
JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

MASSIMO BERTOLINI
Iwasawa theory for elliptic curves over imaginary
quadratic fields
Journal de Théorie des Nombres de Bordeaux, tome 13, no 1 (2001),
p. 1-25
<http://www.numdam.org/item?id=JTNB_2001__13_1_1_0>

© Université Bordeaux 1, 2001, tous droits réservés.

L’accès aux archives de la revue « Journal de Théorie des Nombres
de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=JTNB_2001__13_1_1_0
http://jtnb.cedram.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


, 1-

Iwasawa theory for elliptic curves over imaginary
quadratic fields

par MASSIMO BERTOLINI

RÉSUMÉ. Soit E une courbe elliptique sur Q, soit K un corps
quadratique imaginaire, et soit K~ une Zp-extension de K. Étant
donné un ensemble 03A3 de places de K contenant les places au-
dessus de p et les places de mauvaise réduction de E, nous notons
K03A3 l’extension maximale de K non ramifiée en-dehors de E. Cet
article est consacré à l’étude de la structure des groupes de co-

homologie Hi (K03A3/K~, Ep~) pour i = 1, 2, et de la composante
p-primaire du groupe de Selmer Selp~ (E/K~), considérés comme
modules discrets sur l’algèbre d’Iwasawa de K~/K.

ABSTRACT. Let E be an elliptic curve over Q, let K be an imag-
inary quadratic field, and let K~ be a Zp-extension of K. Given
a set 03A3 of primes of K, containing the primes above p, and the
primes of bad reduction for E, write K03A3 for the maximal alge-
braic extension of K which is unramified outside E. This paper
is devoted to the study of the structure of the cohomology groups
Hi (K03A3/K~, Ep~) for i = 1, 2, and of the p-primary Selmer group
Selp~ (E/K~), viewed as discrete modules over the Iwasawa alge-
bra of K~/K.
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Introduction

Let E be an elliptic curve defined over a number field K, and let K~ be
a Zp-extension of K, where p is a rational prime. Given a set E of primes
of K, containing the primes above p, the primes of bad reduction for E and
the Archimedean primes, write KE for the maximal algebraic extension of
K which is unramified outside E.
The diophantine properties of E with values in the layers of I~~ can be

encoded in the Galois cohomology groups HZ(K~/K~, Ep~ ), i = 1, 2 and
in the p-primary Selmer group Selpoo(E/Koo) of E over Koo. Denote by A
the Iwasawa algebra attached to the extension K~/K, i.e., the completed
group ring 7~p QrD , with r : = Gal(K,,./K). The above groups are equipped
with a natural structure of discrete A-modules.

This paper is devoted to the study of the A-module structure of the
above groups, when E is an elliptic curve defined over the rationals and K
is an imaginary quadratic field. This setting is particularly rich, as elliptic
curves over Q carry a modular structure, and moreover, when Ago is the
anticyclotomic Zp-extension of an imaginary field K, the points of E over
the finite subextensions of ~oo have interesting growth properties, due in
certain cases to the presence of systematic families of points.

Let Kn denote the subfield of ~oo having degree over K equal to pn.
After reviewing in section 1 the definition of Selmer group, we state in
section 2 two natural conjectures on the ranks of the Mordell-Weil groups
E(Kn). These conjectures are compatible with the Birch and Swinnerton-
Dyer conjectures, and with the expected behaviour of the special values of
the complex L-series of E/K twisted by finite order complex characters of
Gal(Koo/ K). Assuming the above conjectures, and using general theorems
of Greenberg [8], we show in section 3 a result on the structure of the A-
module Hi (K’E/ Koo, Epoo), i = 1, 2. In section 5, we assume that Koo is
the anticyclotomic Zp-extension of K, p is a good ordinary prime for E and
there are Heegner points defined over K, satisfying a mild non-vanishing
condition 1. In this setting the Pontryagin dual Xoo of the Selmer group
Selpoo(E/Koo) has positive A-rank, and we can prove the above conjec-
tures. The proof uses results of (1), which provide a partial proof of a Main
Conjecture of Iwasawa theory formulated by Perrin-Riou in [14]. We also
consider the problem of the existence of non-trivial finite A-submodules of
Xoo. If Xoo is a torsion A-module, this problem is studied by Greenberg in
(8~ ; we review some of his results in section 4. If the A-rank of Xoo is pos-
itive, we study this problem in section 7, working in the setting of section
5, and making use of a duality theorem proved in section 6.

1 Note Added in Proof: This condition has recently been proved in many cases by Christophe
Cornut, Réduction de Familles de points CM, PhD thesis, Strasbourg, 2000.
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1. Selmer groups

In this section, let E be an elliptic curve defined over a number field K
and let p be a rational prime. Define E and Kr as in the introduction.
The group Epoo of p-power torsion points of E is naturally a Gal(K/K)-
module. Given an extension L of K contained in Kr and a prime w of L,
write Lw for the compositum of the completions of the finite subextensions
L’ of L/K at the prime of L’ below w. If v is a prime of K, let Lv :=

ITwlv Lw, the product being taken over the primes of L above v.
For 1  m  oo, the pm-Selmer group of E over L is defined by the

exactness of the natural sequence

where we extend multiplicatively our functors on local fields with values in
the category of Abelian groups. We find directly from the definitions that

the limit being compiled by means of the maps induced by the natural
inclusions En - Epn+1.

