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The imaginary abelian number fields with class
numbers equal to their genus class numbers

par KU-YOUNG CHANG et SOUN-HI KWON

RÉSUMÉ. Titre français : Sur les corps abéliens dont le nombre
de classes est égal au nombre de genres.
Nous savons qu’il n’existe qu’un nombre fini de corps abéliens
imaginaires pour lesquels le nombre de classes est égal au nombre
de genres. Ceux de ces corps qui sont cycliques et non quadra-
tiques ont été classés dans [Lou2,4] et dans [CK]. Dans cet arti-
cle, nous déterminons tous les corps abéliens non cycliques dont
le nombre de classes est égal au nombre de genres. Cela achève
la classification des corps abéliens possédant une classe par genre,
sauf dans le cas des corps quadratiques imaginaires.

ABSTRACT. We know that there exist only finitely many imagi-
nary abelian number fields with class numbers equal to their genus
class numbers. Such non-quadratic cyclic number fields are com-
pletely determined in [Lou2,4] and [CK]. In this paper we de-
termine all non-cyclic abelian number fields with class numbers
equal to their genus class numbers, thus the one class in each
genus problem is solved, except for the imaginary quadratic num-
ber fields.

1. Introduction

For an abelian number field N the narrow genus field GN of N is the
maximal abelian number field containing N such that the extension GN/N
is unramified at all finite places. The degree ~GN : N] is called the genus
class number of N and is denoted by gN . The genus class number of N
is easy to determine, namely, gN = where ep is the ramifica-
tion index of p in N. In particular, when N is imaginary, the genus field
of N is contained in the Hilbert class field of N, whence gN divides the
class number of N. In [Loul], Louboutin has proved that there exist only
finitely many imaginary abelian number fields with class numbers equal to
their genus class numbers. Imaginary non-quadratic cyclic number fields
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with class numbers equal to their genus numbers have been recently classi-
fied ([Lou2, 4], [CK]). It is known that under a suitable generalized Riemann
Hypothesis, there are exactly 65 imaginary quadratic number fields with
class numbers equal to their genus numbers([We] and [Lou5]). These fields
are listed in Table I. The aim of this paper is to prove the following result:

Theorem 1. There are exactly 424 imaginary non-quadratic abelian num-
ber fields with class numbers equal to their genus class numbers:77 out of
them are cycdic and 347 are non-cyclic. Their degrees are less than or equal
to 24, their class numbers are 1, 2 or 4. The conductors of these fields are
less than or equal to 65689. These fields are listed in tables at the end of
this paper.

We note that in [M] under the assumption of the Generalized Riemann
Hypothesis, Miyada has determined all imaginary abelian number fields
N with class numbers equal to their genus class numbers such that the
Galois groups are elementary 2-groups. (There seems to be one misprint
in [M, Table 2]: the field K = Q (~/~2, V-37) appears twice, i.e. for

9K = hK = 1 and for gK = hK = 2. In fact, gK = hK = 2.) However,
we do not need any assumption for the proof of Theorem 1. This paper
is organized in the following way. Section 2 presents some well-known
facts on imaginary abelian number fields. In Section 3 we illustrate our

computations. Throughout this paper the following notation will be used.
For an imaginary abelian number field K, let K+, fK, hK, Wx, GK, 9K,
hK, QK be the maximal real subfield, the conductor, the class number, the
number of roots of unity in K, the genus field, the genus class number, the
relative class number and the Hasse unit index of K, respectively. For an
odd prime p let Xp be an odd Dirichlet character of conductor p, of degree
p - 1. When p &#x3E; 2, let qbpp be an even primitive Dirichlet character of
conductor pP, of order with = For the prime p = 2, let X4
be the odd Dirichlet quadratic character of conductor 4. When p &#x3E; 3, let
02P be an even primitive Dirichlet character of conductor 2P, of order 2p-2
with 9)p = 

2. Preliminaries

In this section we review some well-known facts concerning imaginary
abelian number fields.

Proposition 1. (1) Let F be an abelian number field. If hF = gF, then
hM = gM for any subfield M of F.

