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Incomplete character sums and a special class of

permutations

par S. D. COHEN, H. NIEDERREITER, I. E. SHPARLINSKI
et M. ZIEVE

RÉSUMÉ. Nous donnons une méthode pour majorer des sommes
incomplètes des valeurs d’un caractère d’un groupe abélien fini, en
des éléments générés par une récurrence d’ordre 1. Cette méthode
est particulièrement explicite lorsque la récurrence implique un
type special de permutations, appelées T-orthomorphismes. Nous
donnons quelques exemples de ces T-orthomorphismes.

ABSTRACT. We present a method of bounding incomplete char-
acter sums for finite abelian groups with arguments produced by
a first-order recursion. This method is particularly effective if
the recursion involves a special type of permutation called an R-
orthomorphism. Examples of T-orthomorphisms are given.

1. Introduction

Let G be a finite abelian group of order m &#x3E; 2 and Sym(G) the group
of permutations of G. For a fixed permutation V) E Sym(G) the sequence
uo, ui , ... of elements of G is generated by the recursion

where uo is a given initial value. This sequence is purely periodic with least
period t  m. For 1  N  t and a nontrivial character X of G we consider
the problem of finding nontrivial upper bounds for the absolute value of
the character sum

. ,,-’"

This problem arises in applications such as pseudorandom number genera-
tion for simulation methods and for cryptography. In these applications the
typical groups G are Z/MZ - the additive group of residue classes mod M,
(Z/MZ)* - the multiplicative group of reduced residue classes mod M, Fq
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- the additive group of the finite field of order q, and F* - the multiplicative
group of nonzero elements of Fq, as well as their subgroups.

Until recently, nontrivial bounds for the character sum (2) have been
known only in some very special cases. If we write the operation in G
additively, then an easy case arises when 0(g) = g + a for all g E G, where
a E G is fixed. A less trivial case that has been treated before is G = Z/MZ

= ag for all 9 E G, where a E (Z/MZ)* is fixed (see [4], [6, Section
8], [12, Section 9.2]). In 1998 Niederreiter and Shparlinski [7] invented a
new method for the case where G = Fp, p prime, and 0(g) = ag + b for
all g E G, where a E Fp* and b E Fp are fixed, g denotes the multiplicative
inverse of 9 for g E Fp, and 0 = 0 for the zero element 0 E Fp. This method
was later applied to related cases (see [3], [8], [9], [10]).

In the present paper we develop the method of [7] for bounding the char-
acter sum (2) in a general framework. The method is particularly effective
if the permutation qb in the recursion (1) is a so-called R-orthomorphism.
This special type of permutation is also of interest for other applications,
such as to combinatorial design theory. We devote some attention to this
special case, in particular to the construction of R-orthomorphisms.

2. Bounds for incomplete character sums

The notation in the previous section remains in force and we introduce
some further notation. Without loss of generality we write G additively.
For a positive integer r we define the complete character sum

If IC is a finite nonempty set of integers, then Ar(JC) denotes the number
of ordered pairs (i, j) E IC2 with i - j = r. Note that = 0 for all

sufficiently large r. Now we are ready to prove a bound for the incomplete
character sum (2) in terms of the complete character sums (3).
Theorem 1. Let G be a finite abelian group of 2 and let

uo, U1, ... be the sequence generated b~ (1) with least Period t. Then for any
nontrivial character X of G and for any finite nonempty set IC of integers
we have

where K is the cardinality of K.
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Proof. We use the abbreviation

From (1) we get un = ’lfJn(uo) for all integers n &#x3E; 0, and we use this identity
to define un for all negative integers n. It is easy to see that for any integer
k we have

If we use this for all E then we get

where

By the Cauchy-Schwarz inequality we obtain

Since 1fJj is a permutation of G, the inner sum in the last expression is equal
to the sum in (3). Thus we get

and by appealing to (4) we arrive at the desired result. 0
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Corollary 1. Let G be a finite abelian group of order m &#x3E; 2 and let
uo, U1,... be the sequence generated by (1 ) with least period t. Then for
any nontrivial character X of G and any positive integer K we have

Proof. Apply Theorem 1 with

if K is even and

if K is odd. 0
In various applications the complete character sums Sr(X, can be

bounded by known results, e. g. the Weil bound or the Bombieri-Weil
bound. In such cases one obtains good bounds for the character sum (2) by
optimizing the choice of 1C in Theorem 1 or the choice of K in Corollary 1
(see e.g. [7], [10]). A similar procedure, applied to subgroups G of the
group of Fq-rational points of an elliptic curve over Fq, may yield results
of interest for cryptology.

