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RESUME. Titre francais : Sur les corps abéliens dont le nombre
de classes est égal au nombre de genres.

Nous savons qu’il n’existe qu'un nombre fini de corps abéliens
imaginaires pour lesquels le nombre de classes est égal au nombre
de genres. Ceux de ces corps qui sont cycliques et non quadra-
tiques ont été classés dans [Lou2,4] et dans [CK]. Dans cet arti-
cle, nous déterminons tous les corps abéliens non cycliques dont
le nombre de classes est égal au nombre de genres. Cela achéve
la classification des corps abéliens possédant une classe par genre,
sauf dans le cas des corps quadratiques imaginaires.

ABSTRACT. We know that there exist only finitely many imagi-
nary abelian number fields with class numbers equal to their genus
class numbers. Such non-quadratic cyclic number fields are com-
pletely determined in [Lou2,4] and [CK]. In this paper we de-
termine all non-cyclic abelian number fields with class numbers
equal to their genus class numbers, thus the one class in each
genus problem is solved, except for the imaginary quadratic num-
ber fields.

1. Introduction

For an abelian number field N the narrow genus field Gy of N is the
maximal abelian number field containing N such that the extension G /N
is unramified at all finite places. The degree [Gn : N] is called the genus
class number of N and is denoted by gn. The genus class number of N
is easy to determine, namely, gy = m Hp ep, where e, is the ramifica-
tion index of p in N. In particular, when N is imaginary, the genus field
of N is contained in the Hilbert class field of N, whence gy divides the
class number of N. In [Loul], Louboutin has proved that there exist only
finitely many imaginary abelian number fields with class numbers equal to
their genus class numbers. Imaginary non-quadratic cyclic number fields
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with class numbers equal to their genus numbers have been recently classi-
fied([Lou2, 4], [CK]). It is known that under a suitable generalized Riemann
Hypothesis, there are exactly 65 imaginary quadratic number fields with
class numbers equal to their genus numbers([We] and [Lou5]). These fields
are listed in Table I. The aim of this paper is to prove the following result:

Theorem 1. There are exactly 424 imaginary non-quadratic abelian num-
ber fields with class numbers equal to their genus class numbers:77 out of
them are cyclic and 347 are non-cyclic. Their degrees are less than or equal
to 24, their class numbers are 1, 2 or 4. The conductors of these fields are
less than or equal to 65689. These fields are listed in tables at the end of
this paper.

We note that in [M] under the assumption of the Generalized Riemann
Hypothesis, Miyada has determined all imaginary abelian number fields
N with class numbers equal to their genus class numbers such that the
Galois groups are elementary 2-groups. (There seems to be one misprint
in [M, Table 2]: the field K = Q (\/—_2, v/ —37) appears twice, i.e. for
gk = hg = 1 and for g = hx = 2. In fact, gk = hx = 2.) However,
we do not need any assumption for the proof of Theorem 1. This paper
is organized in the following way. Section 2 presents some well-known
facts on imaginary abelian number fields. In Section 3 we illustrate our
computations. Throughout this paper the following notation will be used.
For an imaginary abelian number field K, let K, fx, hx, wk, Gk, 9k,
hy, Qk be the maximal real subfield, the conductor, the class number, the
number of roots of unity in K, the genus field, the genus class number, the
relative class number and the Hasse unit index of K, respectively. For an
odd prime p let x, be an odd Dirichlet character of conductor p, of degree
p— 1. When p > 2, let 9» be an even primitive Dirichlet character of
conductor p?, of order p?~! with %’5 = 9po-1. For the prime p = 2, let x4
be the odd Dirichlet quadratic character of conductor 4. When p > 3, let
t)9e be an even primitive Dirichlet character of conductor 2°, of order 2°—2

with ¢2, = gp-1.

2. Preliminaries

In this section we review some well-known facts concerning imaginary
abelian number fields.

Proposition 1. (1) Let F be an abelian number field. If hp = g, then
har = gur for any subfield M of F'.

(2) Let F be an imaginary abelian number field, xr the group of primitive

Dirichlet characters associated to F' and x5 the subset of x € xp such

that x(—1) = —1. For a x € xr let us denote the conductor of x by
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fx- We have

1
hy = Qrwr H (—§Bl,x) ,
XEXF

where By, = 71; Etfl’_‘___ll x(a)a.

(3) If F is an imaginary cyclic number field, then Qr = 1. Let F C K
be the two CM-fields. If [K : F| is odd, then Qx = QF.

(4) Let F' be an imaginary cyclic number field of degree 2m. If hr = gF,
then 1 <m < 10.

Proof. (1) See Lemma 1 in [M]. (2) See Theorem 4.17 in [W]. (3) For the
first statement see Satz 24 in [H]. For the second statement see Lemma 2
in [HY1]. (4) See [Lou2 and 4] and [CK]. O

3. Proof of Theorem 1

Let N be an imaginary abelian number field with Galois group G. When
G = [1Z/p}*7Z, we say N is of type (p{*,---,p;*,---). In addition we
put * when the corresponding subfield is imaginary. For example, if N is
of type (4%,2), then N is the compositum of an imaginary cyclic quartic
field M; and a real quadratic field Ms with M; N My = Q. Then the
maximal real subfield N7 is of type (2,2). If N is of type (4%,2*), then N is
the compositum of an imaginary cyclic quartic field M; and an imaginary
quadratic field M. In this case, Nt is of type (4). A field N of type
(2%,2,2) can be either of type (2*,2*%,2) or (2*%,2*,2%). However we prefer
to say that N is of type (2*,2*,2*) with as many as possible * for a technical
reason to be seen later.

