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The Hooley-Huxley Contour Method for
Problems in Number Fields III:

Frobenian Functions

par MARK D. COLEMAN

RÉSUMÉ. On se donne une fonction multiplicative définie sur
l’ensemble des idéaux d’un corps de nombres. On suppose que
les valeurs prises par cette fonction sur les idéaux premiers ne
dépendent que de la classe de Frobenius des idéaux premiers dans
une certaine extension galoisienne. Dans ce texte, nous donnons
une estimation asymptotique du nombre d’idéaux d’un corps de
nombres lorsqu’ils varient dans un "petit domaine" . Nous nous
intéressons particulièrement aux cas de la fonction 03C4 de Ramanu-

jan dans de petits intervalles, ainsi qu’à la fonction norme relative
pour des éléments d’un module d’une extension galoisienne variant
dans de petits domaines.

ABSTRACT. In this paper we study finite valued multiplicative
functions defined on ideals of a number field and whose values on
the prime ideals depend only on the Frobenius class of the primes
in some Galois extension. In particular we give asymptotic results
when the ideals are restricted to "small regions" . Special cases
concern Ramanujan’s tau function in small intervals and relative
norms in "small regions" of elements from a full module of the
Galois extension.

In the earlier papers of this series, [1] and [2], we applied the Hooley-
Huxley contour method, as described in [9], to sums of arithmetic functions
defined on the integral ideals of a number field K, say. The contour method
allows the restriction of the sums to small regions of ideals, S (x, 00, t) ,
defined below. In [2] we considered multiplicative functions that are Frobe-
nius with respect to some Galois extension L of K. That is, the functions
have the same value on all unramified prime ideals whose Frobenius sym-
bols lie in the same conjugacy class of G(L/K). In particular, in §2.2 of
[2] we looked at when these functions are non-zero. In the present paper
we introduce the ideas of Odoni, see [7] for instance, and, assuming the
arithmetic functions are finite-valued, examine when these functions take
a given value. It will ease reading of this paper to have [1] and [2] to hand.

Manuscrit reeu le 8 octobre 1999.
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Let n = nK = degK/Q, n L = degL/Q and nL/K = degL/K. Let I denote
the group of fractional ideals of K and let P = ~(a) E I : a E K*, Q &#x3E;- 0~.
Let (À1,À2’ ..., Àn-1) be a basis for the torsion-free characters on P that
satisfy = 1,1  i  n -1, for all units E &#x3E;- 0 in OK, the ring of
integers of K. Fixing an extension of each Ai to a character on I then
ai (a),1  i _ n -1 are defined for all fractional ideals a. So for such ideals

of K we can define 1/1 a = (V)j a E yn-1 by Aj a = Then weof K we can define ) = ()) C TT"-T y a() = e2( Then we
define our small region of integral ideals as

for 0  ~  1/2, ’l/Jo E ’~’n-1. This differs from the definition in [1] and [2] in
that we have not excluded ideals with prime divisors that ramify in L.

Let O be a Frobenius multiplicative function with respect to G =

Gal(L/K) and with values in some finite commutative monoid M =
say. (See [7], §6D). So if the unramified prime ideals p and

q satisfy [(L/ K)/p] = [(L/ K) /q] then e (pn) = O (qn) for all n &#x3E; 1.
In our main result we give an asymptotic result for

for any q E M. Let 0(C) denote the value taken by all unramified primes
with Frobenius symbol in the conjugacy class C. Further, given 7 E M
define

where the sum runs over all conjugacy classes C for which O(C) occurs in
some factorization of ~y.

Theorem 1. &#x3E; 0 be given and assume that t satisfies

where R(x) _ for some constant K1. Then
e (S, y) is a finite sum (over i say) of expansions

where J(x) _ for some constant K2, ai e (C and
are polynomials. In adl cases lail  and if ai = for

some i then is of degree zero and in fact a real number, so no
log log factors occur in that asymptotic expansion.
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A version of this result can be given with the truncation of the series
in (2) at any J  c log x along with the inclusion of an appropriate error
term depending on J. Such a result is seen in Theorem 6 of [2] and just
like there we can an upper bound for the in (2), this time of the
form  where c and the implied constant depend on the
module M.

