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Digits and continuants in Euclidean algorithms.
Ergodic versus Tauberian theorems

par BRIGITTE VALLEE

A Jacques Martinet, meneur d’hommes et de science

RÉSUMÉ. Nous faisons ici l’analyse en moyenne des principales
quantités qui interviennent dans des algorithmes de type Eu-
clide -quotients partiels (chiffres) et continuants-. L’étude de
ces paramètres est en particulier essentielle quand on s’intéresse
à une mesure très précise (et très réaliste) de la complexité de
ces algorithmes, i.e., la complexité en bits, où l’on compte toutes
les opérations sur les bits. Nous développons un cadre général
pour une telle analyse, où la complexité moyenne est reliée au
comportement analytique dans le plan complexe des homogra-
phies utilisées par l’algorithme. Nos méthodes sont fondées sur
l’utilisation des opérateurs de transfert, objets de base de la
théorie des systèmes dynamiques, que nous adaptons à nos be-
soins. Nous opérons dans un cadre discret, où les théorèmes
Taubériens prennent le relais des théorèmes ergodiques. Ainsi,
nous obtenons des résultats nouveaux sur la complexité moyenne
-mesurée en bits- de toute une classe d’algorithmes de type
Euclide, et ce, dans un cadre unificateur.

ABSTRACT. We obtain new results regarding the precise average-
case analysis of the main quantities that intervene in algorithms of
a broad Euclidean type. We develop a general framework for the
analysis of such algorithms, where the average-case complexity
of an algorithm is related to the analytic behaviour in the com-
plex plane of the set of elementary transformations determined
by the algorithms. The methods rely on properties of transfer
operators suitably adapted from dynamical systems theory and
provide a unifying framework for the analysis of the main pa-
rameters -digits and continuants2014 that intervene in an entire
class of gcd-like algorithms. We operate a general transfer from
the continuous case (Continued Fraction Algorithms) to the dis-
crete case (Euclidean Algorithms), where Ergodic Theorems are
replaced by Tauberian Theorems.
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1. Introduction

The metric theory of continued fractions has been established by studies
of Gauss, Levy [26], Khinchin [22], Kuzmin [25], Wirsing [40] and Babenko
[2]. These authors mainly deal with a specific density transformer that
can also be used for studying the main parameters of interest, namely the
quotients and the continuants. The quotients play the role of digits (in
the related numeration system) and the continuants are the denominators
of the rational approximations provided by the truncation of the contin-
ued fraction. Properties of the density transformer entail the validity of
ergodic methods [8], which are both simple and powerful while providing
asymptotic estimates that hold almost everywhere.

Thus, such results are not suitable for providing any information on the
behaviour of the main parameters that intervene in the continued fraction
expansion of a rational number, since rational inputs have zero measure.
On the other hand, this particular case of a rational input is quite important
in computer science since it is closely related to the average-case analysis
of the Euclidean Algorithm.
The discrete counterparts of continued fraction algorithms, i.e., the Eu-
clidean algorithms, have been less extensively studied. There are two ma-
jor classical Euclidean Algorithms, that are called Standard (S), and Cen-
tered (C). The complexity of these algorithms is now well-understood, but
only as regards of the number of arithmetical operations to be performed:
The standard Euclidean Algorithm was analysed first in the worst case in
1733 by de Lagny, then in the average-case around 1969 independently by
Heilbronn [19] and Dixon (11), and finally in distribution by Hensley [20]
who proved in 1994 that the Euclidean algorithm has Gaussian behaviour.
The centered algorithm was studied by Rieger [30]. Brent [6, 7] and Vall6e
[36] have analysed the Binary algorithm. The methods used till the early
1980’s are quite varied, since they range from combinatorial (de Lagny,
Heilbronn) to probabilistic (Dixon).
The more recent works [20], [35], [37] rely for a good deal on the idea of us-
ing transfer operators, a far-reaching generalization of density transformers,
originally introduced by Ruelle [31, 32] in connection with the thermody-,
namic formalism and dynamical systems theory [3]. Then Mayer [29, 28]
has applied such operators to the continued fraction transformation. Fi-

nally, Hensley in his study "in distribution" or Vall6e in her analysis of the
Binary GCD Algorithm [36], propose new methods where they use these
tools, originally well-adapted to continuous models, in the discrete models
of Euclidean Algorithms. Recently, these methods are proven to be quite
general, and provide a unifying framework for analysing the number of steps
of a whole class of Euclidean algorithms [37].
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However, until now, many parameters of interest, like digits and continu-
ants, that intervene in Euclidean Algorithm have not been studied by these
methods. The average values of digits or continuants play a central role
in the precise analysis of Euclidean Algorithms. First, the average bit-
complexity of Euclidean Algorithms involves expressions where both digits
and continuants intervene. Second, the continued fraction expansion of a
rational number naturally provides an encoding for integer pairs that uses
the digits of the continued fraction expansion. In computer systems that
directly deal with continued fraction expansions [4], [39], it is important to
analyse the average length of this continued fraction encoding.
In this paper, we provide new analyses of the precise expected values of
the main parameters in the discrete framevvork. We then obtain new re-
sults about the average bit-complexity of classical Euclidean algorithms
and propose a unifying framework for the analysis of the main parameters
of gcd-like algorithms.

Methods. Our approach is a refinement of methods that have been al-
ready used [9, 16, 35, 36, 37, 38]: it consists in viewing an algorithm of
the gcd type as a dynamical system, where each iterative step is a linear
fractional transformation (LFT) of the form z - (az + b) / (cz + d) . A spe-
cific set of transformations is then associated to each algorithm. It already
appears from previous treatments that the computational complexity of an
algorithm is in fact dictated by the collective dynamics of its associated set
of transformations. More precisely, two factors intervene: the characteris-
tics of the LFT’s in the complex domain and their contraction properties,
notably near fixed points.
Technically, this paper relies on a description of relevant parameters by
means of generating functions, a by now common tool in the average-case
of algorithms [14, 15]. As is usual in number theory contexts, the generat-
ing functions are Dirichlet series. They are first proved to be algebraically
related to specific operators that encapsulate all the important informa-
tions relative to the "dynamics" of the algorithm. Their analytical prop-
erties depend on spectral properties of the operators [27], most notably
the existence of a "spectral gap" that separates the dominant eigenvalue
from the remainder of the spectrum. This determines the singularities of
Dirichlet series of costs. The asymptotic extraction of coefficients is then
achieved by means of Tauberian theorems [10, 34], a primary tool in mul-
tiplicative number theory. Average-case estimates of the main parameters
(digits, continuants) finally result. The main thread of the paper is thus
adequately summarized by the chain:
Euclidean algorithm --* Associated transformations -- Transfer operator

~ Dirichlet series of costs ~ Tauberian inversion
~ Average-case complexity.
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Results and plan of the paper. Sections 2 and 3 are introductory
sections where we recall descriptions of Euclidean Algorithms together with
the general ergodic framework that is well-adapted to the case when inputs
are random real numbers. Then, in Section 4 (that is the central technical
section of the paper), we consider the case where inputs are random rational
numbers. There, we develop the line of attack outlined earlier and introduce
successively Dirichlet generating functions, transfer operators of the Ruelle
type, and the basic elements of Tauberian theory that are adequate for our
purposes. The main results of this section are summarized in Theorems 1
and 2: Theorem 1 describes the singularities of generating functions relative
to the main parameters; Theorem 2 implies a general criterion for classifying
behaviours of mean values relative to digits and continuants

In Section 5, we return to the solutions of our specific problems -the
average bit-complexity and the average code-length- that fall as natural
consequences of the present framework and are summarized in Theorems 3
and 4. These results involve entropies of both dynamical system,

that are related to the analysis of continuants, together to three constants
relative to binary length of digits, of Khinchin’s type; the first one

intervenes in the analysis of parameters of Standard Algorithm, while the
last two

intervene in the analysis of parameters of Centered Algorithm, together
with a supplementary constant (relative to signs)

The average-case bit-complexity of both algorithms when applied to ran-
dom integers less than N is of the form
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The average code-length of continued fractions when applied to random
integers less than N is of the form

The numerical values for the constants of bit-complexities,

prove the efficiency of Classical Euclidean Algorithms when compared to
naive multiplication of numbers whose average bit-complexity is log2 N
on integers less than N. In the same vein, the numerical values for both
constants of average code-length,

prove the near-optimality of the continued-fraction encodings when com-
pared to the minimal encoding of integer pairs whose average code-length
is 2 1092 N for integer pairs less than N.