(2) Let F be an imaginary abelian number field, XF the group of primitive
Dirichlet characters associated to F and XF the subset of X E XF such
that X( -1) = -1. For a X E XF let us denote the conductor of X by



351

fx. We have

(3) If F is an imaginary cyclic number field, then QF = 1. Let F c K

be the two CM-fields. If (K : F] is odd, then QK = QF.
(4) Let F be an imaginary cyclic number field of degree 2m. If hF = gF,
then

Proof. (1) See Lemma 1 in [M]. (2) See Theorem 4.17 in [W]. (3) For the
first statement see Satz 24 in [H]. For the second statement see Lemma 2
in [HY1]. (4) See [Lou2 and 4] and (CK~ . D

3. Proof of Theorem 1

Let N be an imaginary abelian number field with Galois group G. When
say N is of type (pP, 1, - - - , p2 i, - - - ). In addition we

put * when the corresponding subfield is imaginary. For example, if N is
of type (4*, 2), then N is the compositum of an imaginary cyclic quartic
field Ml and a real quadratic field M2 with Ml n M2 = Q. Then the

maximal real subfield N+ is of type (2,2). If N is of type (4*, 2*), then N is
the compositum of an imaginary cyclic quartic field Ml and an imaginary
quadratic field M2 . In this case, N+ is of type (4). A field N of type
(2*, 2, 2) can be either of type (2*, 2*, 2) or (2*, 2*, 2*). However we prefer
to say that N is of type (2*, 2*, 2*) with as many as possible * for a technical
reason to be seen later.

Let N be an imaginary abelian number field of type (2m*, ,2m:, nl ,
I nr) with ml 2: ... 2 ms. We may assume 2ms for n2 which
is a 2-power. In order to describe N we give the associated group of Dirich-
let characters (71,... , Ts , ~p 1, - - - , Here -rl, - - - , Ts are odd primitive
Dirichlet characters of order for 1  i  s and Wl, - - - , cpr are the even

primitive Dirichlet characters of order nj for 1 ~ j ~ r. For each prime p
let G(P) be the p-Sylow subgroup of G. Let N(2) be the maximal subfield of
N of 2-power degree. The scheme of our proof of Theorem 1 is as follows.
In 3.1 we determine all imaginary abelian number fields N with hN = gN
such that G~2~ is an elementary 2-group. According to Theorem 2 below,
if G~2~ is an elementary 2-group, then the 2-rank of G (2) is less than or

equal to 3. In 3.2 we determine all imaginary abelian number fields N with
hN = gN such that N (2) is of type (2’ni , 2 M2) with mi &#x3E; m2 2: 1. Moreover
we prove that if N is an imaginary abelian number field with hN - gN,
then 2-rank of G (2) is less than or equal to 3. If it is equal to 3, then G~2~ is
either (2*, 2*, 2* ) or (4*, 2*, 2* ) . In 3.3 we determine all imaginary abelian
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number fields N with such that N(2) is of type (2’~i , 2’~l ) with
ml 2: 2 and ml 2: m2. Finally it remains to determine all fields N with
hN = 9N such that N~2~ _ (4*, 2*, 2*). These fields are treated in 3.4. Our
determinations rely on the computations of the relative class numbers h jo
of N. The class numbers hN+ of N+ which we need are known in ~G~ , ~L~ ,
[Ma] and [Mä]. In the remaining part of this paper we say briefly "character
of order m" instead of "primitive Dirichlet character of order m" .

