd character, and the fact that the inert primes in Ff remain
inert in will allow us to apply corollary 2.2 without using the bound
for the conductor of e.
The same method could have been applied in the second example, but only
to those primes that remain inert in Qf -
The examples below have been computed with an algorithm implemented
by W. Stein [St] based on ideas of J. Cremona.
3.1. First Example. Computing the characteristic polynomials of the
Hecke operators we found in S2 ew (1024) a newform f with

and a2 = 0 (because 4 N, see [AL70]) and with the following coefficient,
given by their minimal polynomials:

The level being a power of 2, if f had CM it should be given by a quadratic
character a unramified outside 2 so that either a(3) = -1 or a(5) = -1.
But a3, a5 are both non-zero, so we have a contradiction.
The fact that in the case of a newform of level N with CM the quadratic
character a is unramified outside N can be proved as in the case of the
characters giving an inner twist (see the discussion after theorem 1.1), and
is immediate taking the definition of modular forms with CM in terms of
Grossencharacters given in [S71b] .
When we computed the characteristic polynomial of the Hecke operator
T3 acting on S2ew(1024) we observed also that the polynomial defining a3
appears in this characteristic polynomial with multiplicity 2.
This means that the eigenspaces corresponding to the eigenvalue a3 and its
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Galois conjugates are each 2-dimensional.
The list of coefficients of f suggests that f has the inner twist given by
the involution Q E Gal(Q¡/Q(ý’2)) and with XQ = X the mod 4 character
corresponding to Q(i). In fact, ifp ~ 13, a~ = X(p)ap, and this fails for the
other characters unramified outside 2, namely: ?p corresponding to 
and cp to Q( yC2) .
We remark that f has at most one inner twist, because:

To prove the equality: 10’ = X f (we equate coefficients even for p = 2
because a2 = 0) we use the fact that Xf E S2(1024), because the conductor
of X divides 1024, the conductor of f (see theorem 3.64 of [S71]). Note
that for the same reason also of E S2(1024). The coefficients a2j being
all equal to 0, we have: = f and = f . It follows that both X f
and of are new of level 1024, because if not another application of [S71],
theorem 3.64, would imply that (or is an oldform in S2 ( 1024),
contradicting the above equalities.
The modular forms: f ~, have, with respect to the action of the Hecke
operator T3, the common eigenvalue -a3, whose corresponding eigenspace
in S2ew(1024) is 2-dimensional. Thus, two of these modular forms must
be equal. Finally, X(5) = 1, ~(5) _ -1 and as = a5 imply that the only
possible equality is

and this proves that f has a (single) inner twist, so that Ff = Q(B/2).
Now we will apply theorem 1.4 to this newform, but restricted to the

inert primes in which are: 2 - 3, 5 (mod 8). We will show that they
remain inert in the extension Qf /Q. Let [ be one of these primes, A I t a
prime in 0 and A’ = a n R.
We know that Fy = Ft2 , and that after reducing mod A’ the following
holds: Z!32 
What we want to know is whether in the quadratic extension Qj = Q(a3 )
over Ff = Q(a5) the element a3 is in FJ2 or not, or equivalently, whether
a3 E F¡2 or not.
Suppose that a3 E F¡2. Then taking norms with respect to Ft2 IFt we should
have:

N(a3) = 8 E Pi, and then: (î) = 1. This is false for the primes t =- 3, 5
(mod 8), therefore: IFl2 and then:

(3.1) for every t 3,5 (mod 8), t is inert in Qf /Q.
We start by checking for which of these Ga is irreducible of order a multiple
of t, with A a prime in 0 dividing t.
Irreducibility is verified using corollary 2.2, but in this case we will not need
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to use the bound for the conductor c nor to compute a coefficient ap for a
prime p (mod c) . In the present case, if the representation were

reducible the character e defined in section 2.1 would be unramified outside

2, thus:

with u ~ Z,u &#x3E; 0.
Take a prime p = 20131 (mod 2~),p ~ 20131?0 (mod ~) (in case u = 1, impose
also p == -1 (mod 4) ). Then, 6(p) = ±1 and corollary 2.2 implies:

Because of the inner twist, aP = x(p)ap = -aP so that ap E Thus,
its minimal polynomial has degree 4.
Using the fact that both ap and a3 are square roots of elements of Ff that
generate the same field, we see that: ap = z. a3 , z E Ff. Replacing in
(3.2) we obtain:

The prime t being inert in Qj , I and the minimal polynomial of a3 having
discriminant a power of 2 we conclude that, after reducing mod A, a3 is a
primitive element of Fx = Ft4, and this contradicts (3.2’) because z-1 E Ff.
So far, we have proved:

Lemma 3.1. There exists a newform f E S2(1024) with:

such that for every prime f inert in (f - 3, 5 (mod 8), and f remains
inert in Qj ) and A E 0 the prime dividing f, the representation pa(G) is

irreducible.