If L/K is a finite extension, define the pro-p Selmer group of E over L
to be

where the inverse limit is with respect to the maps induced by Ep,,+, ~
Rep- - When the p-torsion points Ep (L) of E over L are trivial, then Sp (EIL)
is equal to the Tate module Homzp (~p/7~p, Selpoo (E/L)) of Selpoo (E/L); in
particular, it is a free Zp-module. Letting E(L)p := E(L) 0 Zp denote the
p-adic completion of E(L), there is a natural inclusion E(L)p - Sp(E/L).

Define Koo, Kn, r and A as in the introduction; let rn := Gal(Koo/ Kn) =
rpn and Gn := Gal(Kn/K) = r/rn. Given a discrete A-module M, we say
that M is cofinitely generated, resp. cotorsion, or cofree over A if its Pon-
tryagin dual Mdual = Homzp (lVl, Qp/Zp) is finitely generated, resp. torsion,
or free as a A-module.
The inflation-restriction exact sequence gives

where the direct limit is taken with respect to the natural restriction map-
pings. One can show that the Pontryagin dual Xoo of Selpoo(E/Koo) is

finitely generated.
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Define the A-module

the limit being taken with respect to the corestriction maps.
Lemma 1.1. Assume that E has good ordinary reduction at the primes of
K (above p) which are ramified in K~. Then there is a canonical identifi-
cation 

-

Proof. See [14, lemme 5, p. 417]. D

It follows that 6’p(E/~oo) is a torsion free A-module, having the same
rank over A as Zoo.

2. Special values of L-series and Selmer groups

In this section and in the sequel of the paper, let E be an elliptic curve
defined over Q and let K be an imaginary quadratic field. Write E for a
finite set of rational primes including p and the primes of bad reduction
for E. (Note that in the definition of the Selmer group for extensions of
K no reference to the Archimedean primes is needed.) Let ~oo stand for a
Zp-extension of K, and retain the notations of the previous section.

Given a finite order character X : F - C~, write L(E/K, x, s) for the
L-series of E/K twisted by x. By the fundamental work initiated by Wiles
and Taylor, E is known to be modular. Hence, L(E/K, x, s) can be con-
tinued analytically to the whole complex plane, so that it is defined at
s=1.

We review some conjectures on the behaviour of L ( E/ K, x,1 ) , which,
combined with the Birch and Swinnerton-Dyer conjectures, lead to predic-
tions on the rank of the Mordell-Weil groups E(Kn) and on the Zp-corank
of Selpao (E/Kn ) . Our purpose is that of motivating certain assumptions
that will be made later in the paper.

Recall that the Zp-extensions of K which are Galois over Q are the
cyclotomic Zp-extension, which is Abelian over Q, and the anticyclotomic
Zp-extension, whose Galois group over Q is pro-dihedral. Their composite
is the Z2 -extension of K, which contains all Zp-extensions of K.

If Ago is different from the anticyclotomic Zp-extension of K, it is ex-
pected that L(E/K, x,1) is non-zero for almost all X as above. For the

cyclotomic Zp-extension of K, this is proved in Rohlrich’s paper [17].
Suppose now that K~ is the anticyclotomic Zp-extension of K. It is con-

venient to distinguish two cases. We say, following Mazur’s terminology,
that E is in the generic case if either E does not have complex multi-
plications or the field of complex multiplication of E is different from K.
Otherwise, we say that E is in the exceptional case.
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Let E be in the generic case. For X an anticyclotomic character, then
L(E/K, X, s) and L(E/K, X, 2 - s) are related by a functional equation,
whose sign is the same for all ramified X. We call this common sign
the sign of (E, Koo/ K). (It can be different from the sign correspond-
ing to unramified characters when p divides the conductor of E.) If the

sign of (E, Koo/ K) is +1, resp. -1, it is expected (cf. [11] and [12]) that
L(E/K, x,1), resp. the first derivative L’(E/K, x,1) is non-zero for almost
all X.
We now turn our attention to elliptic curves in the exceptional case.

There is a factorization

where ’l/JE is the Grossencharacter attached to Fez and e is the quadratic
character associated with K. The Hecke L-series appearing in the above
factorization satisfy a functional equation relating their values at s and
2 - s. Here, we define the sign of (E, K~/K) to be the common sign
of the functional equations of the L-series L(’OE, X, s), so that the sign
of (E, Koo/ K) determines the parity of one half the order of vanishing of
L(E/K, X, s). When the sign of (E, Koo/ K) is +1, it is again expected that
L(E/K, X,1) is non-zero for almost all x; when the sign of (E, K~/K) is
-1, then L(E/K, X, s) should vanish to exact order 2 for almost all X.
By combining the above expectations with the Birch and Swinnerton-

Dyer conjectures, one is lead to formulate the following conjecture. See

[11, sec. 18] and [12].) Given two functions f, g : I~Y -&#x3E; C, we write f (n)
g(n) + O(1) if f (n) - g(n)1 is bounded by a constant independent of n.