Finally, the paper provides analyses of bit-complexities of other Euclidean
Algorithms, like the Binary Algorithm (Theorem 7), the Subtractive Algo-
rithms (Theorem 5) or other algorithms that compute the Jacobi Symbol
(Theorem 6).
An extended abstract that summarizes some results of this paper and fo-
cuses on analyses of bit-complexities appeared in Proceedings of ICALP’00
[1] .

2. Euclidean algorithms

We present here the Euclidean algorithms to be analysed. Then we explain
the role of the main parameters, digits, and continuants, that appear when
analysing bit-complexity. Finally, we describe the costs that will be studied.

2.1. Two Euclidean Algorithms. The standard Euclidean division of
v by u (v &#x3E; u), of the form v = au + r, produces a positive remainder r
such that 0  r  ~. The centered division between u and v (v &#x3E; u/2), of
the form v = au + Er, produces a positive remainder r such
that 0  r  u/2. A Euclidean algorithm is associated to each type of
division, and they are respectively called the Standard Algorithm (8) and
the Centered Algorithm (C).
We denote by £(z) the number of bits in the binary representation of the
positive integer x, so that t(x) = 1. Then, the bit-cost of a
division step, of the form v = au is taken to be essentially £(u) x £(a) ,
a quantity that we adopt as our bit-complexity measure. 1 It is followed

1 There are other possible costs for a division, when some other division algorithms are used.
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by exchanges which involve numbers u and r, so that the total cost of a
step is x f(a) + f(u) + ~(r). In the case of the centered division, there
is possibly an additional subtraction (in the case when c = -1) in order to
obtain a remainder in the interval [0, u/2].
When given an input (vi, vo), both algorithms perform a certain number p
of divisions of the form

and decomposes the rational x = (vl/vo) as (vl/vo) = h, o h2 0 ... o hp (0),
where the hi’s are linear fractional transformations (LFT) of the form hi =

with = 1 /(a + dx). The pair m := (a, d) is called the

digit-pair of the LFT. The algorithm then computes the continued fraction
expansion of rational x = (vi/vo), (CF-expansion for short),

In both cases, the last non-zero integer vp is the gcd of the pair (vl, vo). The
precise form of the possible LFT’s depends on the specific algorithm; there
exists a special set .~ of LFT’s in the final step. However, all the other steps
use the same set of LFT’s that is denoted by 1í. For the centered algorithm
(C), the rational belongs to Z = ~0, 1/2~; for the standard algorithm (S),
the rational x belongs to I = ~0,1~. Altogether, the rational inputs of each
algorithm belong to the basic interval I = [0, p] with p = 1 or p = 1/2.

2.2. Bit-complexities related to Euclidean Algorithms. In both
cases, when performing p divisions on the input (vl, vo), the bit-cost

C(vl, vo) of the algorithm is a sum of p terms, the i-th term represent-
ing the cost of the i-th division and being a product of two factors; the first
factor involves the binary length £(vj ) of integer vj (with j possibly equal
to i or i + 1), while the second one involves a cost relative to the i-th LFT
to be performed, of the form c(hi), or of the form c(mi), where mi is the
digit-pair that defines the LFT hi. In the sequel (see Remark at the end of
Section 4), we will see that we can replace the length e(v) of integer v by
its logarithm log2(v) in base 2 and systematically consider log2(vi) as the
first factor to be studied. In contrast, we have to work with the exact cost
due to the LFT. Finally, for both algorithms, the studied bit-cost C(vi, vo)
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FIGURE 1. The Euclidean algorithms.

of the algorithm on the input (vi, vo) will be of the form
IY1

The array of Figure 1 describes the precise forms of the divisions, the generic
set x of associated LFT’s, the final set ,~ and the cost of the LFT’s.

It is also quite useful to describe the bit-complexity of so-called Extended
Euclidean Algorithms, that compute at the same time Bezout coefficients of
pair (vl, vo), i.e., integers r and s such that rvo+svl = gcd(vi, vo) = vp. The
principle is well-known, and the computation makes use of two auxiliary
sequences ri and si that satisfy for each index i the relation rjvo + sjvi = vi,
so that for i = p, the Bezout relation holds with r := rp and s := sp. The

sequences are initialized as ro = l, so = O, r1 = 0, SI = 1, then they are
built with the help of sequence ai,

in the same way as the sequence vi. The supplementary bit-cost due to
the extension of the algorithm is thus a sum terms, the i-th term

representing the cost of the two multiplications of the i-th step described in
(4), and being a product of two factors; the first factor involves the binary
lengths of integers ri, Si while the second one involves a cost
c(m2) relative to the i-th digit-pair mi := (ai, di). Finally, for the same
reasons as previously (that we shall explain at the end of Section 4), the
studied bit-cost D(vi, vo) of both Extended algorithms on the input (vl, vo)
will be of the form

where the cost is defined in Figure 1.
We are finally interested in describing the length of the binary word that
encodes the pair (vl, vo). There are two ways for coding this pair: the first
one directly uses the binary encoding A(vi, vo) of integer pair (vl, vo), while
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the second one deals with the binary encoding B(vl, va) of the sequence of
digits (ml, m2, ... , mp). It is important to compare the average length of
these two coding words, since, in some applications that use CF-expansions
in an extensive way, it may be useful to encode efhciently the sequence of
CF-digits, so that this encoding can be directly used in further computa-
tions. Classical results in Information Theory entail that the mean value
of B(vl, vo) is at least equal to the mean value of A(vi, vo). This leads us
to study the length of the CF-encoding of a pair (vl, vo),

related to some digit-cost c, as well as to try and find near-optimal encod-
ings.

2.3. Main parameters for the analysis of Euclidean Algorithms.
The costs to be studied, defined in (3), (5), (6), involve five main param-
eters : the integer p, the costs c(m) of digit-pairs, and the logarithms of
integers v2 defined in (1), together with the logarithms of integers [
defined in (4). The first parameter is exactly the depth of the continued
fraction expansion of vllvo, or the number of divisions to be performed by
the algorithm on input (vi, vo). Its average behaviour is now well-known.
The cost c(m) of the digit-pair m = (a, d) may involve the digit a alone
or the digit d alone, or both. More generally, it is interesting to study the
random behaviour of other functions of digit-pair m = (a, d).
Finally, the integers are related to continuants. When one "splits"
the CF-expansion (2) of vi /vo at depth z, one obtains two CF-expansions
/B

defining a rational number: the left part defines the "beginning rational"
of the form

while the right part defines the "ending rational" of the form

The beginning rationals pi/qi are useful for approximating the rational
their numerators p2, and their denominators qi are called beginning
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FIGURE 2. The main costs to be studied.

continuants. They are closely related to sequences ri and si that appear
in the Extended Euclidean Algorithms, via the relations pi = 

The ending continuants, i.e., the denominators wi of the ending
rationals are closely related to the integers vi that appear in the
execution (1) of Euclidean algorithm on input vl /vo, via the relation v2 =

w2.

