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On lattice bases with special properties

par ULRICH HALBRITTER et MICHAEL E. POHST

Dedicated to Jacques Martinet on his 60th birthday

RÉSUMÉ. Nous introduisons ici des réseaux multiplicatifs de
(R&#x3E;0)r et déterminons des réunions finies de simplexes conven-
ables comme domaines fondamentaux de sous-réseaux d’indices
finis. Nous définissons pour cela des bases cycliques positives
de réseaux arbitraires. Nous utilisons ces bases pour calculer
les cônes de Shintani dans des corps totalement réels de nom-
bres algébriques. Nous nous intéressons plus paxticulierement aux
réseaux en dimensions deux et trois correspondants à des corps
cubiques ou quartiques.

ABSTRACT. In this paper we introduce multiplicative lattices in
(R&#x3E;0)r and determine finite unions of suitable simplices as funda-
mental domains for sublattices of finite index. For this we define

cyclic non-negative bases in arbitrary lattices. These bases are
then used to calculate Shintani cones in totally real algebraic num-
ber fields. We mainly concentrate our considerations to lattices
in two and three dimensions corresponding to cubic and quartic
fields.

1. Introduction

Since the guiding principles for this article are adopted from algebraic
number theory and since this is the topic, where our ideas mainly apply
(see Section 4), we shortly introduce some notation for algebraic number
fields.

Throughout this paper F denotes a totally real algebraic number field of
degree n over the rational numbers Q . We assume that it is generated by
a root p of a monic irreducible polynomial
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Over the real numbers R the polynomial f (t) splits into a product of linear
factors

We assume p = p~l~ for the conjugates p~l~, ..., pen) of p as usual. An element
a of F is called totally positive if all its conjugates are positive real numbers.

Arithmetical problems usually require computations with algebraic inte-
gers contained in F, i.e., those elements of F whose minimal polynomials
have coefficients in Z. They form a ring OF with a Z-basis wi , ... , wn (inte-
gral basis of F), the so-called maximal order of F. Then the discriminant
dF of F is given by

Two elements of OF are called multiplicatively equivalent ( associated), if
their quotient is an invertible element (unit) of oF. The units of oF form a
finitely generated abelian group UF. For totally real fields it consists of a
torsion part and the direct product of r = n - 1 infinite cyclic
groups the generators of which, say Cl, ..., Cr, are called fundamental units.
Equivalence is usually tested in logarithmic space. For this we consider the
mapping:

Clearly, A := L(UF) is a lattice in r-dimensional Euclidean space with
basis L(sl), ..., L(ér) and, consequently, two elements x, y E OF B are

associated if and only iff L(x) and L(y) differ by an element of A.
In this article we study the problem of choosing appropriate bases of

lattices A in r-dimensional Euclidean space such that so-called Shintani
cones which are of importance for ray class zeta functions become more
easily accessible. We proceed as follows. In Section 2 we define "nice"
bases of lattices (respectively, sublattices of finite index) and prove their
existence. In Section 3 we define a generalized multiplicative equivalence
for vectors with all coordinates positive in Euclidean r-space. We show
how the bases of Section 2 can be used to obtain fundamental domains for
that multiplicative equivalence for r  3 and conjecture that this is true
for arbitray r. Interpreting them as the intersection of a decomposition of

into Shintani cones with the hyperplane zn = 1 these can then be
used to calculate a Shintani decomposition of where r denotes a
natural number and (the field degree) n is r + 1.
We illustrate our considerations by an example of a fundamental domain

for a quartic field. The application of that decomposition to the calculation
of the values of ray class zeta functions at non-negative integers will be done
in a subsequent paper.
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2. Lattice bases with special properties

In this section we consider full lattices A in r-dimensional Euclidean

space for r &#x3E; 1. In later sections we shall need the existence of special
lattice bases for A (or at least for a sublattice A of A of finite index).
Definition 2.1. A set of r non-zero vectors S _ ~bl, ..., br I of A is called
cyclic non-negative, if the coordinates of the i-th vector b2 - (bil, ..., bir)
satisfy the inequalities ..- &#x3E; 0 (1 ~ i ~ r), where
the second indices j are considered modulo r, i.e. j is to be replaced by
j - r for j &#x3E; r.
We will show that every lattice A contains cyclic non-negative sets of

independent vectors. In a first step we construct a cyclic non-negative set
for A, where all inequalities between the coordinates of the vectors are
strict.

