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An alternative construction of normal numbers

par EDGARDO UGALDE

RÉSUMÉ. Nous construisons une nouvelle classe de nombres nor-
maux en base b de manière récursive en utilisant des chemins
eulériens dans une suite de digraphes de de Bruijn. Dans cette
construction chaque chemin est fabriqué comme une extension du
chemin précédent, de telle manière que le bloc b-adique déterminé
par le chemin contienne le nombre maximal de sous-blocs b-adiques
distincts de longueurs consécutives dans l’arrangement le plus
compact. Toute source de redondance est évitée à chaque étape.
Notre construction récursive est une alternative à plusieurs cons-
tructions par concaténation à la Champernowne qui sont bien
connues.

ABSTRACT. A new class of b-adic normal numbers is built recur-

sively by using Eulerian paths in a sequence of de Bruijn digraphs.
In this recursion, a path is constructed as an extension of the pre-
vious one, in such way that the b-adic block determined by the
path contains the maximal number of different b-adic subblocks
of consecutive lengths in the most compact arrangement. Any
source of redundancy is avoided at every step. Our recursive con-
struction is an alternative to the several well-known concatenative
constructions à la Champernowne.

1. INTRODUCTION

Let b be a fixed integer. A number x E [0, 1] is a b-adic normal if each
block q(1)q(2) - - - q(k) on b symbols appears in the b-adic expansion of x
with frequency b-1. In [Bo] Borel proved that the set of all b-adic normals is
a set of Lebesgue measure 1, but it was only 35 years after Borel’s proof that
Champernowne [Ch] presented the first explicit normal number in base 10.
He proceeded to concatenate the decimal expressions of all natural numbers
to yield the decimal expansion 0.123456789101112131415161718 ....

Several other constructions of normal numbers have been proposed fol-
lowing Champernowne’s idea, i.e., a concatenation of blocks of digits of in-
creasing length. Besicovitch [Be] proved that concatenating the sequence of
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squares of all the natural numbers produces the normal number 0.149162536
496481100121 ~ ~ . Copeland and Erd6s [CE] proved that the concatenation
of all prime numbers gives the normal 0.23571113171923293137 .... More
recently Schiffer [Sc], and Nakai and Shiokawa [NS] proved that for a non-
constant, eventually increasing polynomialp, the number 
[p(4)] -" is also a normal number. Here ~x~ stands for the b-adic expression
of the integral part of ~. This construction produces both Besicovitch and
Champernowne numbers.

In this paper we present a recursive construction of normal numbers
which is not a la Champernowne. Our b-adic expansions are produced
through Eulerian paths in a sequence of de Bruijn digraphs of increasing
size. Thus, we call the numbers generated by our algorithm Eulerian normal
numbers.
The paper is organized as follows. In Section 2 we give the main defi-

nitions. The algorithm to generate Eulerian normal numbers is presented
in Section 3. This section is mainly combinatorial. Section 4 is more of
a probabilistic nature. There we prove that Eulerian numbers are indeed
normal and we give an estimate of their discrepancy. Finally, the rate of
convergence to equidistribution for the Eulerian numbers is discussed in
Section 5.

2. DEFINITIONS AND NOTATION

2.1. Normal numbers. Except for the rationals of the kind m/b’, a num-
ber x E 0,1 has a unique b-adic expansion x(1)(2) - x(n) , which is
the sequence on Zb such that x = The b-adic block from site

n to site n + k in the b-adic expansion of x is denoted by x(n : n + k).
A number x E [0, 1] is said to be a b-adic norrraal number if for each

finite b-adic block q(l : k) E Zk

where N), q(l : k)) is the frequency of q(l : k) as subblock of
~(1 : N).
The rate of convergence to equidistribution is measured by the (N, k)-

discrepancy associated to x E [0, 1]. It is denoted by Drr,k and is defined as
follows:

We readily see that x E ~0,1~ is normal if and only if 0
for all k E N.

2.2. Digraphs. A digraphs is a couple (Tl, A), where V is a finite set and
A a binary relation on that set. The elements of V are called vertices, and
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the ordered pairs in A are called arrows. We denote by v H v’ the arrow
E A.

To a given vertex v E V we associate the sets 0(v) = fv’ E v’l
and I(v) = {v’ E vl.

Given v H v’ we call v’ the head and v the tail.
A digraph (V, A) is b-regular if for each vertex v E V I I(v) 1 0 (v) I = b.
A path in (V, A) is a sequence (vl, V2, ... , v9) of vertices such that for

each 1  i  s, vi H vi+l.
A path (Vl,V2,... va) in (A, V) such that Va M vi defines a cycle in

(V, A), which is the equivalence class of all paths of the kind (Vi, vi+i, ... , vs,
vl, ... , vi- i) obtained by cyclic permutations of the vertices in the original
path.