Let N be an imaginary abelian number field of type (2"‘1‘, cee 2™ g,

- ,ny) with m; > -+ > m,. We may assume that n; < 2™ for n; which
is a 2-power. In order to describe N we give the associated group of Dirich-
let characters (r1,---,7s,91, - ,¢r). Here 1,--+,7s are odd primitive
Dirichlet characters of order 2™ for 1 < < s and ¢1,--- , ¢, are the even
primitive Dirichlet characters of order n; for 1 < j < r. For each prime p
let G® be the p-Sylow subgroup of G. Let N be the maximal subfield of
N of 2-power degree. The scheme of our proof of Theorem 1 is as follows.
In 3.1 we determine all imaginary abelian number fields N with hy = gy
such that G is an elementary 2-group. According to Theorem 2 below,
if G is an elementary 2-group, then the 2-rank of G is less than or
equal to 3. In 3.2 we determine all imaginary abelian number fields N with
hxy = gn such that N is of type (2’";, 2™2) with my > mg > 1. Moreover
we prove that if N is an imaginary abelian number field with Ay = gn,
then 2-rank of G2 is less than or equal to 3. If it is equal to 3, then G2 is
either (2%,2* 2*) or (4*,2*,2*). In 3.3 we determine all imaginary abelian
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number fields N with hy = gn such that N® is of type (2™,2™:) with
my > 2 and my > mg. Finally it remains to determine all fields N with
hy = gn such that N@ = (4% 2* 2*). These fields are treated in 3.4. Our
determinations rely on the computations of the relative class numbers hjy
of N. The class numbers hy+ of Nt which we need are known in [G], [L],
[Ma] and [M4]. In the remaining part of this paper we say briefly “character
of order m” instead of “primitive Dirichlet character of order m”.

3.1. N@ is of type (2*,---,2%).

Proposition 2. Let N be an imaginary abelian number field, G the Galois
group of N/Q. Assume that G is not cyclic and that the 2-Sylow subgroup
of G is cyclic. If hy = gn, then N is of type (2*,3,3) and N is associated
with (x3, %9, X%)-

Proof. First, we claim that if hy = g, then N is of type (2%,3,---,3).
According to [CK] there are 4 imaginary cyclic number fields of degree 10
with class numbers equal to their genus class numbers. By Proposition 1.(1)
we cannot have a field N with hy = gn such that N is of type (2%,5,5). By
the same argument if N is of type (2%,7,7), (2%,9,9), (4%, 3, 3) or (4%,5,5),
then hy # gn. According to Proposition 1.(1) it follows that if hy = gn,
then N is of type (2*,3,---,3). Let us now consider with the fields of
type (2%,3,3). Let x be an odd quadratic character, ;1,92 two cubic
characters, N the field associated with (x, 1, p2). Let My, Ma, M3 and M,
be the subfields associated with (x, 1), (X, ¥192), (X, ¥1¥3), and (x, @2),
respectively. The fact that hy = gy implies that har, = gar, for 1 <i < 4.
According to [Loud], there is only one N such that N = Mj; MyM3M, with
hy, = gu, for 1 < ¢ < 4. That is, N = MiMaM3My = MM, where
My, My, M3 and M; are associated with (X3, %9), (X3, X2), (X3, X3%9), and
(x3,X2) respectively. We verify that this field has Ay = gy = 1. Since
there is only one field of type (2%, 3,3) with class number equal to its genus
class number, there is no field of type (2*,3,3---3), of degree > 54 with
class number equal to its genus class number. O

Theorem 2. Let N be an imaginary abelian number field such that the
Galois group G is an elementary 2-group. Assume that gy = hy. Then we
have

(1) [N:Q] < 2%

(2) If G=(2,2), then hy =gy =1,2 or 4.

(3) If G=(2,2,2), then hy =gn =1 or 2.

Proof. See Theorem 1 in [M]. a

Proposition 3. (1) Let N be an imaginary bicyclic biquadratic number
field and let k1 and k2 be two imaginary quadratic subfields. If hy =
gn,then hyg, and hy, are 1, 2 or 4.
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There are exactly 219 bicyclic biquadratic number fields with class
numbers equal to their genus class numbers. These fields are listed in
Table II1.

There exist exactly 42 imaginary abelian number fields N of degree
> 4 with class numbers equal to their genus numbers such that N2
is of type (2*,2*). These fields are listed in Table IV.

Proof. (1) Suppose that hy = gy and hg, > 8. Since hy = %’lhklhkz,

()

)

we must have hy =4, Qv =1, hg, = 8, hg, =1 and hy+ = 1. By
[Corollary 1, M], there exist at most three rational primes ramified
in N. The fact that hy =gy =4 = %]’[ ep implies that there exist
exactly three ramified primes including 2 with es = 4. This leads a
contradiction. Since the fact that ez = 4, hg, = 1 and hy, = 1 implies
k € {Q(v=T),Q(v=3)} and Ny € {Q(v2),Q(v5),Q(v2p))
with p = 1 mod 4, there exist at most two ramified primes in N =
koN.