When given a valid input (u, v) relative to some Euclidean Algorithm, we
wish to study the behaviour of seven quantities, that fully describe the cost
relative to some parameter during the execution of a Euclidean Algorithm
on input (u, v) . These quantities define what we call generic costs and are
listed in Figure 2.
The first five quantities (1-5) of Figure 2 are expressed only in terms of
depth, digits and continuants. Since the depth p, the sequence of digit-
pairs mi - (ai, di) and the sequence of continuants qi or wi only depend
on rational x := (u/v) and not on the pair (u, v) itself, these quantities
define functions of the rational x = (u/v) . The first one is relative to some
digit-cost defined on the sequence of digit-pairs ml, m2, ... that appear
in the continued fraction expansion of x. The second and the third ones
are relative to (beginning or ending) continuants, and the fourth and fifth
involve a mixing between digits and (ending or beginning) continuants w2
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or q2. All these costs can also be viewed as functions defined on pairs on
integers that we denote in the same way,

Finally, the last two quantities (6-7) to be studied involve the sequence
of integers vi that appear in the execution of Euclidean Algorithm. They
depend on the pair (u, v) itself, not only on the ratio (u/v) but also on the
gcd r(u, v). The relation between vi and Wi, i.e., vi(u, v) = r(u, v) wj (u, v)
entails that V and M[c] are respectively related to W and K(c~,

2.4. Average values of costs. Here, I denotes the basic interval. We
consider the following sets

for the possible inputs of a Euclidean algorithm. Remark that set QN can
be viewed as the set of irreducible rationals with denominator less than N.
We denote by X (u, v) one of the generic costs that are defined in Figure 2.
We wish to study the mean value of X on QN and ON that we denote
by EN[X] or EN ~X ) . More precisely, we aim to evaluate the asymptotic
behaviour (for N - oo) of the mean values

We will prove in the sequel that it is sufficient to study the first five costs
(1-5) defined in Figure 2 that are relative to rational numbers. The next
section analyses these costs when x is real, and gives some indications on
what can be expected in the rational case.

3. Continued Fraction Algorithms. Symbolic Dynamics and
Ergodic Theorems

We now relate Euclidean algorithms with continued fractions algorithms
that can be viewed as continuous extensions of them. Continued fractions

algorithms are important particular cases of what is usually called "ex-

panding maps of the interval" in symbolic dynamics framework. Symbolic
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dynamics concerns itself with the interplay between properties of the trans-
formation and discrete properties of trajectories of points under iteration
of the transformation. There, ergodic theorems are very useful to study the
main parameters of interest, when x is almost any real of the interval.
We adopt here an analytic point of view, with hypotheses stronger than
usual, which entails easier proofs and is well-adapted to continued fraction
systems.

3.1. Piecewise analytic maps of the interval. Here, we restrict our-
selves to the particular case where the transformation is piecewise analytic.

Definition 1. [Piecewise analytic maps of the interval] Let I be a real
interval. A mapping U : Z -~ I is piecewise analytic if there exists a (finite
or denumerable) set As whose elements are called digits, and a partition

of the interval I in subintervals Ij such that the function x ~ Ux
maps analytically each Ij onto 1.

A piecewise analytic map thus consists of denumerably many branches in-
dexed by some set .M. We let M(x) E M represent the index j of the
subinterval Ij where x falls. A coding of a real number x is then obtained
by the sequence of digits of the successive iterates of x,

Here powers denote iteration, U2 = U o U, etc. The sequence of digits of
x is then produced by the following simple algorithm.
Procedure Expansion (x)

A special role is played by the set H of branches of the inverse function U-1
of U that are also naturally numbered by the index set we denote by

the inverse of the restriction If Xk := and the sequence
m = (ml, ... , of the first k digits are known, the algorithm can be run
backwards, and the original xo is recovered by

The semi-group := generated by H is the set of all finite com-
positions o ... o the length of the decomposition of h is
called the depth of h and denoted by lhl.
The scheme (14) generalizes the usual binary representation of real numbers
and it constitutes also a very convenient framework for a discussion of
continued fraction algorithm.
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3.2. Ergodicity and Ergodic Theorem. We recall here some classical
definitions cast in our particular framework. Here, I denotes a real interval
endowed with its Lebesgue measure dt. We consider here another measure
ti with a continuous density g, so that d¡,t(t) = g(t)dt.

Definitions 2. [U-invariant measure] Let U be a measurable mapping
U : Z - 1. The measure ft is said to be U-invariant if, for any subinterval

one has ~c(U-1,7) _ 
[Ergodicity] Let U be a measurable mapping U : Z ~ I and p be a U-
invariant measure. The triple (I, U, is ergodic if, for any subinterval
y C I such that C ,7, one has = 0 or 1.

[Strongly mixing] Let U be a measurable mapping U : Z -&#x3E; Z and ti be
a U-invariant measure. The triple (I, U, tt) is strongly mixing if, for any
subinterval :1, JC C I, one has rl 

Naturally, the mixing property implies the ergodic property.

Ergodic Theorems relate two different kinds of means relative to a function
f : the mean value of f along an orbit of the form (x, Ux, UZx, ... Unx, ... )
and the mean value of f relative to measure 1L.
BirkhofF’s Ergodic Theorem. Let (I, U, p) be ergodic. Then, for any
f E £1(I), one has, for almost all x of 1,

3.3. Strongly expanding maps of the interval and ergodicity.
Clearly, the stochastic behaviour of a numbering system is closely related
to the dynamics of map U on the interval Z; this dynamics is itself iso-
morphic to the dynamics of the semigroup 7~C* that is generated by the
set H of inverse branches. We now consider an important class of maps
U for which this dynamics is well understood: the case of the (strongly)
expanding maps.
Definition 3. [Strongly expanding maps of the interval] Let I be a real
interval, and let U : Z ~ ~ be a piecewise analytic mapping whose set of
inverse branches is denoted by ~‘~C. The mapping U is strongly expanding if
there exist an open disk V whose closure contains the interval I and a real
a  2 such that the following holds:

(a) every h E 1t has an analytic continuation on V;
(b) h maps the closure V of disk V inside V;
(c) For any h E H, the absolute value lh’I [ of the derivative has an analytic
continuation on V denoted by h;
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(d) For any h E 1t, the supremum J(h) := E VI satisfies
b(h)  1 and the series ¿hE1-l converges.

Remark 1. The quantity 6 := sup {8(h), h E ?-L} satisfies 6  1 and

defines the contraction ratio. The map U is called expanding since the
derivative satisfies (1/b) &#x3E; 1. When there exists some integer
k &#x3E; 1 for which Uk is strongly expansive, then U is called eventually
strongly expanding. The triple (V, a, 6) that intervenes in Definition 3 is
called the triple of U.

Remark 2. The map U is called strongly expanding because of two as-
sumptions : (i) the various analytic continuations of h and Ih’l on some disk
V that strictly contains interval Z~, (ii) the fact that the real a is strictly
less 2.

We state now the important and classical result that shows that a strongly
expanding map of the interval is strong mixing (and thus ergodic) with
respect to its (unique) invariant measure.

Theorem. Let U be an eventually strongly expanding map of Z. Then
there is a unique U-invariant measure JL. Moreover, the triple (I, U, ~,) is
strongly mixing (thus ergodic) and the measure p is of form dp = 0(t)dt
where 0 is analytic on the neighborhood V of 1.

The main tool used in the proof is the Perron-Frobenius operator that we
now introduce.

3.4. The Perron-Frobenius operator relative to a strongly ex-
panding map. As previously, the set 1t denotes the set of inverse branches
of U. The Perron-Frobenius operator H relative to 1t, together with its
component operators Rh relative to each inverse branch h, is defined as
follows:

First, the operator H is a density transformer, i.e.,

Second, the n-th iterate of H describes what happens during the n-th iter-
ation of mapping U. Multiplicative properties of the derivative entail that
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the n-th iterate of H involves all the inverse branches of depth n,

If U is strongly expanding, we can prove the following. Denote by 
the set formed with functions f that are analytic on V and continuous on
V. Endowed with the sup-norm, this set is a Banach space and each com-
ponent operator Rh is a composition operator. This type of operators was
extensively studied by Shapiro [33] who proves that, under assumptions
(a), (b), (c), they act on are compact, and even nuclear in the sense
of Grothendieck [17, 18]. Under condition (d), the operator H itself acts
on is compact and nuclear. Furthermore, the operator H has pos-
itive properties that entail (via Theorems of Perron-Frobenius type due to
Krasnoselsky [24]) the existence of dominant spectral objects: there exist
a unique dominant eigenvalue A strictly positive, a dominant eigenfunction
denoted by strictly positive on VnR and a dominant projector E. Under
normalization condition = 1, these last two objects are unique too.
Then, compacity entails the existence of a spectral gap between the dom-
inant eigenvalue and the remainder of the spectrum. Since H is a density
transformer, the dominant eigenvalue satisfies A = 1 and the dominant pro-
jector satisfies E[f] = II f(t)dt. Then the dominant eigenvector 0 is also
an invariant function under H and the measure 1L defined as dp(t) = (t) dt
is U-invariant. Finally, the decomposition

where the operator N relative to the remainder of the spectrum (cf a precise
definition in [27]) has a spectral radius strictly less than 1, proves that

with exponential speed, and 7p is also the the limit density on I when map
U is iterated many times. Furthermore, the equalities,
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when applied to g := 13 ’ljJ and f :=1~ for some subintervals entail

that measure p defined by := qp(t)dt is strong mixing (with exponen-
tial speed) and thus ergodic.