Since a cycle is determined by one of its possible paths, we use any of its
paths to denote it.
The digraph (V, A) is connected. if for each couple v, v’ of vertices there

is a cycle (v, v,.... v’, vi, ... , containing them.
Let (V, A) be a connected digraph. The arrow v H v’ in A is a bridge

if the digraph (V, A B v’~), obtained by erasing that arrow form the
original digraph, is no longer connected.
A path where each vertex in V appears exactly once is a Hamiltonian

path, while a path where each arrow appears exactly once is an Eulerian
path. Correspondingly, Hamiltonian cycles and Eulerian cycles are cycles
made respectively of Hamiltonian and Eulerian paths.

2.3. The de Bruijn digraphs. The (b,kJ-de Bruijn digraph, denoted by
B(b, k), has vertices in the set of b-adic blocks of length k, and arrows
between overlapping blocks. Thus, p(l : k) ~-4 q(l : k) if and only if
p(2 : k) = q(l : k - 1). Note that B(b, k) is b-regular for all k.

The family B(b, k) was introduced by de Bruijn [Br] and was already
used in the framework of normal numbers by Good ~Go~.
An Eulerian path on B(b, k) defines a Hamiltonian path in B(b, k + 1) by

identifying the arrows of the first digraph with the vertices of the second
digraph. We also associate paths in B(b, k) to b-adic blocks. The path
(a(1 : k), a(2 : k + 1), ... , a(s : s + k - 1)) in B(b, k) is associated to the

block a(1 : s + k - 1) E ~b+k-1,
A b-adic block q(1 : s) of length s &#x3E; t is an extensions of the b-adic block

p(1 : t) if p(1 : t) = q(l : t). Similarly, an extension of a path (vl, v2, ... , vt)
is a path of the form (vl , v2, ... , vt, ... , vs ) .

3. CONSTRUCTION OF THE EULERIAN NUMBERS

A b-adic Eulerian number contains in its b-adic expansion all the b-adic
blocks of all lengths, but in the most compact possible arrangement.
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The main ingredient in the construction of Eulerian numbers is the func-
tion Ext which extends b-adic blocks associated to Hamiltonian paths to
blocks associated to Eulerian paths. For b &#x3E; 2, given the b-adic block
a(l : bk + k - 1) defining a Hamiltonian path in B(b, k), k -

1)) = a(l : + k) is one of the possible extensions of a(1 : bk + k - 1)
whose associated path in B(b, k) is Eulerian.

Since there is more than one possible extension with the required prop-
erty, Ext is a non-deterministic function.

In the 2-adic case this extension is not possible, but a similar algorithm
can be implemented. Nevertheless, since 2-adic normal numbers can be
obtained from 4-adic normals (see [Ma]), in what follows we only examine
the case b &#x3E; 2.

To construct and determine a b-adic Eulerian number e = 

we only have to iterate the function Ext,

A possible outcome of this procedure gives a number whose 3-adic ex-
pansion starts with

We call any number whose lr-adic expansion is obtained in the way de-
scribed above, an Eulerian number.

3.1. The non-deterministic function Ext. To complete the description
of this construction, we have to prove that these extensions exist. In fact
we will propose an algorithm to construct the outputs of the function Ext,
following the idea in [Tu], where the following result is proved.

Theorem 1. A digraph (V, A) has an Eulerian cycle (vo, vl, ... , I VI, vo) if
and only if (V, A) is connected and for each vertex v E V IO(v)1 = II(v)l.

Note that the de Bruijn digraphs satisfy the hypotheses of this theorem,
but in order to extend a Hamiltonian cycle into an Eulerian one we need a
little more than this result. We prove the following.
Theorem 2. Let (V, A) be a connected digraph with no bridges, and such
that for all v E V 10(v)l = N(v). Suppose (A,Y) admits a
Hamiltonian cycle defined by the path (vo, vl, ... , 7 vi). Then there exists an
Eulerian cycle determined by a path (VO,V1,... ve) which extends
the given Hamiltonian path.
We divide the proof into two parts. First we just apply the algorithm

presented in [Tu], using the given Hamiltonian path (VO, Vi, - - - , VI) as the
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skeleton of the construction. After that we modify the Eulerian cycle we
obtained to give it the desired form.

Proof. Let us order all the arrows of A in a table.

In this table there is one line for each vertex in V. In the line corresponding
to the vertex v we put all the arrows of the set O(v) following an arbitrary
order, except for the last entry, where we place the arrow appearing in the
Hamiltonian cycle. Since (V, A) is not necessarily regular, different rows
may have different lengths.

The initial Eulerian cycle: Using this table we determine an Eulerian cycle
as follows.

~ Initialization: vl is the first vertex of the Eulerian path.
~ Recursion: At a given step of the construction we already have a
sequence (Vi,... , v). Let v - v’ be the first arrow appearing in the
line of the vertex v in the table.
- Increase the sequence (vl,... v) by appending v’. So, the new

sequence is (v,~, ... , v, v’ ) .
- Erase v H v’ from the table.

This procedure stops at a vertex v when all the arrows of O(v) have been
erased from the table. When it happens, the resulting path ... , v) has
N(v) arrows with v as tail, and in the last arrow of the path v is head.
Since 10(v)l = BI(v)l, the only possibility is v = vl.