There are 81 imaginary quadratic number fields with class numbers 1,
2 or 4([S1,2] and [A]). Among these 81 fields there are 51 fields with
class numbers equal to their genus class numbers. In order to get all
bicyclic biquadratic number fields with class numbers equal to their
genus class numbers it is sufficient to examine the composita of two of
those 51 quadratic fields. Note that we do not assume the Generalized
Riemann Hypothesis.

Let N be an imaginary abelian number fields of degree > 4. Assume
that hy = gy and N® is of type (2*,2*). Bearing in mind the
imaginary cyclic fields with class numbers equal to their genus class
numbers and Proposition 2 it remains to consider the fields N of type
(2%,2%,3) or (2%,2%,5).

i) Let 11, 72 be two odd quadratic characters, ¢ a cubic characters, N
the field associated with (71, 72, ). Let My and M; be the imag-
inary sextic subfields associated with (71, ) and (72, ¢), respec-
tively. Let E be the imaginary bicyclic biquadratic subfield asso-
ciated with (7, 72), k1 and ko the imaginary quadratic subfields
associated with 71 and 72, respectively. Using [Loud], we make a
list of (M7, M2)'s such that har, = gur,, b, = g, and hg = gg.
There are 40 pairs of (My, M) satisfying har, = gy, hat, = g,
and hg = gg. For these 40 fields we determine hy; using the fact
that hyy = QN“’N;%%Z and Qn = Qg. The class numbers of
real sextic number fields are known by [Mé&]. There are 39 fields
N of type (2*,2*,3) with hy = gn. (The remaining field is as-
sociated with (x4%s,x3;,Xx?). This field has class number 3 and
genus class number one.)
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ii) By the same method as i) we verify that there are three imaginary
abelian number fields N of type (2*,2*,5) with Ay = gn.
O

Proposition 4. There are ezactly 19 imaginary abelian number fields N
with class numbers equal to their genus class numbers such that the subfield
N®@ s type of (2*%,2%,2*). There are ezactly 17 fields of type (2*,2*,2%),
and two fields of type (2%,2*%,2*,3). These fields are listed in Table V.

Proof. Let N be an imaginary abelian number field N with class num-
ber equal to its genus class number such that the subfield N is type of
(2*,2*,2*). According to [Loud] and [CK], if p > 11, then G®) is trivial.
Let us begin with the fields of type (2*,2%,2*).

If N is of type (2%,2*,2*) and if hy = gn, then hy = gy = 1 or 2.
Let k1, k2, k3 and k4 be the four imaginary quadratic subfields of N. Since
hy = QnwN H;-1=1 Z,’ where h; = hg, and w; is the number of roots of
unity in k; for ¢ = 1,2, 3 and 4, there are at least three imaginary quadratic
subfields k; with h;, < 4 among the four imaginary quadratic subfields
of N. It remains us to consider the composita kjk2k3 of three imaginary
quadratic subfields k; with class numbers 1, 2 or 4, i = 1,2 and 3. There
are 18 composita N = k;koks satisfying the following:

i) hy; =1,20r 4 fori=1,2,3.
ii) hg, = gk, for i =1,2,3.
iii) For the six imaginary bicyclic biquadratic subfields M of N we have
hay = gum.
Computing the unit indices Qn by [HY3] and hpy+ by [Satz 5, K] for these
18 fields N, we verify that there are exactly 17 octic fields N with hxy = gn-
Consider now the fields of type (2*,2*,2* 3). Let 7,72,73 be three
odd quadratic characters, ¢ a cubic character, N the field associated with
(11,72, 73,9). Let My, M2, M3 and My be the four imaginary sextic sub-
fields of N associated with (71, ¢), (2, ¥), (73, ¥), and (717273, p), respec-
tively. Let E be the subfield associated with (71, 72,73). According to
[Loud], there are only two fields N such that ks, = gpr, for 1 < i < 4 and
hg = gg. For these two fields we compute hy, and hy+. The results are
summarized in Table V.
Finally, it is sufficient to notice that there is no field N of type
(2*,2*,2*,5) with Ay = gn. O

3.2. N js of type (2™,2™2) with m; > mgy > 1.

Proposition 5. (1) There are 15 imaginary abelian number fields of type
(4*,2) with class numbers equal to their genus class numbers. These
fields are given in Table VIIT
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Let m be an odd integer with m > 3. There is no imaginary abelian
number field of degree 8m with class number equal to its genus class
number such that the subfield N® is of type (4*,2).

There is no field of type (8*,2) with class number equal to its genus
class number. There is no field of type (16*,2) with class number
equal to its genus class number. Consequently, if N is an imaginary
abelian number field with hy = gn such that the subfield N @) s of
type (2™1,2™2) with my > mg > 1, then N is of type (4*,2).

There is no imaginary abelian number field of type (4*,2,2) with class
number equal to its genus class number.

If N is an imaginary abelian number field with hy = gn, then the
2-rank of G@ is less than or equal to 3. Moreover, if the 2-rank of
G@ is equal to 3, then G® = (2*,2%,2%) or (4%,2%,2%).