3.1. N(2) is of type (2~,... 2*).
Proposition 2. Let N be an imaginary abelian number field, G the Galois
group of N /Q. Assume that G is not cyclic and that the 2-Sylow subgroup
of G is cyclic. If hN = gN, then N is of type (2*, 3, 3) and N is associated
with (X3~9,~)’ ·

Proof. First, we claim that if hN - 9N, then N is of type (2~3, -" ~3).
According to [CK] there are 4 imaginary cyclic number fields of degree 10
with class numbers equal to their genus class numbers. By Proposition I . ( I )
we cannot have a field N with hN = 9N such that N is of type (2*, 5, 5). By
the same argument if N is of type (2*, 7, 7), (2*, 9, 9), (4*, 3, 3) or (4*, 5, 5),
then gN . According to Proposition 1. ( 1 ) it follows that if hN = 9N,
then N is of type (2*, 3,’-’ ,3). Let us now consider with the fields of

type (2*, 3, 3). Let x be an odd quadratic character, two cubic

characters, N the field associated with (x, ~2)- Let Mi, M2, M3 and M4
be the subfields associated with and (X, ’P2),
respectively. The fact that hN implies that hMi = gM; for 1 ~ i ~ 4.
According to (Lou4) , there is only one N such that N = with

9Mi for 1 ~ i ~ 4. That is, N = MiM2M3M4 = MiA/2, where
Ml, M2, M3 and M4 are associated with (x3~9~(X3,X~:B:3~~9~ and
(X3?X~) respectively. We verify that this field has hN = 9N = 1. Since
there is only one field of type (2*, 3, 3) with class number equal to its genus
class number, there is no field of type (2*,3,3...3), of degree 2: 54 with
class number equal to its genus class number. D

Theorem 2. Let N be an imaginary abelian number field such that the
Galois group G is an elementary 2-group. Assume that 9N = hN . Then we
have
, , __ - , - o

Proof. See Theorem 1 in [M]. D

Proposition 3. (1) Let N be an imaginary bicyclic biquadratic number
field and let kl and k2 be two imaginary quadratic subfields. If hN =
gN, then hkl and hk2 are 1, 2 or 4.
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(2) There are exactly 219 bicyclic biquadratic number fields with class
numbers equal to their genus class numbers. These fields are listed in
Table III.

(3) There exist exactly 42 imaginary abelian number fields N of degree
&#x3E; 4 with class numbers equdl to their genus numbers such that N (2)
is of type (2*, 2*). These fields are listed in Table IV.

Proof. (1) Suppose that hN = gN and 8. Since hN = 9.¡-hkl hk2’
we must have 4, QN = 1, 8, hk2 = 1 and h~,+ = 1. By
[Corollary 1, M], there exist at most three rational primes ramified
in N. The fact that hN = 9N = 4 = ~ IT ep implies that there exist
exactly three ramified primes including 2 with e2 = 4. This leads a
contradiction. Since the fact that e2 = 4, hk2 = 1 and hN+ = 1 implies
k2 E and N+ E 
with p == 1 mod 4, there exist at most two ramified primes in N =

k2N+.
(2) There are 81 imaginary quadratic number fields with class numbers 1,

2 or 4(~51,2~ and [A]). Among these 81 fields there are 51 fields with
class numbers equal to their genus class numbers. In order to get all
bicyclic biquadratic number fields with class numbers equal to their
genus class numbers it is sufficient to examine the composita of two of
those 51 quadratic fields. Note that we do not assume the Generalized
Riemann Hypothesis.

(3) Let N be an imaginary abelian number fields of degree &#x3E; 4. Assume
that hN = gN and is of type (2*, 2*). Bearing in mind the
imaginary cyclic fields with class numbers equal to their genus class
numbers and Proposition 2 it remains to consider the fields N of type
(2*, 2*, 3) or (2*, 2*, 5).

i) Let Tl, T2 be two odd quadratic characters, cp a cubic characters, N
the field associated with (Tl, T2, p) . Let Ml and M2 be the imag-
inary sextic subfields associated with and (T2, W), respec-
tively. Let E be the imaginary bicyclic biquadratic subfield asso-
ciated with (Tl, T2), kl and k2 the imaginary quadratic subfields
associated with 71 and T2, respectively. Using [Lou4], we make a
list of (Ml, M2)’s such that hMl = gMl, hM2 = g,yl2 and hE = gE.
There are 40 pairs of (Ml, M2) satisfying hm, = gMl, h,yl2 = 9M2
and hE = 9E. For these 40 fields we determine using the fact

h- h-
that hN= and QN = QE. The class numbers of

WM1 WM2
real sextic number fields are known by [Mä]. There are 39 fields
N of type (2*, 2*, 3) with hN = gnr. (The remaining field is as-
sociated with X51, x7). This field has class number 3 and
genus class number one.)