Proposition 2.1. A lattice A contains a cyclic non-negative set of vectors
bl, ..., br the coordinates of which satisfy bii &#x3E; bi,i+l &#x3E; ... &#x3E; bi,i+r-1 &#x3E;

0 (1 ir).

Proof. Let x1, ..., xr be any basis of A and K an upper bound for the
absolute values of the coordinates of the basis vectors. Any x E R’ has a
presentation x = Aixi with coefficients Ai E R. Let m2 E Z subject
to I m2 - Aj 1:!~- 2 ( 1  i  r) and put y := Then we have

y = x + ~i 1 (m2 - and therefore

Hence, an appropriate choice of x guarantees &#x3E; 0. D

Next we will show that the cyclic non-negative set obtained in the propo-
sition is linearly independent.

Proposition 2.2. Let bl, ..., br be a cyclic non-negative set of vectors of
a lattice A and denote by B := the matrix with rows b1, ..., br . Then
the determinant of B is non-negative. If we have b22 &#x3E; for at least
r - 1 of the vectors bl, ..., br the given cyclic non-negative set is linearly
independent.

Proof. Let Dl := det(B) be the determinant of the matrix with rows
bl, ..., br. We will show Dl &#x3E; 0 by induction on r. This is trivial for
r = 1, 2. Hence, we assume r &#x3E; 3 in the sequel.
The determinant Dl is a linear polynomial in each of the entries of the

matrix B. Hence, it suffices to consider the value of Dl on the boundaries
of those entries. The coefficient of bll is the determinant of the matrix
with entries bij (2 ~ i, j :5 r), hence, it is non-negative according to our
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induction assumption. As a consequence, Dl becomes at most smaller,
when we replace bll by b12 in the original matrix.

Again we proceed by induction on the number of equal entries in the
first row of the given matrix starting from the left. Let C be the matrix
with entries c2~ - bij for 2  i or i = 1 whereas Clj = for

1  j  ~. We conclude from K - 1 to ~.
The determinant of C is a linear polynomial in cix. We subtract col-

umn 1 of C from columns 2,..., r. and obtain for the coefficient of the
determinant of the matrix E with entries

for 1  i  r. We add the last column of E to columns 1, ..., ~ - 1. Then
the rows of the new matrix F form a cyclic non-negative set, and we obtain

0 according to our induction assumption. This finishes the step
from - 1 to ~.

Hence, the original determinant Dl is bounded from below by the de-
terminant of the matrix originating from B by replacing all entries in the
first row by bln. Moving the first row to the last and the first column to
the last and taking the common factor bln of the new last row, we obtain

I - - - ,

Again, the rows of the last matrix form a cyclic non-negative set. Carrying
out the same procedure again, we get

since D3 is the determinant of a matrix with 2 equal rows with entries all
one. Thus we have also shown the induction step from r - 1 to r.

If the additional premise bi2 &#x3E; bi,2+1 holds for at least r -1 of the vectors
b1, ..., br we can rearrange the order of rows and columns such that this
condition is satisfied for the first r - 1 rows. Then the proof above clearly
yields det B &#x3E; 0. D

The preceding propositions show that we can compute cyclic non-negative
sets in every lattice which generate sublattices of finite index. Of course,
we are interested in generating sublattices of small index. For r = 2 we can
prove the existence of cyclic non-negative lattice bases and that proof also
provides an algorithm for calculating them.
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Proposition 2.3. For r = 2 any lattice A has a cyclic non-negative set
{bl, b2} as a basis.