Conjecture 2.1. If Koo is a 7GP-extension of the imaginary quadratic field
K, there exists an integer r = r(E, E {O, 1, 21 depending on E and

such that

Conjecture 2.1 is equivalent to the statement that is

equal to r pn -~ O ( 1 ) . If the p-primary part of the Shafarevich-
Tate group of is finite for all n, it is also equivalent to the equality of
rankzE(Kn) and r ~ pn + 0(1).
We formulate conjecture 2.1 in the weakest form apt to be assumed as

a working hypothesis in the next sections. Following Mazur, we call r
the growth number of (E, Koo/ K). The above discussion indicates that
r should be 0 or 1 if E is in the generic case, and 0 or 2 if E is in the

exceptional case.
Given a rational prime l, let Kn,l := the sum being ex-

tended over the primes of Kn above l. By our conventions, 
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denotes the group of the local points of E at l. Write

for the p-adic completion of E(Kn,l).
By definition of Selmer group, there are natural maps

m

the direct limit being with respect to the natural maps.
Note that is always equal to 

Conjecture 2.2. yVe have = r(E, pn + 0(1).
Assume that the "weak Leopoldt conjecture"

is satisfied. Then conjecture 2.1 and conjecture 2.2 are equivalent. In

particular, this is the case when the growth number r is equal to 0.
In section 5 we provide evidence for these conjectures, when is the

anticyclotomic Zp-extension and there are Heegner points defined over 
We can show that they follow from a mild non-vanishing assumption on the
Heegner points.

3. Descent Iwasawa modules

Using results of Greenberg [8], and assuming the validity of the conjec-
tures 2.1 and 2.2, in this section we prove a result on the structure of the
descent A-modules H’(Kr /Koo, Epao ), i = 1, 2. This result holds for all
odd primes p, irrespective of whether they are ordinary or supersingular
primes for E, or primes of bad reduction. It is an analogue in the current
context of the theorems 1 and 2 of [7], which study the case of a modular
elliptic curve over the cyclotomic Zp-extension of Q having analytic rank
over Q at most 1.

Theorem 3.1. Assume that the conjectures 2.1 and 2.2 hold, and that p
is an odd prime. Then:
1. the discrete A-module has corank over A equal to 2.
Moreover, its Pontryagin dual has no non-zero finite submodule;
2. E P_) = 0.

Proof. Greenberg ([8, prop. 3, 4 and 5]) has shown the following:
a. is a cofree A-module;
b. if Epoo) = 0, then the Pontryagin dual of 
has no non-zero finite submodule;
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c. corankAH1(K’E/ Koo, Epoo) - = 2.

It follows that part 1 and part 2 of theorem 3.1 are equivalent. Moreover,
if s = s(E, Koo/ K) denotes the A-corank of Ep.), then we
have 5~2.

Recall that Selpao (E/Kn) is defined by the exact sequence

For every rational prime l, the local Tate duality gives a perfect pairing

By the theory of the formal groups attached to elliptic curves, we find that

and, for 1 ~ p, and H1 (Kn,l, are finite. It follows that

The inflation-restriction sequence gives readily

From the theory of A-modules and the fact that Epoo(Koo)) is finite,
we deduce

By combining conjecture 2.1 with (1) and (4), we obtain

Together with (3), this shows that s - r  2. When r = 0, this concludes
the proof. In general, consider the natural map

By conjecture 2.2 and the above remarks

The global reciprocity law of class field theory implies that Im(pn) and
Im(6n) are isotropic under the local Tate pairing

Hence, by (3), (5) and (6), we get

This implies that s  2, which, together with the inequality s &#x3E; 2 observed
before, gives s = 2, as was to be shown. D
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4. Finite submodules of Selpoo 
It is of interest to formulate conditions under which the quotient

of has no non-trivial finite A-submodule. See in

particular the applications to the structure of Xoo of section 8.
Let T be the order of the torsion subgroup of 

Lemma 4.1.

Proof. It is enough to show that = 0 for all the primes A
of above 1 E E 2013 {?}. By proposition 2 of ~8~, this holds if Ep.
is finite. But is zero under our assumption on p. 13

To simplify the arguments, we assume from now on that p is a prime of
good reduction for E. The case where p is an ordinary prime is radically
different from the case where p is supersingular. We first consider the latter
case.

Lemma 4.2. If p is a supersingular prime for E, then H1(Koo,p, E)poo is

equal to zero.

Proof. By local Tate duality, H1(Koo,p, E)poo is the dual of limn E(Kn,p)p,
the inverse limit being taken with respect to the corestriction maps. The
claim follows from well-known results on the norm mapping for Lubin-Tate
formal groups of height 2. See [20]. D

Proposition 4.3. Let p be a prime of supersingular reduction for E such
that p ( 2T. Assume that the conjectures 2.1 and 2.2 hold.
Then, A-module of rank 2 with no non-trivial finite A-submodule.

Proof. By combining lemma 4.1 with lemma 4.2, we see that

is zero. By definition, Selpao (E / Koo) is equal to The

result follows from theorem 3.1. D

Remark. Lemma 4.2 shows that if p is supersingular, the A-coranks of
Selpoo and Epoo) are equal. Thus, the results of Green-
berg recalled in the proof of theorem 3.1 imply that for supersingular primes
the A-rank of is always at least 2.

We now turn to consider primes p of good ordinary reduction for E. In the
remainder of this section, we review an argument of Greenberg ([8, sec. 7])
which shows that if is A-torsion, it has no non-trivial finite A-submodule
for almost all ordinary p (see theorem 4.5 below). This argument does not
seem to generalize to the case where the A-rank of is positive. This case
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will be treated in the sections 5, 6 and 7, from a different viewpoint. For a
strengthening of theorem 4.5, see Greenberg’s forthcoming publications.
The following lemma clarifies the relation between the growth number

defined in section 2 and the A-rank of 

Lemma 4.4. Let p be a prime of good ordinary reduction for E, and let
r = rankAXoo . Then we have

Proof. Mazur’s "control theorem" ([10, ch. 4]) shows that the natural re-
striction maps 

-

have finite kernel and cokernel, of order bounded independently of n. The
lemma follows from the theory of A-modules. 0

Theorem 4.5 (Greenberg). Assume that:
(i) p is a prime of good ordinary reduction for E;
(ii) p f 6T;
(iii) is a torsion A-module.