This result generalises Theorem 3 of [6] which gives an asymptotic result
(but without truncation) for ~1  n  x, (n, E) = 1, 8( n) = 1’} where O
is multiplicative and Frobenius with respect to some extension L /Q unram-
ified outside E. As Odoni describes in [6] his result was discovered during
work on coefficients of modular forms. We can apply our result to the same
problems and in particular we give the following result on Ramanujan’s tau
function, T.

Corollary 1. Let m &#x3E; 691 be prime and b E N be coprime to m. Then

for

we have
, ,

where 3 = m/(m~ 2013 1) and co is independent of m.
Summing over 1  b  m - 1 we recover corollary 3 of ~2~. Of course

it is unnecessary to introduce Groessencharacters to prove Theorem 2 but
later in the paper we give an application to ranges of ideals (see [8]) that
uses the full force of Theorem 1.

Proof of Theorem 1. From sections 4 and 5 of [1] and the references
therein it can be seen that 8( S, 7) differs from

by an amount that can be made arbitrarily small at the cost of demanding
x is sufficiently large. Here n~ E (NU{0})~’~ = max1in-1mi,
c &#x3E; 1, and at and §(s) are weights while W = To deal with
the condition O(a) _ ~y we look at all t-tuples v =(vl, ..., vt) of non-negative
integers such that ~y11...~yt t _ ~y. It might be that for some i, vi = 0 in all
these vectors. In this case we let ,~l = be the set of i for which this
doesn’t happen, cardinality a, say and consider all vectors written without
adornment to be a-tuples indexed by ,A., so now v We follow
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Odoni, see [7] for example, by introducing the formal power series over
such v,

where z = and z’ = zi 2. Then the idea of Odoni is to use
Hadamard’s convolution of power series which gives

where 0  p  1, z-ldenotes the vector and

To find the regions of z and s for which this Euler product is defined we
expand formally the product over unramified primes in (6) as a Dirichlet
series to get

where the sum is over integral ideals divisible by no ramified primes and

." v ,

in the notation of [2]. The series (7) is a particular instance of F(s, !A, z )
from [2], with 9 - l, and fj = wj for all j E ,,4, in the notation of that
paper. So we can quote from [2] that the series and, since the product over
ramified primes in (9) is a finite product, that A(s, nt, z) are defined for all
ni, z and Re s &#x3E; 1. But further, from [2], equation (4), we can also deduce
the result that

say. Here Ao(s, m,z) converges absolutely and uniformly for all !A, for all
Ilzll  A for any given A and when Re s &#x3E; for any (71 &#x3E; 1/2. The first
product in (8) is over conjugacy classes C of G. For each class, C, we
choose an element g E C and then the second product is over irreducible
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characters of (g), the cyclic group generated by g. The L-functions in the

product are defined by

where E is the fixed field of (g), XE is the character on G induced by X on
(g) but considered as a character on the narrow ideal classes modxf of E
for some conductor f and the sum is over integral ideals of E prime to f.
Finally, the exponents a(C, X, z) in (8) are given by X(g)zc/ ~G~ , where
zc is the value of for any prime ideal satisfying [L/ K)/p] = C. Note
that a component zi, i E A, can only arise as one of these zC if there exists
a siregle power of a prime p such that 8(1’) = Let B C ,,4 denote this
set of i and let x* denote a vector indexed by B, so x* _ Then we
can write L(s, W, z*) in place of L(s, z) and further

say, where C N i if [(L/K) /p] = C implies 8(p) = ~y2.
To evaluate the integrals in (5) we need to quote from p. 390 of [7] where

it is shown that

for some polynomial P(q, z ) and constants ej, j E A. The poles of G(q, z)
are seperable so the circles of integration in (5) can be moved, one by one,
to circles = p’, p’ &#x3E; 1. Then, for each subset Ll C A we obtain a number
of terms of the form