3. R-orthomorphisms

A particularly favorable case arises in the bounds in Section 2 if the

complete character sums Sr (x, vanish. This happens, for instance, if the
corresponding are permutations of G, where 6 is the identity
map on G. This observation suggests the following definition.

Definition 1. Let G be a finite abelian group and R a nonempty set of
nonzero integers. Then a permutation 0 of G is called an 7Z-orthomorphism
of G if E Sym(G) for all r E ~Z.

In the case R we get the classical concept of an orthomorphism of
G which is useful for the construction of orthogonal Latin squares (see [13,
Chapter 22]). An application of orthomorphisms to cryptology appears in
the work of Schnorr and Vaudenay [11]. Special types of R-orthomorphisms
with applications to combinatorial design theory arise in the recent paper
of D6nes and Owens [2].

Since it is obvious that t E Sym(G) if and only if t E Sym(G),
it suffices to take ?Z to be a nonempty set of positive integers. In fact, we
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can take

where ord(~) is the order of 0 in Sym(G) and e(G) is the exponent of

Sym(G). It is also trivial that if S is a nonempty subset of IZ and 0 is an
R-orthomorphism of G, then 0 is an S-orthomorphism of G.
The following result is an immediate consequence of Corollary 1 if is

a suitable R-orthomorphism of G.

Corollary 2. Let G be a finite abelian group of order m &#x3E; 2 and for some
integerK &#x3E; 2 be an R-orthomorphism of G with R = {I, 2, ... , K- 11.
Then for the sequence uo, ul, ... generated by (1) with least period t and
for any nontrivial character X of G we have

Corollary 3. Let G be a finite abeliare group of order m &#x3E; 2 and let

uo,ul,... be the sequence generated by (1) with least period t. Let the

integer N with 1  N  t be given and assume that the permutation o
in (1) is an R-orthomorphism of G with R = f 1, 2, ... , L - 11 for some
integer L &#x3E; Then for any nontrivial character X of G we have

Proof. Apply Corollary 2 with K = rN1/3ml/31. 0
We now show that some variation of our method produces a bound that

is sometimes better than the result of Corollary 2.

Theorem 2. Let G be a finite abelian group of order m &#x3E; 2 and let

uo, U1,... be the sequence generated by (1) with least period t. Let the

integer N with 1  N  t be given and assume that the permutation 0
in (1) is an R-orthomorphism of G with R = 11, 2, ... , K - 11 for some
integer K &#x3E; 2. Then for any nontrivial character X of G we have

Proof. Let us consider the sums
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We first show that

Fix a and note that for any integer k &#x3E; 0 we have

since the terms of the sum aha have period t. It follows that

By the Cauchy-Schwarz inequality we obtain

The inner sum is equal to m if h = j and equal to 0 otherwise, and so (5)
follows.
To bound the sum in the theorem, we use a standard method by starting

from the identity
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which is valid since the sum over b is 1 for 0  n  N - 1 and 0 for
N  n  t - 1. Rearranging terms, we get

In view of (5) this yields

By an inequality of Cochrane [1] we have
.L -1

and so the result of the theorem follows. 0

Remark 1. There is also an alternative method of improving the result
of Corollary 3 if larger values of L are available, but not so large that
Theorem 2 becomes efhcient. The method is based on induction on the
sum length N. Indeed, using the representation

for integers k &#x3E; 0 (and analogously for k  0), one can bound the last two
sums inductively rather than trivially (as we have done in Theorem 1 and
thus in Corollary 3).

4. Examples of R-orthomorphisms

We present two classes of examples of R-orthomorphisms for G = Fq.
The first class of examples is obtained from linear algebra.