Then has no non-trivial finite A-submodule.

Proof. ( ~8, sec. 7])
Step 1. Since p is ordinary for E, reduction mod p gives rise to an exact
sequence

of modules over Gxp := Gal(Kp/Kp), such that the inertia group Ip C G Kp
at p acts trivially on Epoo / F1 Epoo and via the cyclotomic character xp on
F1 Epoo. By [8, sec. 2] and by lemma 4.1, the Selmer group of E over K~
can be defined by the exact sequence

where the last map is induced by (7). Let

denote the Cartier dual of By our assumptions on p, we
have that is zero, and hence is

also zero. Then [8, prop. 1 and its corollary 2] shows that the A-module
H1(Koo,p, Epoo / F1 Epoo) is cofree of corank 2.
Step 2. Since by our assumptions is A-torsion, lemma 4.4 implies
directly that the conjectures 2.1 and 2.2 hold with r = 0. By theorem 3.1,

Epoo )dual has A-rank equal to 2 and has no non-trivial finite
A-submodule.
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Step 3. By dualizing the sequence (8), we find

where the injectivity of the first map follows from the fact that is

A-torsion and is free of the same rank as

Let C be the preimage in of a finite A-submodule

C of By Step 1 and Step 2, C is A-torsion free. Hence the theory
of A-modules shows that 13 must inject in a free A-module of rank 2, with
finite cokernel. But this is possible only if C = 0. D

Remarks.

1. If the A-rank of is positive, then the first map of the sequence (9)
is no longer injective, and the argument above cannot be performed (as
one sees from easy examples). A natural situation where the rank of is

positive arises because of the presence of Heegner points defined over the
layers of the anticyclotomic Zp-extension Ago of K. In the sections 5, 6
and 8 we study the structure of the Iwasawa modules and

in this case, and in particular the existence of non-trivial
finite A-submodules of 

2. Assume that E is in the generic case and that p is a prime of good
ordinary reduction for E. Conjecturally, the rank of is positive if
and only if is the anticyclotomic Zp-extension of K and there exist
Heegner points defined over Koo. For, the conjectures of section 2 combined
with lemma 4.4 predict that the the rank of is positive when Ago is
anticyclotomic and the sign of (E,Koo/K) is -1. If E is modular, this is
precisely the assumption that guarantees the existence of Heegner points
(see the next section).

5. Growth numbers and Heegner points

We have observed that if is a torsion A-module, then the conjectures
2.1 and 2.2 are verified, with r = 0. In this section, let Koo be the anticyclo-
tomic Zp-extension of K and p be a prime of good ordinary reduction for E
(subject to certain technical conditions). Assuming the existence of Heeg-
ner points defined over satisfying a mild non-triviality assumption, we
show that the conjectures 2.1 and 2.2 hold, with r = 1. In particular, we
may apply theorem 3.1 in this setting.

Let K be such that disc(K) is prime to the conductor N of E. In order
to ensure the existence of Heegner points on E defined over the layers of
Koo, we make the following assumption.



11

Assumption A.
The L-series L(E/K, s) vanishes to odd order at s = 1.

The above assumption implies that E is in the generic case. The condi-
tion on L(E/K, s) is equivalent to E(N) = 1, where recall that E denotes
the Dirichlet character attached to K. It follows that for all finite order

chaxacters x of r the L-series L(E/K, X, s) vanishes to odd order at s = 1.
Under assumption A, we can construct Heegner points defined over the

layers of coming from a Shimura curve parametrization X ~ E of E,
the definition of the curve X depending on which prime factors of N are
split or inert in K. In the case when all the primes dividing N are split in
K, X is the modular curve Xp(N). See [5] for more details.
The extension Kn is contained in a ring class field of conductor

pkn. Assume that kn is minimal. (For example, if p does not divide the
class group of K, kn = n ~-1. ) For all n we may define a Heegner point an E
E(Kn) by tracing from K~pkn~ down to Kn a Heegner point in 
By viewing an as a point of E(Kn)p = E(Kn) 0 Zp, define the submodule

of generated by the Gn-orbit of an. The module E(EIK,,,)p does
not depend on the choice of the Heegner point an, but does depend on the
choice of modular parametrization. Let ap denote the Fourier coefficient

1-~ p - #E(Fp). In order to be able to apply directly the results of ~1~, we
impose the same assumptions as in ~1~, with the exception that we do not
require that the Heegner points an come necessarily from a parametrization
of E by the modular curve Xo(N). Since the formal properties of the an are
the same in all cases (see [5]), the arguments of [1] go through unchanged
and the results contained there hold in our more general setting. (Some of
the other assumptions could also be weakened somewhat.)

Assumption B.

(1) The imaginary quadratic field K is such that disc(K) is prime to N
and C7K = ~~1}.
(2) p f where EIEO denotes the group of
connected components of the N6ron model of E over Spec(OK) .
(3) The Galois representation pp : is surjective.
(4) 0,1, 2 (mod p) if p splits in K, and ap 0 0,1, -1 (mod p) if p is
inert in K.