Remark. We only need in the previous proof a weak form of condition (d),
i.e., the fact that the series ¿hE1-l converges for a = 2. However,
the strong form of condition (d) (i.e., ~  2) will be quite important for
the sequel, particularly in Section 4.5.

3.5. Some important asymptotic mean values. Since function 0 is
also the limit density on Z~ when the map U is iterated many times, the mean
values relative to p can be also considered as asymptotic mean values and
denoted by Eco. Here, we give some important asymptotic mean values
that play a central role in the sequel. They are relative to digits or to
entropy of the dynamical system. If M denotes the numbering function,
and c denotes a cost-digit function c : .ll~I -~ R+, then the asymptotic
mean value of c o M is

The entropy of the dynamical system is defined as the limit, if it exists,
of a quantity that involves measures ug of intervals g(Z), (for g E 71*)

Via a classical formula due to Rohlin, the entropy is related to the asymp-
totic mean value of log lU’l [

In the sequel, we describe the numeration systems relative to continued frac-
tions, the standard continued fraction system and the centered continued
fraction. In both cases, we obtain real extensions of Euclidean algorithms
that give rise to expanding maps where the ergodic framework can be used.

3.6. Standard and centered continued fraction expansions. The
continued fraction systems fit into the general framework of piecewise an-
alytic maps of interval. In the basic case, the system is defined from the
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integer part function denoted by x ~ l x J and the fractional part function
~ 2013~ := x - It is described by the quadruple (I, U, m, H)

We also let U(0) = 0,1/0 = 0. Centered continued fractions are obtained
when one replaces truncation (integer part function) by rounding to the
nearest integer x --&#x3E; ~~x~~. First introduce the notations

so that the following identity holds:

Then, the centered continued fraction system is defined by the quadruple
(I, U, m, 1(,) given by

with, conventionally, U(o) = 0, m(O) = 0, 1/0 = 0.
These numeration systems provide a sequence of digits according to scheme
(14) and thus continued fractions expansions, that are generally infinite.
When applied to a rational x, these expansions are finite and coincide
with continued fraction expansions of Section 2. In this sense, continued
fractions systems can be viewed as extensions of Euclidean Algorithms, and
in both cases, the rational numbers are exactly the real numbers for which
the continued fraction expansion is finite. A number x is rational if and
only if there exists an element h of the semi-group H* for which x = h(o).

3.’l. Applications of Ergodic Theorem to continued fractions sys-
tems. It is clear that both continued fraction systems are related to (even-
tually) strongly expanding maps. Then, the Ergodic Theorem applies to
CF-expansions, and classical results entail that the invariant measure it is
of the form dp(t) = with

The first result was conjectured by Gauss, then proven by Levy [26]. The
second result was established by Rieger [30]. The related distribution func-
tions are



547

We consider now some asymptotic mean values that play a central role in
the sequel. The following results are classical and can be found for instance
in [5].
Digit-costs. Consider some particular digit-cost c : R+ such that
c o M is in If c(m) equals for instance the binary length of digit a, i.e.,
the number of binary digits in the binary expansion of digit c~, one has,
with general formula (20),

In the case of centered continued fractions, when digit-cost equals the sign
e, one obtains

-11 -11 ,

Then Ergodic Theorems prove that, in both cases, and for almost all x in
-T,

Entropy. The variable x -&#x3E; ~ log z is quite important too, since the asymp-
totic mean value Eco [I log xl] is closely related to the entropy h(H) of the dy-
namical system, via Rohlin’s formula (21) and the fact that IU’(x)1 = 1/x2,

so that explicit values of entropy are obtained in both cases,

Continuants. This mean value intervenes also when studying the average
behaviour of the parameter log qn (x) relative to (beginning) continuant
qn (x) that is well-defined for a general real number too. A real number
x whose continued fraction begins with h = hl o h2 o ... o hn satisfies
x = h(y) = hl o h2 o ... o with some y E I; We relate x to the
rational xo := h(O) = hl o h2 0 ... o and the transforms 

o h2 0 ... o to the transforms uj(xo) = hj+l o h2 0 ... o h, (0).
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The classical relation between numerator pj (x) and denominator i.e.,
= proves that

Since U is expanding with contraction-ratio 6, one obtains an approximate
expression of logqn(x) that involves transforms logU2(x) instead of trans-
forms log Ui(xo): Since one has

there exists some constant K for which, for any x, and any integer n,

Now, the Ergodic Theorem (15) applies to the function log implying,
via (25) and (26), that

Relations between entropy and mean binary length of digits. The
asymptotic mean value relative to the binary length and the quan-
tity h(-H)/(2 log 2) are related, since the second one is the integral of 11092 tl [
with respect to ergodic measure, while the first one is the integral of the
function that equals llog2aJ + 1 on the interval We then obtain
the relation

3.8. Heuristic transfer from continuous model to discrete one.
With respect to asymptotic properties of continued fractions, rational num-
bers are very particular since their continued fraction expansion is finite.
However, let us imagine that continued fractions of rational numbers and
continued fractions of real numbers behave in the same way and let us

suppose that the Ergodic Theorem may be applied to rational numbers
with sufficiently large denominators. Then one can anticipate the following
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behaviours for our parameters of interest relative to rational numbers and
defined in Figure 2

However, it is highly probable that this result may be true only in average
on the set QN defined in (12) when N tends to oo. On the other hand,
the depth p(x) of a rational x of denominator N equals the rank n for
which equals N. If rational numbers of large denominator behave
like generic real numbers, it is thus plausible, from (27), that 
(2/h) log N for large N. This is a well-known result for which we shall

give an alternative proof in the sequel. Finally, the following estimates are
plausible:

and will be proven in the sequel.

4. Generating functions, dynamical operators and Tauberian
Theorems

Here, we describe general tools for analysing the main costs of interest rel-
ative to algorithms of the Euclidean type. We first introduce the Dirichlet
generating functions relative to costs, so that the average cost involves par-
tial sums of coefficients of these Dirichlet series. Tauberian Theorems are
a classical tool that transfers the analytical behaviour of a Dirichlet series
near its singularities into an asymptotic form for its coefficients. Then,
when viewing the algorithm as a dynamical system, we relate generating
functions of costs to the Ruelle operator associated to the algorithm, so
that we can easily describe the singularities of generating functions. Fi-

nally, we prove the estimates of the mean values that have been previously
proposed for the main parameters of algorithms.

4.1. Generating functions. We recall that we consider the following sets

as possible inputs of a Euclidean algorithm. Our purpose is to estimate

the mean value of a generic cost ~C : H 2013~ R+ defined in Figure 2 on QN
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and QN- More precisely, we aim to determine asymptotically (as N - oo)
these mean values, denoted by EN [] or EN (X ~ , that satisfy

The following Dirichlet generating functions of costs,

are of the form

where an, an are the number of pairs (u, v) of Q or Q with fixed v = n, and
xn, xn are the cumulative values of X on pairs (u, v) of Q or Q with fixed
v = n, so that the average costs in (29) to be studied

are exactly the quotient of partial sums of the coefficients of the Dirichlet
series defined in (30).
First, remark that there is an easy relation between Gx and GX when cost
X satisfies X (u, v) = X (au, av) for any integer a &#x3E; 1. Then

where ((s) is the Riemann Zeta-function

This is the case when X = 1 or when X is one of the first five costs of
interest defined in Figure 2. For the last two costs defined in Figure 2 that
involve integers vi, relations (10) entail that

Altogether, it is sufficient to analyse the first five costs on the set ON.
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4.2. Tauberian Theorems. In the remainder of the paper, we aim to

apply the following Tauberian Theorem to the Dirichlet series F, G x defined
in (30) in order to estimate their coefficients.