Proof. (1) Let ¢ be an odd primitive character of order 4, x an even

(2)

primitive quadratic character, N the associated field with (p, x). Let
M; and M; be two imaginary cyclic quartic subfields of IV associated
with (p) and (px), respectively. The real quadratic subfields of M,
and M, coincide. In order to obtain N with hxy = gy it is sufficient to
consider the composita M; My such that by, = gar, and har, = gu,-
There are 35 fields N such that N = M;Ma, hy, = gu, and by, =
gm,- The Hasse unit indices Qn are easily obtained from Sétze 15
and 22 of [H]. The relative class number hy can be expressed as
— WN - -

hN = QthMthz
The class number hy, can be computed following [K]. It remains 15
fields N such that hy = gn. Similarly we verify (3).
Let N be an imaginary abelian number field of degree 8m, containing
a subfield of type (4*,2). Suppose hy = gn. According to [CK],
we have m = 3. Let ¢, x and w be an odd character of order 4, an
even quadratic character and a cubic character, respectively. Assume
that N is associated with (¢, x,w). Let M; and Ms be the subfields
associated with (pw) and (pxw), respectively. Using Table II in [CK],
we verify that there is no pair of (M, Mz) such that has, = ga, and
by, = gu,-
Let ¢ be an odd primitive character of order 4, x; and x2 two even
primitive quadratic character, N the associated field with {p, x1, x2)-
Let M, My, M3 and My be four imaginary cyclic quartic subfields of
N associated with (p), (¢x1), (¢x2) and (px1x2), respectively. The
fields M;,1 < i < 4, have the same real quadratic subfield. Suppose
that hy = gn. Then we have hp;, = gn,, for 1 < @ < 4, hprng, =
IMy My, hary Mz = 9a Mgy han vy = 9 Mys o Ms = g Mgy havomy =
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IMz M, and P ar, = g, - We verify that there is no such quadruple
of (My, Ma, M3, My).

(5) By (3) and (4) it is sufficient to verify that there is no field N of
type (4*,4*,2*) with hy = gy. Suppose that there is a field N of
type (4*,4*,2*) with hy = gn. Let @1 and @2 be two odd primitive
characters of order 4, x the odd quadratic character such that N is
associated to the group (1,92, x). Then we would have three fields
of type (4*,4*) with class numbers equal to their genus class numbers,
i.e. the fields associated with (1, p2), (p1, P192x) and (2, P1P2X)-
This contradicts Proposition 8.(1) below.

O

3.3. N@ is of type (2™i,2™%) with m; > 2 and m; > mo.

Bearing in mind Proposition 5.(3) if hy = gy and N® is of type
(2™1,2™m2) with mg > 2, then m; = my = 2. We need only consider N
such that N is of type (4%,2%), (8*,2%), (16*,2*) or (4*,4%).

Proposition 6. There exist 39 imaginary abelian number fields N with
hn = gn such that the subfield N?) is of type (4*,2%): 86 of them are of
type (4%,2%) and 3 of them are of type (4*,2*,3). These fields are listed in
Table VI.

Proof. According to [CK], if N is an imaginary abelian number field with
hn = gn such that the subfield N? is of type (4*,2*), then [N : Q] < 40.
Our first step is to determine all fields of type (4*,2*). Let ¢ be an odd
character of order 4, x an odd quadratic character, NV the field associated
with (p,x). Let M be the field associated with (p) and let k1 and ko
be the two imaginary quadratic subfields associated with (x) and (p?x),
respectively. Using [Lou2] we make a list of N such that hps = gar and
hg = gr, where E is the field associated (p?,x). We use the formula
Poag Tty Py

by =Qnwn [] (*%BLX) = Qnwn 2

_ WM Wk Wk,
XEX N

To determine Qn we use the tables in [H], [YH1] and [YH2] for the fields
of conductors < 200, and Sétze 15 and 22 in [H] for the fields of conductor
> 200. For example let us consider @y for the field N which is associated

with (x5%s, x3). We have N, = Q( 7(5+ \/5)) and N = N, (vV-7).

In order to determine @y it is sufficient to know whether the prime ideal of
N lying above 7 is principal or not. Using the function IdeallsPrincipal of
KASH([KT]) we know that this prime ideal is principal. Hence we conclude
that @Qn = 2. On the other hand, the class number of real quartic fields
associated with (px) are known by [G]. Using the above results we can
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easily determine all fields of type (4*,2*,3) and verify that there is no field
of type (4%,2*,5) with class number equal to its genus class number. The
computational results are compiled in Table VI. O

Proposition 7. (1) Let N be an imaginary abelian number field with
hy = gn. If the subfield N is of type (8*,2*), then N is of type
(8*,2*). There ezist three imaginary abelian number fields of type
(8*,2*) with class numbers equal to their genus class numbers. These
fields are given in Table VII.

(2) There is no imaginary number field of type (16*,2*) with class number
equal to its genus class number.