Fixing E and K, assumption B holds for a set of primes p of density 1: see
[1, §2.2] for more details. In the sequel of this section, we will tacitly work
under the assumptions A and B.
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Lemma 5.1. For all n, corestriction induces surjective maps

In particular, we have natural inclusions C £(E / Kn+1)p.
Proof. See [1, §2.1, prop. 4] (based on computations contained in [14]). 0

Define the Iwasawa module of the Heegner points to be

I., fI

where the inverse limit is taken with respect to the corestriction maps.
The module is cyclic over A. Moreover, it injects naturally in

(the latter module being defined in section 1). Since the A-

module is torsion-free by lemma 1.1, we conclude that either
is isomorphic to A or it is zero. One checks that is

non-zero if and only if an has infinite order for some n. (See [1, §2.1] for
details.)

Remark. By modifying the definition of the as in [14], it is

possible to define an Iwasawa module of Heegner points enjoying the same
properties of under weaker assumptions than the ones above.
For simplicity, we do not pursue this here.

Define the A-module

the inverse limit being taken with respect to the the corectriction maps.

Proposition 5.2. 1. The A-module Ê(Koo,p)p is free of rank 2.
2. The natural maps

are isomorphisms. (Thus, by part 1, E(Kn,p)p is isomorphic to 

Proof. Part l. By the local Tate duality, is identified with the

Pontryagin dual of Consider the local descent exact se-

quence

Let FK,, denote the residue algebra of Assumption B implies that
Ep(FK..) is zero. Then the sequence (1) of section 4 induces the exact
sequence
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This sequence ends with a zero since has p-cohomological dimen-
sion 1 (see [21]). The results of [6] show that the image of HI (Koo,p, F1 Ep~ )
in H1(Koo,p, Ep~ ) equals the image of 0 Qp/Zp in H1(Koo,p, Ep.) -
It follows that is identified with 
Since is zero under our assumptions, we also have that

is zero. Then [8, proposition 1 and its corollary 2]
implies that HI (K~,p, is A-cofree of rank 2. This concludes the proof
of part 1.

Part 2. Under our assumptions, the results of [10, ch. 4] show that the
corestriction maps

"""’/7"’ " """’/7"’" ,

are surjective. Therefore, the natural maps - E(Kn,p)p are
also surjective. By part 1, is isomorphic to in par-

ticular, it has Zp-rank equal to 2pn. Since the Zp-rank of E(Kn~p) p is equal
to 2pn by the theory of formal groups, we conclude that 
E(Kn,p)p is an isomorphism. 0

Theorem 5.3. Assume that is non-zero. Then the conjectures
~.1 and ~.,~ hold, with r(E, Koo/ K) = 1.

Proof. Part 1
Under our assumptions, the results of [1, §3.1] show that the A-rank of

is equal to 1. Lemma 4.4 implies that conjecture 2.1 holds with
r (E, Koo/ K) = 1.
Part 2

Step l. Consider the natural localization maps

By taking the inverse limit with respect to the corestriction mappings, we
obtain a map

By our is a free A-module of rank 1. By proposi-
tion 5.2, is torsion-free. Hence o~~~p is injective if and only if it
is non-zero. This is equivalent to saying that an,p is non-zero for some n.
But we know that an has infinite order for some n, and hence on,p(an) is
non-zero. In conclusion, o,,,.,p is injective.

Step 2. By fixing isomorphisms A 0’,,,,,p
is identified with an embedding
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By proposition 5.2, the image of an,p is identified with

Hence, by the theory of A-modules, we find

Step 3. Since O’n,p is the restriction of the map

the above equality gives

The claim follows from part 1, since 
D

Remark. As we have observed in section 2, in our setting L’(E/K, x,1) is
conjectured to be non-zero for all but finitely many finite order characters
x of r. A natural generalization of the Gross-Zagier formula states that
L’(E/K, x,1) is equal to the canonical height of the x-component of the
Heegner point an, up to a non-zero constant. This would imply that for n
large enough an has infinite order. Thus, it is natural to conjecture that

is always non-zero: see [11, sec. 19].

By combining theorem 3.1 with theorem 5.3, we obtain the following.

Theorem 5.4. Assume that non-zero.

1. The discrete A-module has corank over A equal to 2.
Moreover, its Pontryagin dual has no non-zero finite submodule.
2. H2(K’E/ Koo, = 0.

Remark. Proposition 5.2 and theorem 5.3 may be viewed as analogues in
our setting of the results of Iwasawa on the structure of the modules of the
local units and the cyclotomic units over the cyclotomic Zp-extension of Q.
(See for example [9].)

6. A duality theorem

In this section, we prove a general duality theorem which will be used in
the next section to study the existence of finite submodules of in the
case of the anticyclotomic Zp-extension of K. Here, K will be a number
field and an arbitrary Zp-extension of K. We make the following
assumptions on (E, p, Koo/ K).

1. p t 2#(E/E°), where denotes the group of connected components
of the N6ron model of E over the ring of integers of K.
2. E has good reduction above p.
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3. The Galois representation pp : Aut(Ep) contains a Cartan
subgroup of Aut(Ep) - GL2(Fp).
4. The local norm mappings Nv : E(Kn,v) ~ E(Kv) are surjective for all
primes v of K.