Proof. We apply a purely geometrical construction which is based on
Minkowski’s convex body theorem. We note that for calculating lattice
points in practice the occuring rectangles will be covered by ellipses. For
algorithmic details we refer the reader to ~5~.
We consider the closed first quadrant (JR~O)2. For the bisector Gl :=

~(x, y) E = y~ we let G2, G3 be the parallel lines to Gl with distance
6 &#x3E; 0. That distance is chosen maximal subject to  M(A), where
M(A) denotes the minimum of the lattice, i.e., the norm of a shortest lattice
vector. This guarantees that all lattice points between G2 and G3 lie in the
first and third quadrant.

Then we choose the smallest 0-symmetric closed rectangle with two sides
on G2 and G3 which contains at least one lattice point c, necessarily on the
boundary. We choose c in the first quadrant with maximal distance, say e,
to Gl. We need to discuss two cases depending on whether e is zero or not.

To begin with let us assume e &#x3E; 0. We let G4, G5 be the parallel lines
to Gl with distance 6’. Then we choose the smallest 0-symmetric closed
rectangle with two sides on G4 and G5 which contains at least one lattice
point d in the first quadrant which is different from c. It is easy to see that
c and d lie on different sides of Gl. Hence, putting them into the right
order they form a linearly independent cyclic non-negative set. Also the
closed triangle with vertices 0, c, d contains exactly these vertices as lattice
points. Therefore {c, d} is a basis of A.

In the case e = 0 we consider the parallel lines G6, G7 with distance
q = d(A)/lIcll, where d(A) denotes the mesh of the lattice. Let d be a
lattice point on G6 or G7 which lies in the first quadrant. Such a point
must exist according to our assumptions. Ordering c, d appropriately they
form a cyclic non-negative set which is a lattice basis because of the volume
of the parallelogram spanned by them. D

We note that for r = 3 we can show the existence of a cyclic non-negative
set generating a sublattice of index at most 24, independently of the lattice
A. The proof is quite lengthy and therefore omitted. In practice we always
obtained sublattices of much smaller index.

3. Multiplicative equivalence in 

The concept of multiplicative equivalence for the integers of an algebraic
number field F which we introduced in Section 1 needs to be generalized
with respect to multiplicative equivalence in and Shintani cones.
For multiplicatively equivalent totally positive elements E OF there
exists a totally positive unlit 17 with a = Somewhat weaker we now
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require

This is easily seen to be equivalent to

and therefore also to

This yields the following general definition which is independent of number
fields. (We note that r = n -1 throughout the paper.)

Definition 3.1. Let .E" (1  i, j  r) be fixed positive constants. Vec-
tors x, y E are called (multiplicatively) equivalent, if there is a vector
m = (ml, ..., mr) E zr such that yj = zj IT~=1 
From the definition it is clear that this relation is an equivalence relation

and we are interested in a "nice" fundamental domain. If we set Ei :_

(E(l) ...,E~) (1:S i :S r) the vectors x,y are equivalent, if and only if
L(y) = L (x) + ¿~=1 holds, where the map L is given by

It is obvious that the vectors L (Ei ) should be linearly independent, we
therefore stipulate this in the sequel.

Hence, L(E1), ..., L(Er) are basis vectors of a (logarithmic) lattice A in
R’. It would be tempting to take as a fundamental domain for multiplica-
tive equivalence the preimage of the fundamental domain of A, i.e. of the
set

Even though the exponential function generally behaves quite nicely, such
a choice does not yield an appropriate fundamental domain. Namely, its
boundary is not contained in a finite number of hyperplanes which will
be required at a later stage. Therefore the idea comes up to deform
into a set fl. This procedure must be carried out such that the integral
translations of the new fundamental domain still form a disjoint cover of
R
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and that the boundary of is contained in a finite number of hy-
perplanes. To achieve this in a straightforward manner would mean to
connect the preimages of the vertices of 11 by hyperplanes, and to consider
the logarithmic image of that multiplicative "fundamental domain " as new
fundamental domain 11 for A applying 3.3 . In the sequel we will study this
approach and the occuring difficulties in the simplest case r = 2. The ideas
for new methods to overcome these difficulties will later form the guiding
principles for higher dimensions.