Tauberian Theorem. [Delange] Let F(s) be a Dirichlet series with non
negative coefficients such that F(s) converges for R(s) &#x3E; (1 &#x3E; 0. Assume
that

(i) F(s) is analytic on R(s) = Q, s ~ a, and
F(s) = A(s) (s - ~)-7-1 + C(s), where A, C

are analytic at a, with A(Q) ~ 0.
Then, as N --&#x3E; oo,

We first examine the case of functions F(s), F(s) that are closely linked to
the Riemann series ~(s) via the equalities

Then, classical properties of ( function entail that the Tauberian Theorem
applies to F(s) and F(s), with Q = 2 and = 0. More precisely, at s = 2,
one has: (s - 2)F(s) - (6p)/7r~.
When X is one of the three costs defined in Figure 2 relative to continuants
Q, V, W, it applies to with Q = 2 and I = 3, so that the mean value
EN [X] will be of order log2 N. When X involves a digit-cost c, we will
exhibit some sufficient conditions on cost c under which the Tauberian
Theorem applies. In this case, the values Q and -y strongly depend on
properties of the digit-cost c. In the case when c equals the binary digit-
length l, the mean value ] will be of order logN, while the mean-
value will be of order log2 N. We can deal with varied costs;
for instance, if c(m) = m log 2 m, then EN[S[c]] is of order log4 N, and if
c(m) = T723~2~ then EN[S[c]] is of order v’N.
It is not a priori clear how to directly apply Tauberian Theorems to Gx (s).
In the following, we obtain alternative expressions for from
which the location and the nature of their singularities will become appar-
ent. Our analysis involves suitable Ruelle operators that can be viewed as
extensions of density transformers of Section 3.4 when one introduces some
complex parameter s that plays the same role as temperature in statistical
mechanic.

4.3. Algebraic properties of Ruelle operators. The Ruelle operators
that we use now can be viewed as extensions of the Perron-Frobenius op-
erator that we have introduced in Section 3.4.
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The Ruelle operator Rs,h relative to a LFT h depends on some complex
parameter s and is defined as

where D[h] denotes the denominator of the linear fractional transformation
(LFT) h, defined for h(x) = (ax + b) / (cx + d) with a, b, c, d coprime integers
by D~h](x) : := = Then, for a LFT h of
determinant 1, the operator Rs,h is an extension of the operator Rh defined
in (16), via the equality R2,h = Rh.
Once a cost function c relative to the LFT h has been fixed, one can define
another Ruelle operator relative to h,

Now, given an algorithm and a set 1t of LFT’s used in one step of the
algorithm, the Ruelle operators relative to 7~C are defined by

As previously, if the set ?nC is formed of LFT’s with determinant 1, the
operator Hs is an extension of the operator H defined in (16), via the
equality H2 = H.
In all cases, the multiplicative property of denominator D, i.e., 
D (h) (g (x) ) D ~g~ (x) is translated into a multiplicative property on Ruelle
operators: Given two LFT’S, h and g, the Ruelle operator associated
to the LFT h o g is exactly the operator o Rs,h. More generally, when
given two sets of LFT’s, ,C and JC and their Ruelle operators Ks, Ls, the
set is formed of all h o g with h E L and g E JC, and the Ruelle
operator relative to the set is exactly the operator Ks oLs . In particular,
the Ruelle operator relative to the semi-group ?-~* := is exactly

(I - Hs)-1. It is the quasi-inverse of the Ruelle operator H,
associated to the set ~-L.

4.4. Ruelle operators and Dirichlet generating functions. We show
now how the Ruelle operators associated to the algorithms intervene in the
evaluation of the generating functions of costs Gx (s), GX (s). We recall
that it is sufhcient to study GX for one of the first five costs of Figure 2.
We consider here a Euclidean Algorithm and its set of LFT’s H together
with its final set J’ defined in Fig.l. The Ruelle operators Hs, FS, 
relative to ?~ or 7 and defined in (33, 34, 35) will play a central role in the
analysis.
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An execution of the algorithm on the input (vi, vp) of S2 performing p steps
of the form

decomposes the rational as (vi /vo) = hi o h2 0 ... o hp (0), where the
h2’s are elements of 1t (for i  p - 1) or elements of ,~’ (for Z = p) . The
choice of an index i,1  i  p, splits the LFT h = hl o h2 0 ... o hp into
three different parts: the beginning part bi (h) := hl o h2 0 ... o hi-1, the
ending part ei (h) := o 0 ... o hk, and finally the i-th component
hi. From (8) and (9) the following equalities hold:

The derivative functional A plays an important role too. For some op-
erator Ls that depends on parameter s, the operator AL, is defined by
AL, When applied to defined in (33), this functional A
is well-suited to the problem since it produces at the numerator the loga-
rithm logD[h]. When applied to or to it produces at the
numerator, via (36), the beginning or the ending continuants.
We now introduce our main operators, that are all built according to the
same principles: each of them is precisely related to one of the generic costs
X defined in Figure 2, and the generic operator, relative to generic cost X,
is denoted by Xs,h . If h is a LFT of depth p, it is expressed as a sum of

p terms each of which may involve and however,, Z ( ) s,h2
the precise form of depends on cost X . Figure 3 (top) describes the
operators relative to the studied costs.
We claim that, when applied to function f = 1 and point x = 0, each
operator Xs,h generates the cost vo) of the algorithm on input (vi, vo)
of Q

Now, when (vi, vo) is a general element of S2, the LFT h defined by (2) is
a general element of set ?~*,~, so that we obtain alternative expressions of
our main Dirichlet series F, G x defined in (30)

When index i varies in [l..p], beginning part bi(h) is a general element of
H*, ending part ei (h) is a general element of1t* F, while the i-th component
is a general element of 1t (for i  p - 1) or .~’ (for i = p), so that we obtain
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FIGURE 3. Top: The Ruelle operator Xs,h relative to

generic cost X. Middle: The quantity rela-

tive to generic cost X. Bottom: The main terms of Dirich-
let series relative to generic cost X.
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alternative expressions of which involves the Ruelle operators
HS, F s relative to the sets used by the algorithm (cf Figure 3-middle).
We finally deduce expressions for the Dirichlet series F(s), Gx (s) mainly
in terms of three Ruelle operators: the quasi-inverse (I - Hs)-l, the op-
erator of costs the derivative operator AH,. For reasons that will be
explained later, we only need to keep the terms of GX that contain the
largest number of occurrences of the quasi inverse (I - Hs) -1 and we call
them the "main terms" of Gx (cf Figure 3-bottom). Then, main terms of
Dirichlet series GX for the two last costs of Figure 2, and the main terms
of GX for all the costs of interest are easily obtained from relations (32)
and (31).

4.5. Functional Analysis. We come back now to the general framework
of Section 3, i.e., a piecewise analytic map U of the interval 1, that we sup-
pose strongly expanding. We have described in Section 3 the properties of
the Perron-Frobenius operator H and explained how they entail properties
related to ergodicity and strong mixing. Here, we deal with the particular
case when the set H of the inverse branches of U is formed with LFTs of

determinant 1. We recall that the operator Hs can be viewed as an ex-
tension of the Perron-Frobenius operator H since one has H = H2. The
following result shows how the general framework of Definition 3 entails
all the properties that we need for applying the Tauberian Theorem to the
quasi-inverse (I - HS)-1 of the Ruelle operator relative to H.