Here u , (zu)j is a c;-th root of unity and Gu(-y, zu) is the
residue of z) at these roots. If we first consider the special case when
the numerator P(-y, z) of G(-y, z) is a monomial, then it is easily seen on
changing variables to Wj = 1/ Zj for all j E U that if the poles at infinity
of zu) at zj, j E L~, are of sufficiently large order then the integrals,
now around the origin, give derivatives, with respect to these wj, of the
integrand which are then evaluated at wj = 0 for all j E Lf. This in turn
gives a sum of derivatives of A(s, m, wu) say, where for j g U we have
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(wu)j = (z~). ~) a cj-th root of unity. The general P(y, z) is just a sum of
monomials and so (11), and thus (5), are linear sums of

evaluated at w = ~ where Tij is either 0 or a cj-th root of unity in which
case we must have kj = 0. From (8) and (10) we see that (5) is, in fact, a
finite linear sum over (k, ’Tl) of terms

with coefhcients ni, k, 71), say, that are holomorphic in Re s &#x3E; 1/2 and
uniformly bounded for all nt and Re s &#x3E; 1/2+6 for any 6 &#x3E; 0. The product
of L-functions occurring in (12) is of exactly the form to which we can apply
the Hooley-Huxley method though none of our previous applications have
all the features of (12). In [1] the Hooley-Huxley method is applied to
integrals containing products as in (12) though the L-functions occurring
have only E = K. In [2] we have L-functions of the type (9) but with
no logarithms of L-functions. Nonetheless the methods of [2] give the
following version of part of Theorem 1 of [1]. Let 

1- col traversed in the anti-clockwise direction. Here CO is chosen
such that no L(s, 0 k*, r~*) that appears in (5) has a singularity on the
boundary or interior of the circle s - 1 = 3co. Then

for £ satisfying (1) and where

The terms of the inner double sum can be written as

where

and H (s, k, q) are analytic in (s -1)  3co.
If q* = 1*, then necessarily k* = 0 and there are no logarithmic terms

in (12). In this case the integrals in (13) have been evaluated in [2] giving
an expansion of the form (2), with no log log factors and with main term
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c(2f)nx(log x )-(1-0:) where

which reduces to the form given in the statement of the theorem. Note that
the constant c = might be 0 since, if ,Ci ~ A, it might happen that

If c ~ 0 the q* = 1 contribution will give the dominant term. For the cases
when 1]* ~ 1* we have  Re a(I* )  1 where the strict inequality
follows from the definition of ,Ci which ensures that I:Crvi ICI/IGI ~ 0 for
each i E B. We can use the ideas of [1] to estimate the inner integrals of
(13). In fact, since Re a(~*)  1 the integral on a circle such as Co tends
to zero as the radius of the circle tends to 0. Thus we are left with an

integral along the real axis, which we interchange with the integral over y.
Then each (k, q) in the summation in (13) contributes

Here

and

The situation can now be compared with the proof of Theorem 5 of [1].
Since H6(1 - s, k, q) is analytic for Isl [  3co it can be expanded as a power
series and truncated as

for r  2co and some aj = aj (b, k, 1]) G (1 /2co)j. Multiplied through by
(log 1/r)a from (14) we have then, in (15), a special case of equation (12) in
[1]. Compared to equation (11) in [1] the integrals in (14) are complicated
by the r-a factor but since ~a~  1 this is easily dealt with. So each term
in (14) can be evaluated as
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with J(x) and as in Theorem 1. Here is a polynomial of
degree at most a. 0

Note. (i) The way in which (14) is evaluated is to complete the integral
to oo and then to consider it to be the difference of two integrals whose
integrands differ in having (x(l +t)) 1-r in one and in the other.
This difference, which we might write as (2~)-1(I(x(1 + f)) - I(x(1 - f))),
will have a main term that is independent of £ and an error which, if t is
sufficiently small, for instance exp(-R(x)) &#x3E; ~, can be absorbed into the
error in (2). If t is larger than this then the numerators of each term in the
sum in (2) will depend on both t and log log x. This reaches its extreme
when t is a constant, for instance t = 1/2, when we get an expansion as in
(2) but with Qij(X) different to those in (2).