Let us assume that a = (a,, a2) and b = (bl, b2) are linearly independent
vectors in logarithmic space spanning a lattice A. In exponential space the
images of the vertices of the fundamental domain rj of A are the points

We would be tempted to connect 1 with El, E2 and those two with E12 by
straight lines. The images of these lines in logarithmic space are congruent
modulo 1, but this does not generally yield a fundamental domain as is
demonstrated by the following example.

Example. We choose El = (2,4), E2 = (4, 11). Then the preimage
of rl has the vertices (1,1), (2, 4), (4,11), (8, 44), and the straight lines
connecting (1,1), (4, 11), respectively (2,4), (8,44), intersect in (21, )., P 10 3
We therefore proceed as follows. In logarithmic space we assume that Sl

and Tl are piecewise smooth double point free curves connecting the lattice
points 0 with L(El), L(E2), respectively. We set S2 := 81 + L(E2),T2 :=
Tl + L(Ei ) and get the following lemma.

Lemma 3.1. Denote by J the set of points enclosed by C := SlUT2US2 U
Tl1. If the closed curve C is double point free then the set (JUC) B (S2 UT2)
is a fundamental domain for 

We note that a fundamental domain for R /A yields a fundamental do-
main for multiplicative equivalence upon applying the exponential map.

Proof. The proof is carried out in several steps. We begin by simplifying
the description. For simplicity’s sake we assume that the lattice in logarith-
mic space is spanned by the unit vectors (1, 0), (0,1) and the fundamental
domain is therefore [0,1)~. This can be easily achieved by a linear trans-
formation.

In a first step we introduce the piecewise smooth boundary curves. We
assume that ~2, ~1, 02 are continuously differentiable maps from [0, 1]
into R satisfying 0 = §2(0) = ~2(1) _ a/1 (0) = = 



444

and C double point free. By G we denote the (closed) area surrounded by
C. We will show that the union of the interior of G with Cl and C2 without
the point (0, 1) is also a fundamental domain.

Since we will apply some Fourier theory and the theorem of Gauss we
introduce several auxiliary formulae in the second step. By the theorem of
Gauss an integral over G can be evaluated by a contour integral over the
boundary C of G. Using the parametrization of the boundary of G from
above we calculate Fourier coefficients:

the same result also holds for 0; finally we find

In the third step we show that all x E ~0, 1)2 are obtained modulo 1.
Let us assume that there exists x E ~0, 1)2 with (m, n) + x not in G for
all (m, n) E Z2 . Then the set {x + (m, n) I (m, n) E has a positive
distance to G which is larger than a positive constant e. Hence, if y E (0, 1~2
has distance smaller than e from x then the intersection of {y + (rrz, n) I
(m, n) E 7G2~ with G is empty. Without loss of generality we can assume
that x E (0, 1)2 and that the open e/2-neighborhood of x is contained in
(0,1)2.

Consequently, there exists a function h : ~0,1~2 -&#x3E; R with the proper-
ties :

(i) h is non-negative and h(z) &#x3E; 0 for all z in the open e/2-neighborhood
of x;
(ii) h(z) = 0 for all z E ~0,1~2 having a distance of at least e from x;
(iii) h is arbitrarily often differentiable.
The periodic continuation of h to all of IEg2 is denoted H. Also H is arbitrar-
ily often differentiable and has therefore an absolutely convergent Fourier
series, say a,",,n exp(27ri(mx + ny)) with 0. According to
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our assumption on x the function H vanishes on G. Hence, we get a con-
tradiction as follows:

In the fourth and last step we show that no point x can occur several
times modulo 1. We start to prove this for x in the interior of G. We
assume that also x + (m, n) E G for some non-zero (m, n) E Z~. Let p
denote the Lebesgue measure. We obtain

Hence, we must have equality everywhere and translations of G by different
integral vectors cannot have common interior points.
A slightly modified argument also shows that a boundary point of one

translate of G cannot be an interior point of another one. Eventually, con-
sidering two boundary points in different translates, we argue by deforming
the boundary curves. D

Remark. The last lemma is proved in a much more general version than
needed. Namely, in our case the curves ,S’1 and Tl are just images of straight
lines under L. But the latter does not lead to any considerable simplifica-
tion of the proof for r = 2.
However, for r &#x3E; 2 we indeed use the fact that the multiplicative funda-
mental domain in exponential space is a 2r-gon. The application of Gauss’
theorem in that situation becomes much easier since the outer normal is
almost everywhere well defined on the boundary. The proof for r = 2 given
above can therefore easily be adopted to r &#x3E; 2 and so we omit it.