354

ii) By the same method as i) we verify that there are three imaginary
abelian number fields N of type (2*, 2*, 5) with hN = gN.

D

Proposition 4. There are exactly 19 imaginary abelian number fields N
with class numbers equal to their genus class numbers such that the subfield
N (2) is type of (2*, 2*, 2*). There are exactly 17 fields of type (2*, 2*, 2*),
and two fields of type (2*, 2*, 2*, 3). These fields are listed in Table V.

Proof. Let N be an imaginary abelian number field N with class num-
ber equal to its genus class number such that the subfield N (2) is type of
(2*, 2*, 2*). According to [Lou4] and [CK], if p &#x3E; 11, then G(P) is trivial.
Let us begin with the fields of type (2*, 2*, 2*).

If N is of type (2*, 2*, 2*) and if hN = 9N, then hN = 1 or 2.

Let ~2, k3 and k4 be the four imaginary quadratic subfields of N. Since
hN = where hi = hz and wi is the number of roots ofN i= Wi

unity in ki for i =1, 2, 3 and 4, there are at least three imaginary quadratic
subfields ki with 4 among the four imaginary quadratic subfields
of N. It remains us to consider the composita klk2k3 of three imaginary
quadratic subfields ki with class numbers 1, 2 or 4, i = 1, 2 and 3. There
are 18 composita N = ki k2k3 satisfying the following:

i) hki =1, 2 or 4 for i =1, 2, 3.
ii) hki for i = 1,2,3.

iii) For the six imaginary bicyclic biquadratic subfields M of N we have
hM = 9M.

Computing the unit indices QN by [HY3] and hN+ by [Satz 5, K] for these
18 fields N, we verify that there are exactly 17 octic fields N with hN = gN.

Consider now the fields of type (2*, 2*, 2*, 3). Let 71,72,73 be three
odd quadratic characters, cp a cubic character, N the field associated with
(71,72,73, Let Ml, M2, M3 and M4 be the four imaginary sextic sub-
fields of N associated with (7i,~),(72~)?(73,~), and respec-

tively. Let E be the subfield associated with (Tl, T2, T3~. According to
[Lou4], there are only two fields N such that h~2 = gM2 for 1  i  4 and

hE = gE. For these two fields we compute hN and hN+ . The results are
summarized in Table V.

Finally, it is sufficient to notice that there is no field N of type
(2*, 2*, 2*, 5) with hN = gN. D

Proposition 5. (1) There are 15 imaginary abelian number fields of type
(4*, 2) with class numbers equal to their genus class numbers. These

fields are given in Table VIII
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(2) Let m be an odd integer with m &#x3E; 3. There is no imaginary abelian
number field of degree 8m with class number equal to its genus class
number such that the subfield N (2) is of type (4*, 2).

(3) There is no field of type (8*, 2) with class number equal to its genus
class number. There is no field of type (16*, 2) with class number
equal to its genus class number. Consequently, if N is an imaginary
abelian nurrzber field with hN = gN such that the subfield N (2) is of
type (2’"’~i, 2’"’’2) with ml &#x3E; m2 &#x3E; 1, then N is of type (4*, 2).

(4) There is no imaginary abelian number field of type (4*, 2, 2) with class
number equal to its genus class number.

(5) If N is an imaginary abelian number field with hN = gN, then the
2-rank of C(2) is less than or equal to 3. Moreover, if the 2-rank of
C(2) is equal to 3, , then G(2) = (2*, 2*, 2*) or (4*, 2*, 2*). -

Proof. (1) Let cp be an odd primitive character of order 4, X an even
primitive quadratic character, N the associated field with (rp, X). Let
Ml and M2 be two imaginary cyclic quartic subfields of N associated
with (cp) and (CPx), respectively. The real quadratic subfields of Mi
and M2 coincide. In order to obtain N with hN = gN it is sufficient to
consider the composita Ml M2 such that hMl = gMl and hM2 = 
There are 35 fields N such that N = MlM2, hMl = 9Ml and hM2 =

9M2. The Hasse unit indices Qnr are easily obtained from Sätze 15
and 22 of [H]. The relative class number hN can be expressed as

The class number hN+ can be computed following ~K~ . It remains 15
fields N such that hN = gN. Similarly we verify (3).