Proof. (1) According to [CK] we know that for an odd integer m > 3
there is no imaginary cyclic number field of degree 8m with class
number equal to its genus class number. Let ¢ be an odd char-
acter of order 8, x an odd quadratic character, N the field asso-
ciated with (p,x). Let M,L,F,E ki, and kg be the subfields as-
sociated with (), (p?x), (¢% x), (¥*,x), (x) and (p*x), respectively.
By [Lou2], Propositions 3 and 6 we have three fields N such that
hy = gum,hr = gr,hr = gr and hg = gg. These fields are listed in
Table VII. Using the formula

- WN -y
e = Qi i,
we obtain immediately hy. The class numbers of real cyclic fields of
conductor < 100 are known by [Ma]. The class number of the real
abelian number fields of conductor 160 in Table VII is equal to 2
according to Theorem 3 of [L].

(2) It is clear from the fact that there is only one imaginary cyclic num-
ber field of degree 16 whose class number is equal to its genus class
number([Lou2]).

a

Proposition 8. (1) There are two imaginary abelian number fields of
type (4*,4*) with class numbers equal to their genus class number.
These fields are given in Table IX.

(2) Let m be an odd integer with m > 3. There is no imaginary abelian
number field of degree 16m with class number equal to its genus class
number such that the subfield N®) is of type (4*,4*).

Proof. (1) Let ¢; and ¢ be two odd quartic characters, N the field asso-
ciated with (@1, p2). Let My, My, M3 and My be the fields associated
with (1), (p2), (p193) and (p3ps), tespectively. We have only two
fields N such that ha, = g, for 1 < i < 4, haym, = gy m; and
hat,m, = gr,m,- These two fields have class number one([Y]).
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(2) It follows immediately from Proposition 5.(2).
O

3.4. N is of type (4%,2%,2%).

Proposition 9. (1) There are 7 imaginary abelian number fields of type
(4*,2*, 2*) with class numbers equal to their genus class numbers.
These fields are given in Table X.

(2) Let m be an odd integer > 3. There is no imaginary number field of
degree 16m with class number equal to its genus class number such
that the subfield N2 is of type (4*%,2*,2*).

Proof. (1) Let ¢ be an odd character of order 4, x; and x2 two odd
quadratic characters, N the field associated with (g, x1,x2). Let
My, My, Fy, F5, L and E be the imaginary subfields associated with

(), (pxax2)s (@ x1)s {95 X2), (¥, x1x2) and (2, x1, X2), Tespectively.
Using [Lou2], Propositions 4 and 6 we verify that there are 7 fields

N with hMl = gM, th = gMz,hFl = gF17hF2 = gF27hL = JL and
hg = gg. For these 7 fields we compute hy and hy+. Note that

QN NhX/Il h'lT/Iz LI’E
Qe WM WM, WE
(2) The proof of (2) is similar to that of Proposition 5.(2).

a

To conclude, the proof of Theorem 1 is completed by Propositions 2-9.
All computations were carried out using PARI-GP[P] and KANT V4[KT].
Acknowledgements. The authors wish to express their gratitude to
S. Louboutin and K. Yamamura for suggesting the problem and for many
stimulating conversations.

4. Tables

TABLE 1. Cyclic number fields

x5(2) = €24 37(3) = 2™/6 4hg(2) = e2™/3, x13(2) = e2"/12
x17(3) = €2™/16 3 19(2) = €2™/18 x 51 (3) = 2™/30

Type | hn = gn fn
2* 1 3,4,7, 8,11, 19, 43, 67, 163

2 15, 20, 24, 35, 40, 51, 52, 88, 91, 115, 123, 148, 187, 232
235, 267, 403, 427

4 84, 120, 132, 168, 195, 228, 280, 312, 340, 372, 408, 435, 483
520, 532, 555, 595, 627, 708, 715, 760, 795, 1012, 1435

8 420, 660, 840, 1092, 1155, 1320, 1380, 1428, 1540, 1848, 1995
3003, 3315

16 5460
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TABLE I continued.