Theorem 1. Let U be an eventually strongly expanding map ofT such that
the set H of the inverse branches of U is formed with LFTs of determinant
l. The triple ofU is denoted by (V, a, 8) and the set formed with
functions f that are analytic on V and continuous on V. Then the following
is true:

(i) The Ruelle operator Hs extends the Perron-Frobenius operator H
thanks of the relation H2 = H. The operator H, acts on Aoo (V), is ana-
lytic on &#x3E; The dominant eigenfunction s ~ A(s) is analytic and
decreasing on the real line s &#x3E; a. For = Q, any eigenvalue A of H,
satisfies  ~(~). The derivative -2~~(2) equals the entropy 
(ii) The quasi-inverse (I _Hs)-1 of HS is analytic on the plane f R(s) &#x3E; 21
and has a pole of order 1 at s = 2. Near s = 2, one has, for any function f

positive on V f1 R, and any x E V f1 R,

where 1/J is the dominant eigenfunction of H defined by the normalization
condition = 1.
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(iii) If the set 1-(, contains some subset {h ~ I h(x) - 11(c +
x) with integers c ~ then the quasi-inverse (I - Hs) -1 is analytic
on R(s) = 2, s 54 2.

Proof. Condition (d) of Definition entails that the Dirichlet series

is convergent for J22(s) &#x3E; a. Now, most of properties of
H extend to Hs on &#x3E; a}: There, the operator Hs acts on 
and is compact (even nuclear in the sense of Grothendieck [17, 18]). When
acting on the operator Hs is analytic. Furthermore, for real values
of parameter s &#x3E; a, it has positive properties that entail (via Theorems
of Perron-Frobenius type [24]) the existence of dominant spectral objects:
there exist a unique dominant eigenvalue A(s) positive, analytic for s &#x3E; a, a

dominant eigenfunction denoted by and a dominant projector ES. Un-
der normalization condition = 1, these last two objects are unique
too. Since the operator H2 = H is a density transformer cf (17), then one
has A(2) = 1 and E2~f~ Rohlin’s formula for the entropy (21)
admits an alternative expression which involves the operator AH, under
the form

Taking the derivative (with respect to s) of relation leads
to

When choosing s = 2, and taking the integrals on I, we use the fact that
H2 is a density transformer, and Relation (38) leads to equality -2A’(2) =
h
Then, compacity entails the existence of a spectral gap between the dom-
inant eigenvalue A(s) and the remainder of the spectrum, which splits the
operator Hs into two parts: the "part" relative to the dominant eigensub-
space and the "part" relative to the remainder of the spectrum, denoted
by Ns. By perturbation theory [21], these properties remain true in the
neighborhood of the real axis, so that, for any integer k &#x3E; 1 and for z in the
neighborhood of the real axis, the following decomposition -that extends
(19)- holds

and leads to

On a (complex) neighborhood of s = 2, the spectral radius of Ns is strictly
than 1, and (I - N,)-l is analytic there. Now, using the derivability of



557

s -&#x3E; A(s) at s = 2 and the equality A(2) = 1, the residues at s = 2 are
easily evaluated from special values at s = 2 and this proves the part (ii).
We next prove properties of dominant eigenvalue A(s) stated in (i). Here
~ is real (Q &#x3E; a). When f is strictly positive on V n R, the quantity 
is strictly positive, and qba is strictly positive on V n R. Then, when taking
f = 1 and z = 0 in (39), we obtain

From property (d) of Definition 3, there exists -y := Ul  1 such that

and then, for any k,

Now, for /3 &#x3E; 0,

which proves that s --&#x3E; A(s) is strictly decreasing along the real line.
Now s satisfies R(s) = Q &#x3E; a. Let A be an eigenvalue of Hs and let f
denote an eigenfunction relative to A. The function fa denotes a dominant
eigenvector relative to A(a). Such a function is strictly positive on the
segment ,7, non-zero on V and normalized by the condition = 1;
moreover, the function is supposed to be of modulus at most 1
on ~0,1) and attain modulus 1 at point xo. One always has

and the definition of xo proves the inequality .~(~).
On the other hand, condition of (iii) implies that the operator Hs has no
eigenvalue equal to A(a) on the line J22(s) = Q, s ~ Q. This is an argument
of Faivre [13]. Indeed, suppose that, for s = Q + it, t ~ 0, there exists
an eigenvalue A of Hs that satisfies IÀI = A(a). Then the sequence of
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inequalities (41), (42) becomes a sequence of equalities. For any h E 7~ the
equality

holds. On the other side, the sequence ah := D[h] (xO)-u-it foh(xo) satisfies
the equality 11: ahl = E lahl. Then, there exists 0 (of modulus 1) such that
ah = for any h, and the relation

holds. Both relations (43), (44) are in particular valid for the subset D of
7~. Then, for c --&#x3E; oo, the sequence h(xo) tends to 0, and, equality (43)
proves that If (0) 1 = 0. Now, for c - oo, the relation (44) shows
that the sequence 

-

has a limit equal to 8, which can be only true for t = 0. ~

4.6. Mean values of main parameters in the discrete model. Fi-

nally, Theorem 1 proves that the quasi-inverse of the Ruelle operator which
intervenes in the expression of generating functions F(s) and Gx(s) fulfills
all the hypotheses of Tauberian Theorem. Moreover, it shows that each oc-
currence of the quasi-inverse "brings" one pole at s = 2, so that the Dirich-
let series Gx (s) admit a pole at s = 2, of order at least two. The order is
exactly three if cost X is relative to continuants, i.e., for X E {Q, W, V}.
In the case when cost X involves some digit-cost c, the analysis strongly
depends on properties of digit-cost c.

Theorem 2. Let x be a set of LFTs of determinant 1 used in one step of
some Euclidean Algorithm. Assume the following:
(i) the set x contains some subset =1/(c+x) with integers c - oof
(zi) the mapping U whose set of inverse branches is 1i is eventually strongly
expanding.
Then the following results hold and involve the entropy h(H) of the dy-
namical system and the asymptotic mean values Eoo[c(M)] of digit-cost c
when the interval I is endowed with the invariant measure ’ljJ(t)dt relative
to the dominant eigenfunction of the Perron-Frobenius operator H.
(a) The mean value of the number of iterations of Euclidean Algorithm on
the set of inputs of denominator less than N is asymptotically of logarithmic
order. It satisfies

(b) The mean values of continuant-parameters Q, W, V on the set of inputs
of denominator less than N are asymptotically of log-squared order. They
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satisfy

(c) Suppose that the Ruelle operator of costs is analytic on &#x3E; 2}.
Then the mean-value of parameter S~c~ on the set of inputs of denominator
less than N is asymptotically of logarithmic order. It satisfies

The mean-values of parameter K[c], L[c], M[c] on the set of inputs of de-
nominator less than N are asymptotically of log-squared order. They sat-
isfy

°

(d) Suppose that the Ruelle operator Hfl of digit-costs is analytic on
f ~(s) &#x3E; 2} except at s = 2 where it has a pole of order k. Suppose
that the integral I(s) := satisfies I(s)(s - 2)k -&#x3E; A when
s - 2. Then the mean value ofS[c] on the set of valid inputs of denomi-
nator less than N is asymptotically of order N; the mean values of
K[c], L[c], M[c] on the set of valid inputs of denominator less than N are
asymptotically of order logk+2 N. They satisfy

(e) Suppose that there exists 7 &#x3E; 2 such that the Ruelle operator of digit-
costs Hfl is analytic on ~~(s) &#x3E; al except at s = Q where it has a pole of
order k. Then the mean values of s [c] , L~c~, K~c~, M [c] on the set of valid in-
puts of denominator less than N are asymptotically of order Na-210gk-l N.

Proof. (b) Here X is a cost relative to continuants. Theorem 1 shows that
the Dirichlet series has a triple pole at s = 2, and near s = 2

The integral is expressed in terms of entropy via (38).
(c) Here X is a cost that involves some digit-cost. First suppose that
X = S[c]. Since the Ruelle operator of costs is regular at s = 2, Theorem 1
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shows that the Dirichlet series has a double pole at s = 2, and near

The integral coincides with the asymptotic mean value of cost c(M) in the
continuous model (20) and is a constant of Khinchin’s type.