Remark. In the case when E is an elliptic curve defined over the rationals
and K is an imaginary quadratic field, one checks by using the results of
[10, ch. 4] that these assumptions follow from the assumption B of the
previous section. By condition 3, is zero, and hence is also
zero. Condition 4 implies that E has ordinary reduction at all the primes
of K which are ramified in (~10, ch. 4]).

Define the universal norm submodule of Sp(E/K) to be

Theorem 6.l. Under the above assumptions, there exists a perfect canon-
ical pairing

Remark. The existence of a pairing like the one above, having finite
right radical, is often used to define the p-adic height pairing on Sp(E/K)
attached to Koo. See [18], [19] and [15]. For our purposes, we need that
the pairing (( , )) is perfect, not just up to quasi-isomorphisms. The proof
uses theorem 3.2 of [4].

We study the existence of finite submodules of by means of the following
corollary.

Corollary 6.2. has no non-trivial finite A-submodule if and only if
Sp(EIK)IUSp(EIK) has no torsion.

Proof. Theorem 6.1 gives an identification of Sp(E/K)/USp(E/K) with
X~. If M is a non-trivial finite A-submodule of then Mr is a non-
trivial finite submodule of X~. Conversely, if the torsion subgroup of
Sp(E/K)/USp(E/K) is non-trivial, the corresponding finite submodule of
X~ is a non-trivial finite A-submodule of (such that the action of A
factors through A/(7 - 1)11 = Zp) . D

If is a torsion A-module, so that USp(E/K) is zero, corollary 6.2 gives
under the current more restrictive assumptions a new proof of the result of
Greenberg recalled in section 4. Our goal is to apply the above corollary to
an elliptic curve defined over the rationals with values in the anticyclotomic
Zp-extension of an imaginary quadratic field, in the case when has
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positive A-rank due to the presence of Heegner points over the layers of
K~.

Proof of theorem 6.1. It follows by combining the following results.
Fix positive integers m and n. To ease notation in the next lemma, let
H := Kn and G := Gn. Denote by I the augmentation ideal of the group
ring Thus, we have a canonical identification G/Gpm = 

Proposition 6.3. There is perfect canonical pairing of Tate cohomology
groups

Proof. Under our assumptions, the Hochschild-Serre spectral sequence can
be used to show that the restriction map induces an isomorphism between
Selpm (E/K) and Selpm(E/H)G (see for example [1, §2.3]). In particular,
we may identify Selpm(E/K) with a submodule of Selpm(E/H).

Write resp. Selpm(E/H)O for the image, resp. the
kernel of the corestriction map coresH~K : Selpm (E / K).
Thus, the group ft’(G, Selpm (E / H) ), resp. ÎI-1 ( G, Selpm(E/H)) is equal
by definition to

resp. 

Let, be a generator for G. By [4, theorem 3.2], given y E 
there exists z E H1(H,Epm) such that y = (~y - 1)z.

If v is a prime of K, we write zv for the natural image of z in H1 (Hv, E)Pm .
Clearly, zv belongs to H1(Hv, E);m. By the assumption 4, an argument
based on the Hochschild-Serre spectral sequence shows that restriction gives
an isomorphism between H1(Kv, E)pm and H1(Hv, E pm It follows that

we may identify zv with an element of Hl(Kv,E)pm. Write

for the local Tate pairing (~13, ch. 1]). We define a pairing

by letting

v

where x, denotes the natural image of x in and the sum
runs over all primes of K. Observe that the pairing [ , ~H is well defined.
For, if (r -1)z = (y -1)u for elements u and z in then z - u

belongs to H1(H, Epm )G. Since Ep(H) is zero, the restriction map induces
an isomorphism of Epm) onto Epm ) G. Thus, we may regard
z - u as an element in H1(K, Epm ). The global duality theorem of class
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field theory ([13, lemma 6.15, p. 105]) gives = 0. Moreover,
[ , ~H does not depend on the choice of the generator q.

Observe that y belongs to the right kernel of [ , ~H if and only if
there exists u E such that z - u belongs to Selpm (E/H)
([13, lemma 6.15, p. 105]). This is equivalent to saying that y belongs
to (, -1)Selpm(E/H).

Now, assume that is equal to with * E Selpm(E/ H).
Then [X, Y] H = 0 for all y in Selpm(E/H). For, the global duality theorem
gives

where the second sum is over all the primes w of H, we let [ , ~, stand for
the local Tate pairing relative to Hw and we write zw for the image of z in

H
Thus far we have proved induces a right non-degenerate

pairing

But the groups and have the
same order, since G is cyclic and Selpm (E/H) is finite. Hence, ( , ~ H,m
is non-degenerate. This concludes the proof of proposition 6.3. D

We shall define the duality of theorem 1 by compiling a limit of the pairings
defined in proposition 6.3. We begin with a compatibility property. For

m ~ 77/, ?~ : 7/, let

be defined by composing the restriction map with the map induced by
the inclusion Epn C Under our assumptions, the map res gives an
isomorphism ([1, §2.3])

Sel
By abusing notation somewhat, we also write res for the induced map

Let

be the map induced by . Since i

is contained in coresKn/KSelpm(E/Kn) we obtain a map, still denoted by
mp,
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Write Im,n for the augmentation ideal of Let i = in,n’ : Gn ~
Gn, be the canonical injection defined by i where § is any lift
of g to Gn, with respect to the natural projection Gn 2013 Gn. The map i

I --, - -

induces a canonical map

Lemma 6.4. We have

for any given

Proof. It follows directly from the definition of our pairings.