Type N fn | hy [hn+ |gn | Type N fN |hy | hn+ | 9N

1 X5 511 1 |1][@53) x3x2 7111 1 [1

X%s 1311 1 1 X3, Yo 911 1 1

X416 |16 1| 1 |1 xooxSe 191 ] 1 |1

X3 |29]1] 1|1 xax: (21|11 |1

X37 37|11 |1 xx2 |28(1] 1 |1

X5s 40121 |2 xXex3x2 3512 1 |2

X3¥16 481211 |2 X4, Y9 36|11 (1

X33 5311 1 |1 Xt 1391 1|1

xsxaxs |60 4| 1 |4 x32.xas 14311 |1

X831 61|11 |1 xaxZ, e |45 2] 1 |2

xsxis [65] 2| 1 |2 xaxSs,xts | 5212 1 |2

x3s |es| 2| 1|2 xa¥s,x2 56| 1] 1 |1

x3xavie |80 2| 1 |2 x5, X2%e |63 1] 3 |3

xstie |80 2| 2 |4 xs,Xe |63 1| 3 |3

xsxiz |85 2| 1 |2 x3, %o 63| 1] 1 |1

xsxi2 |82 2 |4 ixdpe |63 1| 3 |3

Ysxis [104] 2 | 1 |2 X%, x87 |67 1| 1 |1

X3X5X:'; 105| 4 1 4 X3¥s, Yo 21 2 1 2

¥oxtz [119] 2| 1 |2 X4, X9 76 | 1 1 |1

X3xaPsxs |120] 4 | 1 | 4 X31, X2 111 |1

xaxsXxy [140( 4 | 1 | 4 xaxaxs,x2 |84 4| 1 |4

x3xsXiz (195 4 | 2 |8 xhxis (911 1 |1

xax8xiz |255) 4| 1 |4 X3, Xxixis |91 1] 3 |3

@3) adeoxis [B]1] 1 |1 Xix3a, X5x1s| 91| 2| 3 |6

xs; X5 [35]|1] 1 |1 XX3sxixis| 91| 2| 3 |6

X3nxas |37 1] 1 |1 3, xa? 93| 1| 1 |1

xs,%9 |45 1] 1 |1 xa¥s, x4z (104 1] 1 |1

xé,xe (611 1 |1 xsx3, x5 [105] 2| 1 |2

X33, X3x13| 91| 1| 3 |3 x3,ox3s |117| 1| 3 |3

@D x&Zx8 (4311 |1 x3, X35 |120] 1] 1 |1

s |49 1] 1 |1 3xix8 [133] 1| 3 |3

16* X17 7]1] 11 xio,Woxi2 171/ 1| 3 |3

2%,9)| x3,v2r (27 1 1 |1 x3hxoay (2171 1| 3 |3

Xoox3 (191 1 |1 oo, x53x% [247] 1] 3 | 3

(4%,5)| xs5,%25 25| 1 1 1 8" X432 32 (1 1 1

@5 qoxn |11 ] 1 |1 X1 4111 |1

xs, X [33] 1] 1 |1 X3Xi7 5112 1 |2

xo,x3h (4411 |1 XsXi7 85|21 2 |4
szgﬂl)zs 7511 2 2

TABLE II. (2%, 3,3)
N N* 1 fn | Qn [ Ay | An+ | 9N
X3’X¥a¢9 X§’w9 63 1 1 1 1
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TaBLE III. (2%,2%)

hy=gnv=1
frs Srg
3 |4, 7,8, 11, 15, 19, 24, 43, 51, 67, 123, 163, 267
1 7,8, 11, 19, 20, 43, 52, 67, 148, 163
7 8, 11, 19, 35, 43, 91, 163, 427
) 11, 19, 40, 43, 67, 232
11 19, 67, 88, 163, 187
19 67, 163
43 67, 163
67 163
hy =gn =2
fkl sz
3 | 20, 35, 40, 84, 88, 115, 132, 168, 187, 228, 232, 235, 372, 483, 627, 708
4 15, 24, 35, 40, 84, 88, 91, 115, 132, 228, 232, 372, 403, 532, 708, 1012
7 15, 20, 40, 51, 52, 84, 115, 123, 168, 187, 235, 267, 403, 483, 532
8 15, 20, 24, 35, 52, 88, 91, 115, 148, 168, 235, 403, 427
11 | 24, 51, 52, 91, 123, 132, 232, 403, 427, 627, 1012
15 | 20, 35, 40, 43, 67, 115, 163, 235
19 | 24, 52, 88, 91, 123, 148, 228, 232, 403, 532, 627
20 | 35, 40, 43, 67, 115, 163, 235
24 | 43, 67, 88, 163
35 | 40, 43, 67, 115, 163, 235
40 | 43, 67, 115, 163, 235
43 | 88, 115, 148, 232, 235, 267, 427
51 | 163, 187
52 | 67, 91, 163, 403
67 | 88, 123, 235, 403
88 | 163
91 | 163, 403
115 | 163, 235
148 | 163
163 | 187, 232, 235, 267, 403
hy =gn =4
fk1 sz
4 | 120, 168, 280, 312, 760