This is true in particular for the trivial cost c = 1, which gives the result
(a) for the mean value of depth p, since p = S(1).
Suppose now that X = K~c~. Since the Ruelle operator of costs is regular
at s = 2, Theorem 1 shows that the Dirichlet series has a triple pole
at s = 2, and near s = 2

The previous alternative expressions for both integrals give the result.
(d) The Dirichlet series G S[c] (s) has now a pole of order k + 2 at s = 2, and
the Dirichlet series GK[,] (s) has now a pole of order k + 3 at s = 2, and
near s = 2, one has

the Dirichlet series satisfies near

Remark. We can now prove why the approximation that we have made
on the costs C(vi, vo) and D(vi, vo) are valid. When one replaces the
binary length f(v) by the logarithm log2(v), or when one replaces log2(vi)
by one adds to Dirichlet series G(s) relative to cost C some
multiple of series that have a pole at s = 2 whose order is always strictly less
than G(s) so that the main order term of the average cost is not modified
by our approximation.

5. Average-case Analysis of Euclidean Algorithms

We now come back to the precise analysis of the two Euclidean algorithms
and we focus on two main quantities: the bit-complexity of Euclidean
Algorithms and the code-length of continued fractions expansions. Then
we explain how our methods can be adapted to other Euclidean Algorithms.
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5.1. Average bit-complexity. We recall that we wish to analyse the
average behaviour of C(vl, vo) defined in (3) or D(vl, vo) defined in (5)
when (vi, vo) is a random input or S2N or Theorem 2 (c) applies in
this case to costs defined in Figure 1, and, with formulae (22), (23), (24),
one obtains our first main result.

Theorem 3. The average bit-complexities of the Standard Algorithm (S),
and the Centered Algorithm (C) on the set of valid inputs of denominator
less than N are asymptotically of log-squared order:

Here h(H) is the entropy of the dynamical system relative to the algorithm
and denotes the average value of digit-cost c when the interval
I is endowed with the invariant measure. More precisely, in the standard
case (S), the cost c(m) equals ~(m) + 2 where is the number of bits
of digit m, and

In the centered case (C), the cost c(m) relative to m = (a, d) equals £ ( a) +
2 + ( 1 - s) /2 where £(a) is the number of bits of digit a, and s = :l:1 the
sign used, so that

The average bit-complexities of the Standard Extended Algorithm (S), and
the Centered Extended Algorithm (C) on the set of valid inputs of denom-
inator less than N satisfy

The numerical values for the constants of bit-complexities,

prove the efficiency of Classical Euclidean Algorithms when compared to
naive multiplication of numbers whose average bit-complexity is log2 N on
integers less than N. For computing the inverse of some integer a modulo
some another integer n, the Extended algorithms can be modified so that
they make use of only one auxiliary sequence ri. Then, their average bit
complexity on the set of valid inputs of denominator less than N is about
2 .5 log) N.
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5.2. Average code-length of continued fractions expansions. We
are now interested in describing the length B(vl, vo) of the binary word
that encodes the pair (vl, vo) by using the binary encoding of the sequence
of digits (ml, m2, ... , 

when digit-cost c is chosen to be near-optimal with respect to distribution
of digits mi.
The choice of a near-optimal code will follow the principles of Fano-
Shannon encoding that we recall now: Assume that a source produces
(independent) symbols m2 with probability pi and the symbols are sorted
with respect to decreasing probabilities. One builds a binary tree according
to the recursive principle: Denote by no the first index index n such that

1/2. Then all the symbols mi for i  no are encoding by a word
that begins with ’0’ while the symbols m2 for i &#x3E; no are encoding by a
word that begins with’1’. Then, recursively divide the first group and the
second group following the same principles.

We first adopt this Fano-Shannon principle to the case of the Standard Eu-
clidean Algorithm. We consider the approximate model where the symbol
m is always emitted with the probability

Then all the digits m2 that comprise k binary digits have their code word
that begins with 1~-1 times the symbol’1’ followed with a’0’. Then, we do
not any more apply the Fano-Shannon process, and we use now the binary
encoding of the digit. Finally, the code word of a digit m whose binary
length is l~ is a sequence symbols equal to 1’, then a zero, then the
sequence of the binary digits of m where the most significant 1 is removed.
For instance the digit 21 (in decimal expansion) is written as 10101 (in
binary expansion), and will be encoded as 1111 0 0101. The process is

quite easy to decode. For instance, the word 00011111100001000101 =
0 0 0 1111110000100 0 101 is decoded as (1,1,1, 8,1, 3). In this way, all
the digits m of binary length k are encoded by a binary word of length
2k - 1, and we encounter there a code that was proposed by Elias [12] for
encoding integers. We prove in this way that the Elias code appears to be
quite optimal for coding a source that emits integers m with probabilities
pm defined in (45).
The asymptotic mean value of the code-length relative to a digit is just
equal to 2E~(M)] - 1 = 2A(s) -1.
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We can also adopt the Fano-Shannon principle to the case of the Centered
Euclidean Algorithm, and we consider the approximation

The order on the probabilities corresponds to the lexicographic order on
the digit-pair m = (a,E). Then all the digits m that belong to interval
(2k, +1), (2 k+l, -1)) have their code word that begins with k - 1 times the
symbol 1’ followed with a ’0’. Then, we do not any more apply the Fano-
Shannon process here, and we use now the binary encoding of digit-rank
inside the interval. Since there are exactly digit-pairs in the interval,
this rank-encoding (from 0 to 2k+ 1 - 1) uses exactly &#x26;+1 bits. Finally, the
code word of a digit m that belongs to the interval ({2~, +1), (2~+1, -1)~ is
a sequence symbols equal to 1’, then a zero, then the encoding of
the digit-rank in the interval on k + 1 bits. For instance the digit (20, -1)
(in decimal expansion) has rank 7 in the interval [(16, +1), (32, -1)~ so that
it will be encoded as 1110 00111. Decoding is quite easy too. For instance,
the word 000111111000010001011 is decoded as (2, +1), (69, -1), (4, -1).

Finally all the digits of the interval ~(2~, +1), (2k+l, - 1)] are coded on 2k + 1
bits.

Theorem 4. The average code-lengths of the continued fraction expan-
sions produced either by the Standard Algorithm (S), or the Centered
Algorithm (C) on the set of valid inputs of denominator less than N are
asymptotically of logarithmic order. They satisfy

Here is the entropy of the dynamical system relative to the algorithm
and denotes the average value of digit-cost c when the interval
I is endowed with the invariant measure. More precisely, in the standard
case (S), the cost c(m) equals 2£(m) - 1 where ~(m) is the number of bits
of digit m, and

In the centered case (C), the cost c(m) equals 2k + 1 when digit m belongs
to the interval [(2 k, -~l), (2~+1, -1)~, so that
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The numerical values for both constants of average code-length,

prove the near-optimality of the continued-fraction encodings when com-
pared to the minimal encoding of integer pairs whose average code-length
is 2 1092 N for integer pairs less than N.

5.3. Other costs on digits. Theorem 2 provides a useful criterion for
classifying the asymptotic behaviour of generic costs that involve digit-
costs. This classification strongly depend on properties of digit-costs them-
selves. When Ergodic Theorems apply, Theorem 2 can be viewed as an ef-
ficient transfer from "continuous to discrete" : in this case, the asymptotic
mean value exists, and the expectation EN[S[c]] has exactly the
asymptotic behaviour that one can expect if the discrete world behaves
as the continuous world. However, Theorem 2 may provide a "discrete"
answer whereas a "continuous" answer cannot be obtained from Ergodic
methods: even if function c o M relative to some digit-cost c is not in

Theorem 2 (d) or (e) may apply and give some precise information
on EN[S[c]]. For instance, if c(m) = mlog2m, then EN[S[c]] is of order

log4 N, and if c(m) = m3~2, then is of order m.
We now focus on an important particular case that arises when the digit-
cost co(m) equals m. This digit-cost is then related to the so-called Sub-
tractive Algorithm (T), where each Euclidean division that uses a quotient
equal to a is replaced by a sequence of a subtractions. Then the value

EN[S[co]] exactly counts the average number of subtractions of Subtractive
Algorithm, while the value EN[M[co]] measures the average bit-complexity
of the algorithm. Higher moments of the variable "number of subtractions"
of the Subtractive Algorithm are associated to the values The
first two mean values are analysed with Theorem 2 (d), and the higher
moments are estimated with Theorem 2 (e). We obtain

Theorem 5. The average number of subtractions performed by the Sub-
tractive Algorithm (T) on the set of valid inputs of denominator less than
N is asymptotically of log-squared order; it satisfies

The moment of order k (k &#x3E; 2) of the variable "number of iterations" is
asymptotically of order Nk-1. The average bit-complexity of the Subtrac-
tive Algorithm (T) on the set of valid inputs of denominator less than N
is asymptotically of log-cubed order:
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The first assertion has been proven (with direct combinatorial methods) by
Yao and Knuth in 1975 [41]. The second and third assertions provide new
results.