Clearly, the premises of the lemma are not satisfied in the example above
if we choose the logarithmic images of the straight lines as curves. We will
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see, however, that the lemma becomes applicable, if L(El), L(E2) form a
linearly independent cyclic non-negative set in logarithmic space.

Example (cont.). Clearly, the original vectors

do not form a cyclic non-negative set. The reduction procedure developed
in Section 2 for r = 2 yields as new (and cyclic non-negative) basis

The quadrangle with vertices
,, 4

is convex and the last lemma becomes applicable.
This phenomenon is explained by the next proposition.

Proposition 3.1. Any cyclic non-negative basis of vectors bl, b2 of a 2-
d2mensional lattice A (in logarithmic space) yields a convex fundamental
domain f or multiplicative equivalence.

Proof. Let x2 = exp(bil), yi = exp(bi2) for i = l, 2. Hence, we have 1 
yl  zi , 1  x2  y2. We first show that the slope of the straight line
through (1,1) and (ziz2 , YlY2) is larger than that through (1,1) and (zi , yl)
and smaller than that through (1,1) and (X2, Y2). From our assumptions
we obtain successively

as well as

hence, in case x2 &#x3E; 1 (i =1, 2),

If one of the xi is one, however, the proof is obvious.
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Finally, we need to show that the point (xl x2, is not in the interior
of the triangle with vertices {1,1), (X2, y2). This is again obvious
from the size conditions.

0

Although in principle the same ideas can be used in dimensions r &#x3E; 2 the

description of the fundamental domain in exponential space becomes much
more complicated. The reason for this is that for vertices of a maximal

bounding r - 1-dimensional parallelotope of the fundamental domain of
A the preimages of these vertices in exponential space will not necessarily
lie in a hyperplane anymore. Hence, we need to decompose each of these
surfaces in an appropriate way. This will be explained in the sequel.
The general procedure is roughly as follows. The original fundamental

domain in logarithmic space is decomposed into a finite number of simplices.
For each such simplex we consider the images of its vertices in exponential
space. They form the vertices of a simplex there. What we then need to
show is that the logarithmic image of the union of the exponential simplices
becomes a fundamental domain for the lattice in logarithmic space.
We decompose the fundamental domain of the lattice A with basis

bi , ... , br i
For o, E S, we set

r

and consequently obtain (we put xu(O) := 0 Via E Sr)

The accent at the last union indicates that sets occuring several times are
considered only once. Then all sets of the fourfold union are disjoint and
and all components are open simplices in their corresponding dimension.
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(Without the accent we had a union over 2rr! sets. With the accent this
number decreases from 48 to 26 for r = 3.)
The vertices of every such simplex are mapped into exponential space

and the images become the vertices of a corresponding simplex there. The
simplex defined by P( a) in this way in exponential space will be denoted by
Pe(a). We will show that for a, T E Sr the closures intersect
in the closed simplex which is spanned by the preimages of the vertices
of P( a) n P(T) thus exactly mirroring the situation in logarithmic space.
Because of the definition of Pe ( a) it suffices to show that r the sets

Q and Pe (T) are separated by a hyperplane in exponential space which
contains the preimage of P(a)np(r). Therefore we can glue the exponential
simplices Pe (a) in the same manner as the fundamental domain of A is glued
as indicated by the decomposition of fl into the simplices P(~). Thus we
get a 2’’-gon (which is not necessarily convex) whose image in logarithmic
space has boundary sets which are congruent modulo 1. Again we can
apply Gauss’ theorem to prove that we indeed have a fundamental domain.
To avoid complications at first it should be assumed that the exponential
simplices Pe(oa) contain interior points. The other cases are then obtained
by performing limits. We omit details since all important steps were already
explained in the proof of Lemma 3.1 and the subsequent remark.
Of course, the practical problem remains to show that the union of ex-