8 | 84, 120, 280, 312, 372,532, 760

20 | 88, 120, 280, 760

24 | 52, 84, 132, 148, 168, 228, 372, 708
40 | 88, 120, 280, 760

52 | 312

88 | 132, 148, 1012
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TABLE IV.
(2*, 2%, 3)
el T2 @ NT SN | by, | hag, | @n [ Ay | hn+ | g | mb.
p% X3 X7 X3X> X7 21 | 1 1 [ 2 [1 |1 [1]1
X4 X7 X4X7) X7 2 | 1 1 2 1 1 T | 1] 2
XEX7 % X5, X7 35 [ 1 2 1|1 1 |1 3
Xas X7 X4X3¥s, X5 | 56 | 1 1 2 | 1 1 1| 4
X11 X7 X7X11, X7 77 | 1 1 2 | 1 1 1] 5
X3X4X7 | X7 X3X4, X+ 84 | 1 4 1| 2 1 | 2] 6
X3 X2 X7 X3Xax7, X7 | 105 1 2 1|1 2 | 2| 7
X3 X4 X7 X3X4, X7 84 | 1 1 2 | 1 1 | 1] 8
X5X7 X7 XaXaxt, X7 | 105 1 2 1|1 2 [ 2] 9
Xas % x3X4¥s, X5 | 168 1 1 2 | 1 1 | 110
X1 X7 XaXa1, X7 | 231 1 1 2 1 1 1 | 1|11
X3X4X7 | X7 X4X1s X7 84 | 1 1 1] 2 T |2 |12
X3X5 % X5, X7 105 | 1 2 1 [ 1 1 1|13
X4 X5X7 X7 XaX5x7, X7 | 140 | 1 2 1 |1 2 [2]14
Xa¥s X7 s, X7 56 | 1 1 1|1 1 |1 |15
X11 % XaXinX7 | 308] 1 1 2 |1 1 116
X3X4X7 | X7 X3X7, X7 84 | 1 4 1|2 1 | 2|17
X3X5 X7 X3xaXs, x7 | 420 1 2 1 1 2 | 2118
X5X3 | xas X7 | xa¥sxsx7,x7 | 280 | 2 1 1 1] 2 | 219
X3X5 X7 X3X7s X7 105 | 2 2 1 | 2 1 | 2|20
xas | XaxaXs | X3 x3xavs,xs | 168 1 4 1] 2| 2 | 4]2t
X3X3 X5 | xaxa¥sxs,x7 | 840 [ 1 2 T |1 2 | 2 |22
X3 X4 o X3X4, Yo 36 1 1 2 1 1 1] 23
X3X35 g X5, %9 5 | 1 2 1| 1 1 1| 24
X7 ) X3X7, %o 63 | 1 1 2 | 1 1 |1 ]2
X3Ys P9 s, o 72 1 2 1 1 1 1 |26
X4 X3X4 Yo xaXxaxz, Yo | 180 1 2 1| 1] 2 | 227
X7 Py XaX7, Y9 252 | 1 1 2 | 1 1 1| 28
X318 g X3X4¥s, Yo | 72 1 2 2 2 1 2 | 29
X3X5 P% o X3Xexs, 9 | 315 | 2 1 1| 1 2 | 2 | 30
X3 X7 X13 x3X7,xis | 273] 1 1 2 [ 1 1 |1 |31
X4s Xiz | xaxa¥s,xiz [312] 1 1 2 | 1 1 1| 32
xax3s | X3 Xia | XaX#Xis,Xis | 364 | 2 1 1|1 2 | 233
Xats X13 PsX3s, X13 | 208 | 2 1 1 [ 1 2 | 2 | 34
X7 xa¥s | Xis | xa¥sxi,xis | 728 [ 1 1| 2 |1 1 | 1]35
X4 X19 X19 X4X19, X9 76 1 1 2 1 1 1| 36
X3 X43 X43 X3X43,x43 | 129 [ 1 1 2 |1 1 | 1|37
X3 X7 X7 | xaxd,x7e | 63 | 1 1 2 1| 3 |3 ]38
% x7X33 | xaxis | xisxaxis | 91 [ 1 2 1|1 3 | 3 |39
X7(3) — e2m/6,X13(2) — e2m/12
(2*, 2*%.5)

N NT v |Qn | hy | An+ | 9N

X3, Xa1, X1 | xsXanxn | 33 [ 2 [ 1 1 1

X3, X4, X1 | Xaxax1 | 44 | 2 | 1 1 1

X4, X31, X1 | Xaxin,xn [132] 2 | 1 1 |1
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TABLE V.
(2*, 2%, 2*)
hN=9N (fkl,ka’fk3)
(3,4,7),(3,4,8), (3,4,11), (3,4, 15), (3,4, 19), (3,7,8), (3,7, 15)
1 (3,8,15),(3,11,19), (3,11, 24), (3,11, 51), (4, 7,19), (4, 7, 20),
(4,7,52),(4,8,11), (4,8, 20), (7,8, 35)
(2%,2*,2%,3)
N — ; NT . IN | har | P | Py | Pan, | QN [ Ay | At | gn
Xs,%(4,X7,2X72 X7,2X3>2(47X3%(7 84 1 1 1 4 2 1 1 1
X3, X7 X3X5: X7 | X7 X5,Xx3X7 | 105 | 1 1 2 2 2 1 1 1
TABLE VI.
(4,2%)