Lemma 6.5. We have

where the Lirrtit is taken with respect to the maps res.

Proof. Note that Selpm (E/Kn) injects via restriction into Selpm 
Thus,

Let I be a topological generator of r. The claim follows by taking the
direct limit of the short exact sequences

Lemma 6.6. We have

fV fIV

the limit being taken with respect to the maps mp.

Proof. We start by showing that

First, we see that

This follows from taking the inverse limit of the maps
1BT
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where NKn/K denotes multiplication by EGEG. g E Zp[Gn] . (Note that we
are working with finite modules, hence the inverse limit is an exact functor.)
Moreover, we have the equality

Now take Urn of the short exact sequence
m

We find

Although the modules in the above sequence are not finite, a simple topo-
logical argument (see the sublemma 6.7 below), based on the completeness
of in the p-adic topology, shows that lim n is exact on the above
sequences, thereby proving lemma 6.6. D

Sublemma 6.7. Let X be a fcnitelg generated Zp-module. Let Xn, n &#x3E; 1
be a sequence of Zp-submodules of X such that Xn D Xn+1 for all n. Then

the inverse limit being taken with respect to the natural projection maps.

Proof. Write Xoo and let Y, resp. Yn stand for resp.

Xn/ Xoo. Hence, nn Yn = (0). Our claim is equivalent to showing that the
inverse limit of the Yn with respect to the natural projections is equal to
Y. Note that the Zp-rank of Yn is constant for all n greater than a positive
integer no . By the theory of elementary divisors, we may write Y = 
where Z contains with finite index Yn if n &#x3E; no. We have

Since Z is complete in the p-adic topology and the Yn are a basis of neigh-
bourhoods of the identity of Z, we conclude that lim~ Z/Yn = Z. This

proves the sublemma. D

Theorem 1 is proved by combining the results 6.3-6.6, since the direct limit
of with respect to the maps j is naturally identified with r 0zp’
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7. On the structure of Selpao 

We return to the study of elliptic curves defined over the rationals, with
values in a Zp-extension of an imaginary quadratic field. In section 4, we
reviewed results of Greenberg which show that has no non-trivial finite

A-submodule, if p is a prime of good ordinary reduction for E and is a
torsion A-module. In this section, we consider the case where the A-module

has positive rank and p is an ordinary prime. (If E has supersingular
reduction at p, we have seen in section 4 (proposition 4.3) that is

essentially equal to the Pontryagin dual of H1(K’E/ Koo, Ep.), and we may
apply theorem 3.1 to understand its structure.)

In view of the conjectures of section 2, if we exclude curves in the ex-

ceptional case can have positive A-rank only when is the anticy-
clotomic Zp-extension of K and there are Heegner points defined over the
layers of Therefore, it is natural to place ourselves in the setting of
section 5, under the assumptions A and B made there.
The main result of this section (theorem 7.1) gives a sufficient condition

ensuring that does not have non-trivial finite A-submodules. As an

application (theorem 7.2), we obtain a strengthening of the main result of
111-

Let £n denote the natural image of the module of Heegner points
E(E/Kn)p in E(Kn)/pE(Kn), and let be the Shafarevich-Tate

group of E/Kn. Define m(E,Kn+1/Kn) to be the kernel of the restriction
map 

Theorem 7.1. Assume:

1. 0 for some n;
2. III(E, = 0 for all n &#x3E; 0.
Then has no non-trivial finite A-submodule.

Remark. There is theoretical as well as experimental evidence in support
of the expectation that Heegner points tend to be non-trivial modulo p.
See also the discussion in [3, section 2~.

We recall the results of [1]. Assume that the Iwasawa module of the Heegner
points 8(E/Koo)p is non-zero. Then, theorem 1 of [1, §3.1] shows that

is a free A-module of rank 1. Write E A for a characteristic

power series of the cyclic torsion A-module and
let (X,,,,)tors be the A-torsion submodule of Let, be a topological
generator of r. Theorem 1 of [1, §3.2] states the following:
1. (-y - is a finite A-module;
2. if, - 1 does not divide pop, then poo . is a finite A-module.
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Thus, in any case, p2 - is finite.

Note that the condition ~n ~ 0 implies that 0. By impos-
ing on the stronger assumptions of theorem 7.1, we obtain the
following strengthening of the above results.

Theorem 7.2. Under the assumptions of theorem 7.1 we have:

Thus, we have always poo 2 = 0.

Proof of theorem ?.1. The rest of this section is devoted to the proof of
theorem 7.1.