Let us now compute the inert primes ~ &#x3E; 5 such that pa has order not
divisible by £, by means of lemma 2.3 and formula (2.2). Applying the
lemma we see that if the residual representation is in the dihedral case:

ap * a(p)ap (mod A), for every p t 2t , with a a quadratic character
unramified outside 2. Independently of which of the 3 possible characters
a is we know that either a(3) = -1 or a(7) _ -1 (observe 3,7).
So that for p = 3 or 7 we have: ap - -ap and then ap m 0 (mod ~).
This is false for every inert prime £ because the norms of a3 and a7 are
powers of 2.
We have to find the inert primes falling in case (3) of section 2.2. Take

£ &#x3E; 3 an inert prime in and put p = 3 in formula (2.2). Because £
remains inert in we know that:
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is the minimal polynomial for a3 E FA -
This is incompatible with (2.2) unless this polynomial agrees with:

on Fx; but this is never the case. This concludes the proof of the following
Lemma 3.2. For the newform in lemma 3.1 it also holds:
for every i &#x3E; 3 insert in the order of p~(G) is multiple oft; where A
is the prime in 0 dividing ~.

Therefore, it only remains to check the technical conditions (i),(ii) and
(iii) on these primes to conclude that they satisfy the hypothesis of theo-
rem 1.4.

Applying the results of [Q98] to deal with condition (i) we see that D, the
quaternion division algebra over Ff, is given by (~3, -1) . The -1 comes
from the fact that the inner twist is given by the quadratic character cor-
responding to Q(i). We have a 2 = 4 + so that using Hilbert symbols
we see that condition (i) for an inert prime t is equivalent to the existence
of a non-trivial solution of the equation:

But this equation has the global solution (~, y, z) _ (l,1 + .J2, 1), so that
(i) holds for every ~. In fact, in this case D is itself a matrix algebra (be-
cause no prime ramifies): D ’7-- M(2,~).
Condition (ii) is easy to check because there is a single inner twist. From
the definition of the elements a(g) we see that we can take as a(g) for
9 tt H the coefficient a3.
Then a prime A E (~ over a prime t for which (ii) fails must divide a3, but
this is impossible for an inert prime.
Finally, it remains to check condition (iii). We have to choose v such that
Frob E H, i.e., Q(i) must be fixed by Frob v. Thus, we can take as v any
odd prime that decomposes in ~(i), i.e., such that = 1 or equivalently:
v - 1 (mod 4).
Choosing v = 5 the other conditions of (iii) are satisfied because 5 t N =
1024 and a 2= 6 + generates Besides, for every l =1= 5 inert
in a2 generates Rt as a Zealgebra, so that (iii) is satisfied for these
primes.
To rescue the prime t = 5 observe that we can also take v = 13 because
a13 is equal or conjugate to a2
From this discussion and the previous two lemmas, we can apply theo-
rem 1.4 and conclude:

Theorem 3.3. There is a newform, f E S2(1024) with
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such that for - 3, 5 (mod 8), 2 &#x3E; 3, the image Ge the

subgroup of GL(2, generated by the group At defined in section 1 and
the matrix:

/- n B

Now we apply proposition 1.5 to these primes. For 9 ft H (there is only
one coset) we have taken a(g) = a3. In the proof of formula (3.1) it was
shown that ~2 so that proposition 1.5 gives:
Theorem 3.4. For the newform of the previous theorem, for every t = 3, 5
(mod 8), ~ &#x3E; 3 and A E 0, À ~, we have:

Corollary 3.5. For every £ = 3,5 (mod 8), t &#x3E; 3, PGL(2, IFez ) is a
Galois group over Q.
3.2. Second Example. Looking in the space S2 e"’ ( 1331 ) we found a
newform f with Qj a quadratic extension of the real cyclotomic field
Ll = Q(( + (-1), where ( is a primitive 11-th root of unity.
We will prove below that Ff = L11 (and this is precisely the field where we
wanted to work), the choice of the level 1331 = 113 was motivated by the
following result of Brumer ([B95]):
Theorem 3.6. Let f E S2(N) be a newform, without CM. Suppose that

and ( a primitive pSp-root of unity.

Remark. This theorem also helped us to find the example in section 3.1.
The coefficient a2 is given by the polynomial:

and the following holds: Q(a 2) = L11, in fact:

And a3 = (( + ~-1) , so that a3 E Lll.
We also know that all = 0 because 112 ~ N (see [AL70]).
If f had CM, it should be given by the character corresponding to

but this is ruled out by the fact that: a2 # 0, 2 -1.
The computation of the characteristic polynomial of the Hecke operator
T2 on the space S2eT"(1331) shows that the factor corresponding to a2 is a
simple factor. As in the section 3.1, we prove that E SZ eT" ( 1331) and
if we call Q the involution in Gal(Q¡ / LI1), we observe that the modular
forms: f a and w f have the common eigenvalue -a2 with respect to the
action of T2. But the eigenspace of -a2 is 1-dimensional, so that we have:
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Therefore, f has an inner twist and we easily see that it is unique, so that:
= Ll1. o
The application of theorem 1.4 to this newform f is as in section 3.1,

except for the fact that we will apply corollary 2.2 in its full strength.
Recall that we are only interested in the inert primes in which are
the primitive roots mod 11 and their squares, i.e:

When applying corollary 2.2 to deal with the reducible case, the character
E must be unramified outside 11, provided 1 &#x3E; 2, and its conductor c must
verify: c2 ~ 1 1331, thus c 1 11. So the values of E are 10-roots of unity,
contained in Filo - We know that if 10 1 ilo - 1 then 10 I £2 - 1, so that the
image of E is contained in Then, applying the formula in corollary 2.2
to p = 2 we conclude that U2 E F12.
But we also know that the residue class degree of £ in Qj is 5 or 10 ; a2
generates Qj and the discriminant of the minimal polynomial of a2 ( =
2~ . 118 - 199) is not divisible by i.
Therefore a2 has degree at least 5 over and we have a contradiction.
We conclude that the representations are irreducible for every odd i inert
in 

Let us now treat the dihedral case. If t &#x3E; 3 is in this case, we have:

for every p f l ll . Taking p = 2 we have w(p) _ -1 and then A a2 . The
norm of a2 over Q is -199, so that we get A 199, and 199 is not inert in
F
The next step is the application of formula (2.2) to find the odd inert

primes such that case (3) of section 2.2 holds. Applying formula (2.2) to
p = 2, from the fact that a2 mod A has a minimal polynomial of degree at
least 5, we obtain a contradiction.
Therefore, for every ~ &#x3E; 3 inert in and A E 0 dividing i, we conclude
that the order is divisible by E.

It remains to check conditions (i), (ii) and (iii) in order to apply theo-
rem 1.4. In condition (i) the quaternion algebra D is given by (see [Q98]):
(a2, -11). It is known that condition (i) is satisfied if t is such that both

a2 and -11 are units in F¡,À’ (here A’ = AnR). But from the equation
of a2 and the fact that i is inert in Ff, we conclude that this holds for all
these E.
In condition (ii), let us take as a(g) for 9 fj. H the coefficients a2.Then con-
dition (ii) holds for every i inert in Ff, because none of these can divide a2.
Finally, for condition (iii) we take v = 3 because:
(-31) = 1, and then Frob 3 fixes 
3 f N = 1331.
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a3 = 2 + (~ + (-2 generates Ff over Q.
Moreover, for 3 inert in a3 generates Re as a Ztooalgebra.
Applying theorem 1.4 we obtain

Theorem 3.7. There is a newform f in 52(1331) with ~f a quadratic
extension of

(C a primitive 11-th root of unity) and Ff = £11 such that for every 10 :1:1
(mod 11), 1 2, 3,11, the image GI of pt is the subgroup of GL(2, Ot)
generated by the group At defined in section 1 and the matrix:

To apply proposition 1.5 observe that Ff is a degree 5 extension of Q ,
so that r = 5 is odd and then we have

Theorem 3.8. For the newform of the previous theorem, for every t 0 :f:1
(mod 11), ~ ~ 2, 3,11 and A E 0, 1£, we have:

Corollary 3.9. For (mod 11), t =,4 2, 3,11, PGL(2, 
a Galois group over Q.

4. Concluding Remarks

The conditions of 1.4 can be effectively verified for any newform without
CM having a single inner twist using the results of section 2.
The method used to deal with the reducible case in the first example only
works if we have an odd inner twist, and applies only to those primes
inert but it has the advantage of avoiding the computation of a
coefficient ap with p as described after corollary 2.2 (p grows as a function
of q and w).
Though these conditions may seem highly restrictive, we have found other
examples verifying them. For instance, there is a newform f E SZ (4096)
whose first coefficients have minimal polynomials (a2 = 0):

This newform has an inner twist, given by the mod 4 character X, so that

Ff = Q(a5) = ~( 2 -i- ~). Let us consider the primes £ with residue
class degree 2 in i.e., i =- 7,9 (mod 16). It can be shown that the
2 places of Ff lying above £ are inert in Qf IFf. The verification of the
conditions of theorem 1.4 for these primes is exactly as in section 3.1, and
again no exceptional prime appears. This step consists in computing some
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discriminants, norms and resultants involving only the coefficients a3 and
a5 . It follows that for every .~ ._--_ 7, 9 (mod 16), and A E C~, ~ ( .~,

This, together with corollary 3.5, proves that PGL(2, IFe2 ) is a Galois group
over Q , for every (mod 16), l &#x3E; 3 .
The same conditions are also satisfied by the following two examples:

of E SZ(192) with an inner twist and Ff = Applying our method
to this newform, we find no exceptional inert prime so that the groups
PGL(2, are Galois groups over Q for every i =- 2,3 (mod 5), ~ &#x3E; 3.
9 f E S2(333) with an inner twist and Ff = Q(Jl) . Applying our method
to this newform and combining with the result obtained using the examples
of level 1024 and 4096 we conclude that the groups PGL(2, are Galois

group over Q , for every t $ ±1 (mod 48), 1 &#x3E; 3 .
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