(ii) In the proof of Theorem 1 above a new version of part of Theorem
1 of [1] is given. A similar version of the remaining part of this result from
[1] can be proved by the methods of [2]. So, for

we can say that

Then, with m and b as in Corollary 1 but with

log h 3

ill/ / ((m2 - 1 ) (132 - m) + 3)1 &#x3E; 
logx 

&#x3E; 1 
((m2 - 1)(m2 - m) + 3)

we have for almost all x that  n  x + h, r(n) == b (modm)) [ has an
expansion as in (3).
Proof of Corollary 1. In this case M = Z/mZ. Since b # 0, we can
never have 0 in any factorization of b unlike any other element of M, hence
.A = (Z/mZ)* and a = m - 1.

In [3] it is shown that there exists a field extension K,",, of Q and an irre-
ducible two-dimensional complex linear representation p : 

such that, for primes p unramified in Kr",, 
T(p) ( mod m). Further, if m &#x3E; 691 the map p is a bijection. Not only does
this imply deg K,",, = (m2 - 1) (m2 - m) but also that every possible value
of T(n)(modm) is attained with n prime. Thus ,13 = .A in the notation
earlier. So it remains to examine G(b, z) where z is an m - 1-tuple.

Obviously G(b, z) = zai) where ai is the order of i
mod m and
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Then

say, where z(’) = Thus

There are no poles at infinity so no log log terms in any of the asympototic
expansions that arise. The main contribution, which, because ,t3 = A
has a non-zero coefficient, arises from the pole at z = 1. The residue of

G(b, z) at z = 1 is H(1, Yet H(1,1) is the number of solutions
of IIp-i i°i - c~  ai. Let k be a primitive root mod
m. Then for any choices of k, 0  ci  ai we can uniquely solve

1 (mod m) for ck. All solutions of 1 (mod m) arise
in this way. So H(l, 1) = I Aka- = and hence the residue

equals 1/(m - 1). Finally, the exponent, fl, of the logarithm in (3) is the
proportion of the elements of Gal(Km /Q) that have trace zero under the
map p. By a simple counting argument this is m~(m2 - 1) as given. 0

An application of Theorem 1, when K is not necessarily Q, is to the

range of ideals. Let f be an integral ideal in L and denote by A(L, f ), or
just .,4, the narrow ideal class group (mod"f ). Let H(f ) be the class field
(mod"f ), that is the maximal Abelian extension of L ramified only at f,
and let F/K be the Galois hull of H / K. For ideals al a OK define the
range to be

where [a2l is the narrow ideal class, (mod’ f ), containing a2. So R(al) = 0
if al is not co-prime to This definition of the range of an ideal is

given in §3 of [5] though the definition of the range of a rational integer
is given in [4]. As noted in [5] the function R is multiplicative, Frobenius
with respect to F/K and takes values in the power set of ,A. The power
set 2A is a commutative moniod on defining XY = f xy : x E X, y E YI for
all non-empty X, Y E 2A and XY = 0 if either X or Y empty. So from
Theorem 1 we deduce
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Corollary 2. Assume t satisfies

if F/K abelian
otherwise.

Then for R* E 2A, R* ~ 0

has an asymptotic expansion of the (2) with a(R*) no larger than â,
the Dirichlet density of prime ideals p a OK for which R(p) 54 0.

Similar results have been given in [8] for R(n) = R*} ~ with an
extension L of Q. The question then examined in that paper is for which
R* do we have a(R*) = 8 ? To answer the same question for (17) we need
only look at the t = 1/2 case for which we know, by note (i), that there
is a result similar to Corollary 2. We do, though, also give results valid in
the interval (16).