® X N7 SN | hyr | hey | Piy | Qn [ Ry [ Ay+ | gn | Db,

X5 X3 X3X5 15 1 1 2 2 1 1 1 1

X4 X4X5 20 | 1 [T | 2 2 |1 1 1| 2

p%] X5X7 35 1 1 2 2 1 1 1 3

X4s X4VsXs 40 1 1 2 2 1 1 1 4

X1i3 X4 X4Xi3 52 1 1 2 2 1 1 115

b Xox3s 91 | 1 | 1 | 2] 2 |1 1 1] 6

X4¥16 X3 X3X4¥16 48 1 1 2 2 1 1 1 7

X4 P16 16 | 1 | 1 1 1 | 1 1 1] 8

X31 | Xxa¥exa: | 176 | 1 | 1 | 2 | 2 | 1 1 1] 9

X4X3 X516 80 | 1| 2 | 2 1 1 2 2 | 10

X7 X4 X4X37 148 | 1 1 2 2 1 1 1 | 11

X518 X4 Xa8X5 40 2 1 2 2 2 1 2 | 12

Xa¥s X4 X5 0 [ 212212 1 2 | 13

X9 Xa¥s | Xxa¥sxse | 232 | 1 | 1 | 2 | 2 | 1 1 1| 14

X3X4X5 X3 X4X5 60 4 1 2 1 2 1 2 15

X4 X3X5 60 | 4 | 1 | 2 1] 2 1 2 [ 16

Xa¥s |  X3Xs5¥s 120 | 4 1 2 1 2 2 4 |17

xa¥16X5 | Xa X516 80 | 2 | 1 | 1 1 [ 1 2 [ 2 |18

X4 X3 P16 80 | 2 | 2 | 2 1 | 2 1 2 [ 19

X5¥16 X4 X416 X5 80 2 1 2 2 2 2 4 1 20

Xa¥s | xatie6Xxs 80 2 1 2 2 2 2 4 | 21

X3¥16 X3 Y6 48 | 2 | 1 2 1 [ 1 1 1 | 22

X4 X3X4VY16 43 2 1 1 2 2 1 2 | 23

a1 | xaxai¥e | 528 | 2 | 1 | 2 1 | 1 2 [ 2|24

XaXz | xaxaVexe | 240 | 2 | 2 | 2 | L | 2] 2 [ 425

X3xsX? | xs X5X7 105 4 | 1|21 ]2 112126

X7 X3X5 105 | 4 | 1 2 1| 2 1 2 | 27

X7X17 X3 | xaxexir | 37| 2 | 1] 2 1 1] 2 228

X1 | xXaxar |[1309 2 [ 1T | 2 1 | 1 2 [ 2 |29

PsXi3 xa | xa¥sxss | 104 | 2 | 1 | 2] 221 1 [ 2130

X3X4¥sXxs | X3 X4¥sXs5 120 | 4 1 2 1 2 1 2 | 31

X4 X3X5Ys8 120 | 4 1 2 1 2 2 4 |32

Xats X3X5 120 | 4 | 1 2 1| 2 1 2 | 33

X4X5X5 X4 X5X7 140 | 4 | 1 | 2 1| 2 1 [ 2|34

X7 X4 X5 140 | 4 | 1 | 2 1] 2 1 2 | 35

Xa¥s | xsxy¥s | 280 | 4 | 1 2 1| 2 2 | 4] 36
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TABLE VI continued.

(4*,2%,3)
N N* fN QN h;, hN+ gnN
X5, X7 X7 | xsx X7 | 35 | 2 | 1 1 1
X3, X5,%9 | xaxs,%e [ 45| 2 | 1 1 1
X3, X5, X7 | X3X5,X7 | 105 | 2 1 1 1
TABLE VII. (8% 2%)
N N [ fn [hy[hy [he [Qn [ hy [ hu+ [ on
X4¥32, X4 P32 32 (1 1]1 1 1 1 1
Xa¥a2,X3 | X3xatsz | 96 | 1 2|1 2 1 1 1
X432, XaX2 | Xxewsz |160| 1 | 2 | 2 | 1 | 1 2 | 2
TABLE VIII. (4%,2)
4 X N* fN h;ll _;{2 QN h‘I_V hN+ gN nb.
X5 s X5, V8 40 | 1 2 1 1 1 1] 1
X3X4 X5, X3xa | 60 | 1 4 1 2 1 2 [ 2
X1s X8, X33 65 | 1 2 1 1 1 1] 3
Xir X5, X37 | 85 | 1 2 1 | 1 1 1| 4
X3X7 X%, x3xs | 105 | 1 1 1] 2 1 2| 5
x3Xa¥s | X8, XaxaPs [ 120 | 1 4 1 [ 2 1 2 6
XaX7 X2, xax5 | 140 [ 1 4 1| 2 1 [ 27
Xi3 X5 X33, X2 | 65 | 1 2 1| 1 1 |18
s Xos, %8 | 104 | 1 2 1 1 1 1] 9
X416 X3X4 P8, X3X4 48 1 2 2 2 1 2 10
X5 s, X5 80 1 2 1 1 1 1|11
Xs¥s | xaxa¥s | x5, Xx3xa®s | 120 | 2 4 1 4 1 4 112
X3X4 X2, Xaxa | 120 | 2 4 1| 4 1 | 413
xa¥sx7 | X8, xavPsxs [ 280 | 2 1 1] 4 1 4 | 14
X3¥16 | XaXaXe | ¥s, XaXaXxe | 240 | 2 2 1 2 2 4|15
TABLE IX. (4%,4%)

N NT [ v [ gy [ Rag, [ Rag, [ R, [@n [ By [ e g
Xs5:X13 | Xb,XsXas | 66 | 1 1 2 2 2 |1 1 |1
X5, X416 | X5, Xat16xs | 80 [ 1 1 2 2 2 | 1 1 |1

TABLE X. (4%,2%,2%)

N SN | ha, | Par, | he | Qe | Qn | hy [ Ayt [ on

X5, X4, X4¥U's 40 1 2 1 1 2 1 1 1
X5, X3, X4 60 1 4 1 2 2 1 1 1

X5, X35 X7 105 1 4 1 2 2 1 1 1

X5, X3, X418 120 1 4 1 2 2 1 1 1
X5, X4, X7 140 | 1 4 1] 221 1 |1

X416, X3, Xa | 48 | 1 2 (1| 2 2 1 1 1
X416, X4,XaX5 | 80 | 1 2 1 1 1 1 1 1
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