Proposition 1. Let 0 be a linear operator on the vector space Fq over its
prime subfield Fp and let R be a nonempty set of positive integers. Then

qb is an R-orthomorphism of Fq if and only if neither 0 nor an rth root of
unity for some r E R is an eigenvalues 

Proof. This follows from the definition of an R-orthomorphism and ele-
mentary linear algebra. D

Remark 2. To get a concrete example from Proposition 1, let 0 be such
that its characteristic polynomial f is irreducible over Fp, with 0

if q = p. Let h be the order of f in the sense of [5, Definition 3.2~, then
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all roots of f have order h in Fq. It follows therefore from Proposition 1
that o is an R-orthomorphism of Fq whenever contains no multiple of
h. For instance, if q &#x3E; 3 and the characteristic polynomial of 0 is primitive
over Fp, so that h = q -1, then 0 is an R-orthomorphism of Fq with
~={1~...~-2}.

Remark 3. The last example in Remark 2 is best possible in the sense
that if G is an arbitrary finite abelian group of order m &#x3E; 2, then there
are no ?Z-orthomorphisms of G with R = 1, 2, ... , m -1 }. To see this,
observe that an orthomorphism 0 of G has a (unique) fixed point, hence
the length c of any other cycle of 0 satisfies c  m -1, and so o is not a
{c}-orthomorphism of G. Similarly, if the sequence in (1) has least period
t &#x3E; 2, then the permutation V) in (1) is not an R-orthomorphism of G with
7~={1,2,...~}.

In the second class of examples we consider maps of the following form.
Let q &#x3E; 5 be odd and choose a E Fq with a # 0, + 1 . Then the self-map 
of Fq is defined by

By [5, Theorem 7. 10] or by a simple direct argument (compare with the
proof of Proposition 2 below), ’l/;a is a permutation of FQ.

Proposition 2. Let the permutation of Fq be as in (6) and let R be a
non-empty set of positive integers. Thenoa is an R-orthomoqphism of Fq
if and only if

where 17 is the quadratic character o f Fq.

Proof. Note that the map 1/Ja in (6) can be described also by Oa(C) =
c(a -1 ) 2 if c is a square in Fq and = c(a + 1 ) 2 if c is a nonsquare in
Fq. We remark in passing that this shows that 1/Ja is a permutation of Fq.
By straightforward induction it is seen that for any positive integer r we
have = if c is a square in Fq and = c(a + 1 ) 2’’ if c is a
nonsquare in Fq. From this it follows immediately that E Sym(Fq)
if and only if

and this yields the result of the proposition. D
We now show a sufficient condition for the existence of 7Z-orthomorphisms

of the form (6) for suitable sets R.
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Theorem 3. Let q be odd and let R be a finite nonempty set of positive
integers. Suppose that

where R is the cardinality of R. Then there exists an a E Fq such that the
map in (6) is an R-orthomorphism of Fq,

Proof. Let L(R) denote the number of a E F* for which

Furthermore, we put

Then

with

Therefore

(7)

Moreover,

Consider the innermost sum on the right-hand side of (8). If the polynomial
drk is the square of a polynomial, then the corresponding sum is

clearly nonnegative. If drk is not the square of a polynomial, then
by the Weil bound (see [5, Theorem 5.41]) we obtain
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Together with (8) this yields

Going back to (7), we get

By assumption, the last expression is at least 2, and so 3. Hence
there exists an a E F* with a ~ :1:1 that is counted by L(R), which means
by Proposition 2 that iba is an 7Z-orthomorphism of Fq. D
Remark 4. For sets ~ of the form 7~={1,2,...,7~20131} the condition
on R in Theorem 3 is satisfied with some K N 0.5 log2 q.

It would be desirable to find further examples, besides those in Remark 2,
of R-orthomorphisms of groups G with 7~= {1,2,... K -1 ~ and K large
relative to the order m of G. According to Remark 3 we must have K 
m -1, so one may ask for K at least of the order of magnitude me for
some 0  0  1. Such examples are of interest not only in their own right,
but also in view of the bounds for character sums in Section 3 and for

applications to combinatorial design theory (see [2] for such applications).
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