5.4. Two Pseudo-Euclidean Algorithms related to random con-
tinued fractions. The general framework that we propose here can be
easily adapted to other Euclidean Algorithms, the ones that we have called
Pseudo-Euclidean in previous papers [37, 38]. These algorithms are use-
ful for computing the Jacobi symbol and they have a structure similar to
the classical Euclidean algorithms, since they perform a sequence of suc-
cessive Euclidean-like divisions and exchanges. However, the Quadratic
Reciprocity law being only true for a pair of odd integers, the standard
Euclidean division has to be transformed into a pseudo-Euclidean division
where pseudo-remainders will always be odd. A pseudo-Euclidean division
on a pair (u, v) of positive odd integers

(46) v = b~c + é2k s withe = ~1, s odd and strictly less than u,

creates another pair (s, u) for the following step. Then the Jacobi Symbol
J(u, v) is easily computed from the Jacobi symbol J(s, u). The pseudo-
Standard Algorithm (8) and the pseudo-Centered Algorithm (C) performs
divisions where the pseudo-quotients are equal to the standard quotients
or to the centered quotients; then, remainders may be even or odd, and,
when they are even, powers of two are removed for obtaining the pseudo-
remainders.

When performing £ pseudo-Euclidean divisions on a valid input (u, v)
formed with two odd integers, each of the two algorithms builds a specific
continued fraction of height ~ for the rational x = u/v. For the pseudo-
Centered algorithm (0), the rational x belongs to I = (o,1/2~. In the

pseudo-Standard case, the rational x belongs to I = [0,1].
Now, both algorithms have a Markovian flavour. In (46), if b is odd, then
the remainder is even, and thus k satisfies k &#x3E; 1; if b is even, then the
remainder is odd, and thus k satisfies l~ = 0. This link is of Markovian

type, and we consider two states: the 0 state, which means "the remainder
of (u, v) is odd", = 0, and the 1 state, which means "the remainder
of (u, v) is even ", i.e. 1~ &#x3E; 1. Denoting by resp. Cy the set of LFT’s
which can be used in state j, we obtain four different sets, resp. Cih
each of them brings rationals from state j to state i. The initial state is
the 0 state and the final state is the 1 state.

It is not clear how to obtain an extension of continued fractions for real
numbers. The reason is that the pseudo-divisions are related to dyadic
valuation, so that continued fractions expansions are only defined for ratio-
nals numbers. However, one can define random continued fraction for real



566

FIGURE 4. The two pseudo-Euclidean algorithms.

numbers in these cases: The state 0 is deterministic, and in the state 1,
one chooses at random the dyadic valuation k of a real number, according
to the law Pr [k = d~ = 2-d (for d &#x3E; 1), that extends the natural law on
even integers. In this manner, we choose the LFT of determinant 2 k with
probability 2~*’. Now, for LFT’s of determinant 2~, the quantity

represents exactly a random change of variables, so that the operator H2
is the Perron-Frobenius operator associated to the (random) mapping U
(See [38] for more details). Then, the Ruelle operator Hs can be viewed as
the transfer operator relative to this (random) dynamical system. Then,
Theorem 2 (c) applies, and, even if the invariant eigenfunction 0 is no more
explicit, the entropy and the average value can be easily computed
as a function of 0.

Theorem 6. The average bit-complexities of the Pseudo-Standard Algo-
rithm (S) or the Pseudo-Centered Algorithm (C) on the set of odd inputs
of denominator less than N are asymptotically of log-squared order:

Here h(H) is the entropy of the (random) dynamical system relative to the
algorithm and denotes the average value of digit-cost c(m) when
the interval I is endowed with the invariant measure p that corresponds
to the dominant eigenfunction o of the Perron-Frobenius operator. More
precisely, the cost c(m) equals £(m) + 2, where is the number of bits
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of digit m, and one has

5.5. Another pseudo-Euclidean algorithm: The Binary gcd Algo-
rithm. There are two algorithms where no divisions are performed, the
Subtractive Algorithm (T) that we have already described in 5.3. and
the Binary Algorithm (B). The Binary Algorithm (B) uses only subtrac-
tions and right shifts, and it can be viewed as the pseudo-version of the
Subtractive algorithm: it performs a sequence of operations of the form
v := (v - u)/2b, where b is the dyadic valuation of v - u, denoted by
b := Val2 (v - u), and defined as the largest exponent b such that 2b divides
v-~.

This algorithm operates on odd-integer pairs and it has two nested loops:
The external loop corresponds to an exchange. Between two exchanges,
there is a sequence of iterations that constitutes the internal loop.

Binary Euclidean Algorithm (u, v)
do

While u  v do

Exchange u and v;

Output: u (or v).

Each internal sequence consists in subtractions and (possible) shifts and
can be written as
....

Here vf is strictly less than u, and plays the role of a remainder r, so that
the result of a sequence of internal loop is a decomposition of the form
v = mu + 2’r, with m odd, m  2S and r G u, and the number of steps
in the internal loop equals b(m), where b(x) denotes the number of ones in
the binary expansion of x.
The cost of a subtractive step v = u + (v - u) is equal to ~(v). The cost of
a right shift v := v/2b is equal to ~(v). Then the bit-cost of a sequence of
internal steps whose result is a decomposition v = mu+dr equals x b(m)
for the Binary Algorithm (B). It is followed by an exchange, so that the
total cost of an external step equals f(v) x (b(m) + 2).
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This algorithm is more difficult to analyse [6, 7, 36]. The reason is that the
set B of LFT’s relative to the Binary algorithm

is not well-behaved. First, it is not possible to find an open disk whose
diameter contains the basic interval 1:= ~0,1~ and on which all the LFT’s
are analytic. The reason is that the sequence of poles of LFT’s is of the form
x = -m/2’ and has an accumulation point at x = 0. As in [36], we choose
for V an open disk of diameter ]0, /?[ with 1  ,B  2, and a convenient
functional space is then the Hardy space of order two relative to V. It is

denoted by H2(V) and is formed with all functions f analytic inside V and
such that If 12 is integrable along the frontier of V. Each Ruelle operator
Rs,h acts on this set and is compact, and the same is true for operator H,
provided that R(s) &#x3E; (3/2).
Second, as previously, the dynamical system is random, since the pseudo-
division is related to dyadic valuation. However, one can define random
binary continued fraction for real numbers when choosing at random the
dyadic valuation of a real number in the same way as in 5.4. Then,
the Ruelle operator relative to the Binary Algorithm can be viewed as the
transfer operator relative to this random dynamical system and, for s = 2,
it is a (random) density transformer. Now, we can apply Theorem 2, version
(c). As in 5.4, the invariant eigenfunction o is no more explicit, but the
entropy and the average value Eoo [c] can be easily computed as a function
of 0 and its integral F.

Theorem 7. The average bit-complexity of the Binary Algorithm (B)
on the set of valid inputs of denominator less than N is asymptotically of
log-squared order:

Here is the entropy of the (random) dynamical system relative to
the algorithm and denotes the average value of digit-cost c(m)
when the interval I is endowed with the invariant measure that corresponds
to the dominant eigenfunction 0 of the Perron-Frobenius operator. More
precisely, the digit cost c(m) is equal to b(m) + 2 where b(m) is the number
of 1 in the binary decomposition of digit m and one has



569

where F is the distribution function relative to invariant measure, and, as
previously, is the number of bits of integer m.

Brent [6, 7] made extensive computations for estimating the numerical value

In a previous work [36], we have estimated the entropy by simulations,
h(B)  3.60, so that

Then the average bit-complexity of the Binary Algorithm is about 60 %
lower than the average bit-complexity of the Classical Euclidean Algo-
rithms.
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