(2) Let N be an imaginary abelian number field of degree 8rrL, containing
a subfield of type (4*, 2). Suppose hN = gN. According to [CK],
we have m = 3. Let p, x and w be an odd character of order 4, an
even quadratic character and a cubic character, respectively. Assume
that N is associated with (p, X, w). Let Ml and M2 be the subfields
associated with (pw) and (CPxw), respectively. Using Table II in [CK],
we verify that there is no pair of (Ml, M2) such that hMl = gMl and
hM2 = 9M2 - O

(4) Let cp be an odd primitive character of order 4, Xl and x2 two even
primitive quadratic character, N the associated field with x2~.
Let Ml, M2, M3 and M4 be four imaginary cyclic quartic subfields of
N associated with (cp~, (WX1), (px2) and respectively. The
fields Mi,1  i  4, have the same real quadratic subfield. Suppose
that hN = gN . Then we have hMi = gM; , for 1  i  4,hMIM2 =

9M2M3’ hM2M4 =
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and hM3 M4 = We verify that there is no such quadruple
of(Mi,M2,M3,M4).

(5) By (3) and (4) it is sufhcient to verify that there is no field N of
type (4*, 4*, 2*) with hN - gN. Suppose that there is a field N of
type (4*, 4*, 2*) with hN 9N. Let cpl and p2 be two odd primitive
characters of order 4, X the odd quadratic character such that N is
associated to the group (~pl, ~p2, x) . Then we would have three fields
of type (4*, 4*) with class numbers equal to their genus class numbers,
i.e. the fields associated with (Wl, ~p2), ((Pl, and ~cp2, 
This contradicts Proposition 8. ( 1 ) below.

0

3.3. is of type (2’ni , 2m2 ) with 2 and m2 ·

Bearing in mind Proposition 5.(3) if hN = gN and N(2) is of type
(2’ni , 2m*) with m2 2:: 2, then ml = m2 = 2. We need only consider N
such that N~2~ is of type (4*, 2*), (8*, 2*), (16*, 2*) or (4*, 4*).

Proposition 6. There exist 39 imaginary abelian numbers fields N with
hN = gN such that the subfield N (2) is of type (4*, 2*): 36 of them are of
type (4*, 2*) and 3 of them are of type (4*, 2*, 3). These fields are listed in
Table VI.

Proof. According to [CK], if N is an imaginary abelian number field with
hN = gN such that the subfield N (2) is of type (4*, 2*), then [N : Q]  40.
Our first step is to determine all fields of type (4*, 2*). Let p be an odd
character of order 4, X an odd quadratic character, N the field associated
with ~~p, x) . Let M be the field associated with (p) and let ki and k2
be the two imaginary quadratic subfields associated with (X) and 
respectively. Using [Lou2] we make a list of N such that hM = gM and
hE = gE, where E is the field associated (p2, x . We use the formula

/.... ’B. 7-....

To determine Qnr we use the tables in ~H~, [YH1] and [YH2] for the fields
of conductors  200, and Satze 15 and 22 in [H] for the fields of conductor
&#x3E; 200. For example let us consider QN for the field N which is associated

with X 3). We have N+ = Q ~7 (5 + and N = N+ (H).
In order to determine Q N it is sufficient to know whether the prime ideal of
N lying above 7 is principal or not. Using the function IdealIsPrincipal of
KASH([KT]) we know that this prime ideal is principal. Hence we conclude
that QN = 2. On the other hand, the class number of real quartic fields
associated with (cpX) are known by [G]. Using the above results we can
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easily determine all fields of type (4*, 2*, 3) and verify that there is no field
of type (4*, 2*, 5) with class number equal to its genus class number. The
computational results are compiled in Table VI. D

Proposition 7. (1) Let N be an imaginary abedian numbers field with
hN = gnr. If the subfield N (2) is of type (8*, 2*), then N is of type
(8*, 2*). There exist three imaginary abelian number fields of type
(8*, 2*) with class numbers equal to their genus class numbers. These
fields are given in Table VII.