Let e be the product of all prime ideals of K that ramify in L. Define He
to be the subgroup of 2A consisting of those classes that contain fractional
ideals prime to e and of norm 1. Then to prove an analogue of Theorem 1
of [8] we need look at

for any a E A. The condition R(a) 9 aHe is captured by demanding that
R(a)He = aHe which in turn can be captured by a linear sum of char-
acters of ,,4 that are trivial on He. In this way we are led to a sum over
a E Ool i), a + e = OK, of x(R(a)He). This can be estimated by The-
orem 1 of [2] to give, for either t = 1/2 or t satisfying (16), an asymptotic
expansion for this sum as in (2), though with no log log terms. The expo-
nent of the logarithm will be 1 - ax with ax = Ec in

the obvious notation since R(p) is constant on the conjugacy classes C of
G = Gal(F/K). So the largest value of ax will occur when X - 1 when we
get a. Summing over the characters of .A we get our result for (18) of the
type (2) with the largest a equal to 0.

In fact, Theorem 1 of [2] can be applied to the proofs of a number of
analogues of results in [8]. For instance, given al  OK, a1 +e = OK define

and
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where X is a character on A. Then Theorem 1 of [2] gives an asymptotic
result for

where A(ai) = 0 if r(a) = 0,A(ai) = r(a)-2 otherwise. This should be

compared to the (weighted) sum Wx in equation (6.6) of [8]. The t = 1/2
case of (19) is sufficient for us to follow the arguments of §6 of [8], deduce
that both

have the same main term as we would get for (18) when t = 1/2 and
conclude that (17) has an expansion with a(R*) =,O if, and only if, R* is
a coset of He, a so-called e-maximal range. A good deal of [8] is concerned
with showing that He can be replaced with a subgroup that does not depend
on e. Finally, with our analogues of Theorems 1 and 2 of [8], valid for ~
satisfying (16) we can deduce that almost all norms ~), prime to
e, have an e-maximal range.

Ranges have been used in other problems and for instance we can prove
an analogue of Theorem 5 of [5]. Suppose .M is a full OK-module in OL.
For a principal ideal ai = (a) = aOK define ro(al) to be the number of
principal ideals a2 = (A) = ILOL, Ec E M such that al = NLIKa2. Define
the conductor f of Nl to be the join of all ideals of OL contained in M.
Then we can define the Galois extension F/K as before.

Corollary 3. Assume i satisfies (16). Then

has an expansion as in (2) with dominant term having a equal to the
Dirichlet density of the set of prime ideals pi of OK expressible as NL/KP2
for some prime ideal ~Z of OL-

Proof. Follow [5] in defining a prime ideal of OL to be bad or good re-
spectively if it divides or fails to divide NL f . An ideal of OL is bad or

good respectively if all its prime ideal factors are bad or good. Apply the
same terminology to the ideals of OK. Each ideal a of either OL or OK is
uniquely expressible as a = bg with b bad and g good. Lemma 1.1 of [5]
shows that if the good ideals g and g’ of OL are in the same narrow ideal
class (mod" f ) and b is a bad ideal of OL such that bg = I-IOL, for some
~ E .M then bg’ = for some &#x3E;’ E Jvl. Thus we can partition the set
of ideals counted in (20) according to the range of the good factors of the
al. For each range R E 2A let ,CiR be the set of bad ideals bl of OK such



76

that for all good ideals gi with R(gl) = R we have bi0i = NL/K(ltOL), for
some It EM. Then

It is possible to apply Corollary 2 to each summand but it is simpler to go
back to (4) and replace the Dirichlet series by

Since bad ideals have only a finite number of different prime ideal factors
the Dirichlet series over bi E ~R converges and is regular for Re s &#x3E; 0.

It can be absorbed into Ao(s, W, z) of (8) that arises from the analysis
of the Dirichlet series over R(gl ) = R. Hence by the method of proof of
Theorem 1 we obtain Corollary 3. D

When M = C~K this is a result about the relative norms of principal inte-
gral ideals. This can be compared with the results of §2.1 of [2] concerning
the relative norm of fractional and integral ideals.
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