ponential simplices constructed as above indeed satisfies the requirements
of the preceding paragraph. We conjecture that this is in general the case
when we choose a cyclic non-negative basis for A in the beginning. A

rigorous proof is given only in the case r = 3 in the sequel.
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For proving that different open exponential simplices do not have

common points it suffices to show that their vertices are separated by a
hyperplane. For a better understanding we enumerate the vertices of the
exponential simplices from 0 to 7 in binary representation, e.g., 6 = (o, l,1)
denotes the vertex whose coordinates are the exponential values of the
coordinates of the vector b2 + b3.

In the sequel we only consider the six closed three-dimensional simplices.
We order them as follows:

For example, concerning the intersection of simplices (1) and (2) we show
that the point 1 is separated from points 2,6 by the plane determined by the
three points 0,3,7 . We do this by considering the sign of the determinant
whose first two rows are the vectors spanning the separating plane and the
last row is the vector from 0 to the point under consideration, i.e., 1 or

2,6. In this way we need to discuss a total of 15 intersections. Because of
occuring symmetries it suffices to consider 6 different determinants.
We recall that bi, b2, b3 is a cyclic non-negative basis. The coordinates of

these vectors are denoted by bi = (b21, bi2, for 1  i  3. In exponential
space we write Bij := (1 ~ i, j  3) for abbreviation. Then the
plane through 0,3,7 is spanned by the vectors B12 B22 B32 -
1, B13 B23 B33 - 1 ) (BIIB21 - 1, B12 B22 - 1 B13 B23 - 1) and for the point
1 we need to determine the sign of the determinant

We do this similarly as in Section 2. We write the determinant as a polyno-
mial 812, 813, B21, B22 , B23 , B31, B32 , B33 ) ~ This polynomial is lin-
ear in each of its 9 variables. Hence, we only need to discuss its sign on the
boundary of each variable. Instead of just considering 29 cases we reduce
the number of variables by 3, i.e., we discuss polynomials in 6 variables
(not necessarily linear anymore) in 8 different cases. We recall that
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We therefore start to consider the sign of the coefficient Pi of Bll in P:
P = Pl Bll + P2. Repeating this procedure we obtain successively:

At this stage the coefhcient polynomial Plll is a polynomial in only 6
variables Bij (1  j  3 , i = 2, 3). Writing it as polynomial in B22, then
the coehicients as polynomials in B23 the sign of Plil (and similarly for
any such polynomial in the same 6 variables) can be computed fairly easily.
Next we set Bl3 = 1 in Pll and determine the sign of that polynomial.
These two signs take care of the coefficient PI1 of B12 (in the coefficient
Pl of Bll in P), i.e., they determine the sign of P, for B12 large. This
is followed by a discussion of the case B12 = 813. We need to consider a
polynomial P, = PllBl3 + Pl2 in the new main variable Bl3 which can be
treated similarly. 

’

We note that considering a coefficient of one variable or setting one vari-
able to 1 yields a polynomial with one variable less, but the degrees in the
other variables stay invariant. However, if we need to replace one variable
by another one, say A by B, the degree of of B in the resulting polynomial
can increase. Fortunately, only quadratic polynomials occur. For those
we need to consider the coefhcient of the quadratic term, the value at a
potential extremal point (derivative vanishing), and the value obtained by
replacing the variable by the next smaller one. For all quadratic polyno-
mials it turned out that their extremal values were outside the considered
interval of the main variable.

For discussing the different cases we wrote a small Maple program [2]
which made these investigations a lot easier. As we conjectured it turned
out that the signs for any of these parametrized determinants were the
same for all potential values of the parameters and did indeed separate the
considered simplices. We therefore proved the next theorem.

Theorem 3.1. Let r  3 and fl = Uo-ESr P(a) be the standard decompo-
sition 3.7 of a fundamental domain given by a cyclic non-negative basis in
logarithmic space. Let 0, v2 (a~), ..., Vr+l(a) be the r + 1 vertices of P(a) and
1, E(vj(a)) (2  j  r + 1) be their preimages in exponential space. Let

be the simplex spanned by I,E(vj(a)) (2  j  r + 1) and
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Then ,~’ is a fundamental domain for multiplicative equivalence as intro-
duced in Definition 3.1.