(2) There is no imaginary number field of type (16*, 2*) with class number
equal to its genus class number.

Proof. (1) According to [CK] we know that for an odd integer m &#x3E; 3
there is no imaginary cyclic number field of degree 8m with class
number equal to its genus class number. Let cp be an odd char-
acter of order 8, X an odd quadratic character, N the field asso-
ciated with (W,X). Let M, L, F, E, kl, and k2 be the subfields as-
sociated with (W), (W2X), (W2, X), (cp4, X), (X) and respectively.
By [Lou2], Propositions 3 and 6 we have three fields N such that
him = = 9L, and hE = 9E. These fields are listed in
Table VII. Using the formula

we obtain immediately The class numbers of real cyclic fields of
conductor  100 are known by [Ma]. The class number of the real
abelian number fields of conductor 160 in Table VII is equal to 2
according to Theorem 3 of [L].

(2) It is clear from the fact that there is only one imaginary cyclic num-
ber field of degree 16 whose class number is equal to its genus class
number ( ~Lou2~ ~ .

D

Proposition 8. (1) There are two imaginary abelian number fields of
type (4*, 4*) with class numbers equal to their genus class number.
These fields are given in Table IX.

(2) Let m be an odd integer with m &#x3E; 3. There is no imaginary abelian
number field of degree l6rrc with class number equal to its genus class
number such that the subfield N(2) is of type (4*, 4*).

Proof. (1) Let cpl and p2 be two odd quartic characters, N the field asso-
ciated with (Wl, W2). Let Ml, M2, M3 and M4 be the fields associated
with ((Pl), ((P2), and (cpicp2), respectively. We have only two
fields N such that hMz = gmi for 1  i  4, hJB11M3 = 9MIM3 and
hMzM4 = 9M2M4. These two fields have class number one([Y]).



358

(2) It follows immediately from Proposition 5. (2) .
D

3.4. N~2~ is of type (4*, 2*, 2*).

Proposition 9. (1) There are 7 imaginary abelian number fields of type
(4*, 2*, 2*) with class numbers equal to their genus class numbers.
These fields are given in Table X.

(2) Let m be an odd integer &#x3E; 3. There is no imaginary number field of
degree 16m with class number equal to its genus class number such
that the subfield N(2) is of type (4*, 2*, 2*).

Proof. (1) Let cp be an odd character of order 4, X, and x2 two odd
quadratic characters, N the field associated with Let

Ml, M2, Fl, F2, L and E be the imaginary subfields associated with
~~P~ ~ xl&#x3E; &#x3E; x2&#x3E; &#x3E; XlX2) and ~~2, Xl, X2), respectively.
Using [Lou2], Propositions 4 and 6 we verify that there are 7 fields
N with hm, = gmi &#x3E; hm2 = 9M2’ hFl = 9F2’ hL = 9L and
hE = gE. For these 7 fields we compute hN and hN+ . Note that

(2) The proof of (2) is similar to that of Proposition 5.(2).
0

To conclude, the proof of Theorem 1 is completed by Propositions 2-9.
All computations were carried out using PARI-GP[P] and KANT V4~KT~.
Acknowledgements. The authors wish to express their gratitude to
S. Louboutin and K. Yamamura for suggesting the problem and for many
stimulating conversations.

4. Tables

TABLE I. Cyclic number fields
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TABLE I continued.

TABLE II. (2*, 3, 3)
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TABLE III. (2*, 2*)
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TABLE IV.
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TABLE V.

TABLE VI.
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TABLE VI continued.

TABLE VI I. (8*, 2* )

TABLE VIII. (4*, 2)

TABLE IX. (4*, 4* )

TABLE X. (4*, 2*, 2*)
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