Let Rn be the group ring Z/pZ[Gn] . With q as above, denote by ’Yn
the natural image of 7 in Gn and by cvn the element qn - 1 of Rn. The
ring .Rn is a local principal ideal ring, whose maximal ideal is generated by
wn. Since R,~ may be identified with the quotient 11/(~y - of the PID
A := A © Fp, we can apply to Rn-modules the structure theory for modules
over PID’S. Therefore, if M is a finitely generated Rn-module, there is an
isomorphism

where 0  ik  pn. Note also that the lln-module for 0  i  pn,
is isomorphic to via the map induced by multiplication by 
Moreover, the dimension of the Fp-vector space is equal to i . (See
[3, section 3] for more details.)
We will apply the above remarks to the structure of the Rn-modules

Selp(E/Kn) and,6n.
Let ~n := Gal(Kn+l/Kn). Note that the restriction map induces an

isomorphism

(See, for example, [1, §2.2].) Thus, we may regard, and we will in the
sequel, Selp(E/Kn) as a submodule of Selp(E/Kn+1). By combining (*)
with the surjectivity of the corestriction maps on Heegner points (lemma
5.1), we obtain the equality

where denotes the norm operator 1: g E In particular, we
may view ~n as a submodule of En+1.
We are assuming that there exists no such that the Rno-module End is

non-zero. Hence, ~n° is isomorphic to (wno)to, for 0  to  pn° . From the
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norm-compatibility of Heegner points, we deduce that there is an isomor-
phism

for all n. For n 2: no, define Un to be One checks that Un is equal
to Observe that Un is an Rn-module in the natural way,
and it is free of rank 1. If n  no, define Un to be Again, Un
is a free Rn-module of rank 1. It follows from the isomorphisms (*) that
Un is a submodule of Selp ( E/ Kn ) .

Proposition ’1.3. For all n &#x3E; 1~ we have an equality 

where the Tn is annihilated by 

Proof. See [2, theorem 12]. D

Remarks.

1. Theorem 12 of [2] is proved by building upon Kolyvagin’s methods
applied to the Euler System of Heegner points.
2. Since to  pno , we have the natural identification

Thus by proposition 7.3, for n &#x3E; no, Tn is fixed by By the
isomorphisms ( * ) , we may assume that Tn is equal to Tno , for all n &#x3E; no .
In particular, the growth with n of the Rn-module Selp(E/Kn) is fully
accounted for by the "universal norm" submodule Un.

The free rank 1 Rn-module Un, constructed from Heegner points, is a
submodule of the p-Selmer group Selp(E/Kn). Under our assumptions,
a stronger statement holds.

Proposition 7.4. For all n &#x3E; 0, Un is a submodules of E(Kn)/pE(Kn).

Proof. By taking the Cn-cohomology of the exact sequence

we obtain the exact sequence

For all places v of Kn, the local cohomology group E((Kn+1)v))
is zero. For, this group is the dual of E((Kn+1)v)), by local
Tate duality. But this last group is zero, by assumption B, (4) of section
5. Therefore, the group Hl(Qn,E(Kn+1)) is equal to 
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which is trivial by our assumptions. Thus, the above exact sequence gives
a natural isomorphism

By construction, Un belongs to (E(Kn+l)/pE(Kn+1))Qn, when n &#x3E; no,

or to when  no. Hence it is a submodule
of and this proves the claim. D

As before, let denote the universal norm submodule of Sp(E/K).
It is known (see lemma 1.1 and [1, §2.1]) that

Under the assumptions of theorem 7.1, the Iwasawa module of Heegner
points is free of rank 1 over A. Thus, the above equalities show
that the Zp-rank of USp(E/K) is &#x3E; 1. Theorem 1 of (1, §3.1~ (recalled after
the statement of theorem 7.1) shows that the Zp-rank of USp(E/K) is equal
to 1. In the next proposition, we give another proof of this fact under
the current assumptions, more restrictive than those of [1], by working
"modulo P" and using proposition 7.3. Moreover, we show that the quotient
Sp(E/K)/USp(E/K) is torsion free. Combined with corollary 6.2, this
concludes the proof of theorem 7.1.

Recall that E(K)p denotes the p-adic completion E(K) 0 Zp of the
Mordell-Weil group E(K).

Proposition 7.5. The module USp(E/K) of universal norms is a free
rank 1 Zp-module, and it is generated by an element of E(K)p not divisible
by p.

Proof. Step 1. One checks that the Pontryagin dual of
is equal to Hence, the A-rank of is less than

or equal to the A-rank of (where recall that A is equal to
A0JFp). Proposition 7.3 implies directly that is  1,
and hence is  1. By combining this with the opposite
inequality, which we have observed before the statement of proposition 7.5,
we conclude that USp(E/K) is isomorphic to Zp.
Step 2. Denote by Un a lift of Un to E(Kn)p by the natural projection.
The Zp[Gn]-module On is free of rank 1. Let un be a generator. For all
n &#x3E; 1, the natural inclusion of points induces an isomorphism

(This is a consequence of the proof of proposition 7.4.) It follows directly
that the norm vn E E(K)p of un from Kn to K is not divisible by p. Since
E(K)p is compact in the p-adic topology, we can extract from the sequence
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subsequence converging to an element E E(K)p
such that:

Hence voo = +Ei) for all i &#x3E; 1, i.e., belongs to the module
of universal norms. Moreover, since the vn are not divisible by

p in E(K) p, the element is also not divisible by p. Hence, by step 1,
voo is a generator of Usp(E/K).

This concludes the proof of proposition 7.5, and the proof of theorem
7.1. 0

The proof of theorem 7.1 also gives the following byproduct.

Proposition 7.6. Let no be such that 0.

1. For no, we have

where e = pno is a non-negative integer independent
of n.
2. Foralln&#x3E;no,

where e’ = is a non-negative integer independent of n.

Proof. l. It follows directly from proposition 7.3 and the remark 2 after it.
2. The 7G-rank of E(Kn) is equal to the Fp-dimension of E(Kn)/pE(Kn)
for all n, since E(Kn) has no p-torsion. The claim follows from proposition
7.3 and the proof of proposition 7.4. D
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