Remark. (i) If the cyclic non-negative basis in the theorem is denoted
bl, ..., br, then we have Ei = exp(bi) (1  i  r) in Definition 3.1, where
the exponential map is applied coordinatewise.
(ii) The amount of work for proving a similar theorem in higher dimensions
grows exponentially, but the cases r = 4, 5, 6 are easily within the scope of
these methods. Also we emphasize that for explicitly given lattices it is no
problem to check numerically whether the corresponding simplices 
can be separated as demonstrated for r = 3.

4. Shintani decomposition

Let f be a module of the totally real algebraic number field F, i.e. f is
an integral ideal of F combined with a subset of the infinite places. In the
sequel, we only need the ideal part, which we also denote by f. Let b be
a (fractional) ideal coprime to f, hence representing a narrow ray class b
modulo f. The corresponding ray class zeta function is defined by

where the summation is over all integral ideals of b modulo f. We recall
Shintani’s ideas [7] for evaluating that zeta function at non-positive integers.

Besides the full unit group UF of F we need the subgroup of totally
positive units ut, respectively the subgroup ut (f) of totally positive ray
class units. Both subgroups are of finite index in UF. A full set of generators
for them is easily obtained from fundamental units of UF.

Example. For determining UF we just need to find representatives of
those classes of UF/UF, which contain only totally positive units. This is
straightforward from the signs of the conjugates of the fundamental units
of UF and requires only binary arithmetic.
The group ut (respectively acts on as described in the

previous section. Shintani showed that there exists a finite number, say s,
of open simplicial cones Cj (1  j  s) such that

The union on the right-hand side is disjoint. The open simplicial cones are
spanned by g c- f 1, ..., n~ linearly independent vectors VI, ..., V 9* *
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Following Shintani we set for S C 

and note, that R(j,8) is finite, when S is a subset of a fractional ideal. In
the sequel we use the notation x E S + 1 for x -1 E S. For m e N Shintani
obtains:

where the Aj are matrices the rows of which span one of the s simpli-
cial cones and the Bm are generalized Bernoulli polynomials. Once the

simplicial cones are known, all remaining calculations are quite straightfor-
ward. This will be demonstrated in a forthcoming paper by the authors.
In the remainder of this section we show how to apply the general theory of
multiplicative fundamental domains developed in Section 3 in this special
situation.

It is of importance that we need multiplicative (in)dependence only for
non-zero integers of F of the same norm. This is used to eliminate one
dimension. Whereas Shintani [7] and Okazaki [4] do this by requiring the
trace of the integers to be one, we rather follow Reidemeister’s precedent
[6] and normalize the last coordinate to one.

In the sequel we assume that ~1, ..., are a basis of the unit group under
consideration (consisting only of totally positive units). Then the lattice A
in logarithmic space has the basis

From these vectors we determine a cyclic non-negative basis bl, ..., br which
generates a lattice A of finite index t in A. We just have to keep in mind
that the elements which need to be determined in the simplicial cones
coming from A will occur with multiplicity t. As outlined in Section 3
the fundamental domain of A with respect to bi, ..., br is decomposed in
the standard way into r! simplices and the corresponding simplices for the
multiplicative fundamental domain are calculated.

Example. Let F = Q( p) for a root p of the polynomial x4+x3-4x2-4x+1.
The discriminant of F is 1125. (Up to isomorphy we could also put F =

15 + 6V5), but in that case the equation order would not be maximal.)
The unit group UF of F is generated by -1 and the three fundamental units
el = 3 p - p3, e2 = 1 + p, e3 = 3 - p2. None of the fundamental units is
totally positive, only the product of all 3. Hence, the index of UF in UF
is 4. Choosing the order of the conjugates of p appropriately, we obtain a
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cyclic non-negative basis of A from the totally positive units

This kind of calculations is very easy with a software package like KANT
~1~.
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