Now, let us show that all the arrows of A are included in this path.
Suppose vk H v’ is not in (Vi,... , 7 VI); then neither is Vk ~ Vk+1, which is
the last arrow in the line of vk in the original table. Because of the choice
we made for the last entries of each line of the table, this would imply that
none of the arrows Vk+1 M Vk+2, vk+2 H Vk+3,... , Vi-1 M vl is in the path,
but this is impossible since the line of vi was already erased from the table.

The sequence (vi, ... , vl) determined by this procedure defines an Euler-
ian cycle which preserves the order of the arrows in the original Hamiltonian
path. This cycle can be drawn as follows.
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In this picture, either Ck is empty, or it is a path (Vk,l, Vk,2, ... , 
which preceded by vk defines a cycle 7 Vk,nk). We denote
this cycle by vk fH C~ .

Modifying the Eulerian cycle: The following algorithm allows us to move
the cycles vk - Ck for k  t, to include them inside the cycle vi H Ci.

Note that for 1k  t7 if Ck is not empty, then it only contains vertices with
index larger than or equal to k. This is because when we first enter Ck, we
have already finished all the lines associated to vertices vj with 0  j  k.

If Ck shares a vertex with Oi then we can move Ck to include all its
arrows inside a new Cl.

. Basic IteTation: For k = 0 to l - 1, if Ck is not empty, and M Ck
shares one vertex with vi - Cl, then modify the Eulerian cycle as
indicated below.

Let vk - Vk,l t-+ ... M Vk,r r-7 ~ ~ ~ H vk,nk and

Vi ~H Ci vi H viI H . - · H- Vi s t-+ ... · H vi nl be such that
Then erase Ck from the original Eulerian cycle and replace

Vi ~-4 Cl by the path

In this way we obtain a new Eulerian cycle
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where Ck is empty and the new Cl has more vertices than the
original one.

o Recursion: Repeat the previous step until none of the remaining cycles
vk - Ck shares a vertex with VI. H Cl.

At the end of the recursion we obtain a cycle

which is defined by the sequence (vo, vl, ... , ,Vi,Ci,Vi). This is the desired
extension.

In order to complete the proof we have to ensure that at the end of the
recursion, which takes no more than i + 1 steps, we have eliminated all the
cycles vk ~ Ck for 0  k  t. Suppose on the contrary that it remains a
non empty path Ck, with k minimal. In that case all the vertices between
the first vk and the the first vl, have index larger or equal to k. On the
other hand, between the last ve and the first vk, all vertices have index
smaller than k. In this situation all paths from vi with j  k to vk contain
the arrow Vk-1 H- Vk, making this arrow a bridge. This is a contradiction
to one of the hypotheses of the theorem. 0

Extension procedure for the de Bruijn digraphs.
Theorem 3. Let b &#x3E; 3 and b-adic block defining a
Hamiltonian cycle in B(b, k). There exists an extension e(1 : bk+1 + k) of
e(l : bk + k - 1), which defines an Eulerian, cycle in B(b, k).

Proof. We simply apply Theorem 2. Since B(b, k) is b-regular, it imme-
diately satisfies the requirement IO(v)1 = II(v)l. On the other hand, it is
easy to check that B(b, k) is connected. The only nontrivial requirement is
the lack of bridges. Let us prove that for b &#x3E; 3, B(b, k) does not contain
any bridge.

Let us eliminate the arrow ala2 ~ - ~ ak - aZa3 ~ ~ ~ ak+i from B(b, k). To
this arrow there corresponds the b-adic block ala2 ~ ~ ~ ak+1 E Now
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take any pair of vertices P1P2... Pk and q1q2... qk in B(b, k). For any
a E f al, ak+1I, the b-adic block in Zfk,
with a in the middle repeated k times, determines a path in B(b, k) which
never passes through the arrow ak H a2ag ~ ~ ~ ak+1. Note that in

the path defined by Pkaa... qk, the arrows correspond to
subblocks of length k + 1, but the choice of a ensures that all those sub-
blocks are different from ala2 ~ ~ ~ Note also that the choice of a may
be impossible in the case b = 2. 0

The procedure described in the proof of Theorem 2 is not adequate for
computer implementation. Instead we use the Tutte’s algorithm:

~ Start with the block e(l : b) = O1 ~ ~ ~ (b - 1).
~ At a given step of the construction we have a b-adic block e(1 : bk +
k - 1) which defines a Hamiltonian path in B(b, k).
- Erase from B(b, k) all the arrows e( j : j -~ k -1) ~ e( j + 1 : j + k)

appearing in that path.
- Order the arrows of the new digraph in a table similar to the one
we used in Theorem 2, but now, at the end of each row place
the arrows appearing on a spanning tree converging to the vertex

+ k - 1) (see [Tu] for details).
- Following the order in this table, as we did in the proof of The-
orem 2, we finally determine an Eulerian path starting at 
bk + k - 1) and ending at e(1 : k).

- The b-adic block associated to this path, appended to e(1 : bk +
k - 1), is the desired extension.

4. DISCREPANCY AND EQUIDISTRIBUTION

Our aim in this section is to prove the normality of the Eulerian num-
bers. The structure of the proof is the classical one given in [Ch, Be]. We
use the entropic bound defined below, to estimate the (N, k)-discrepancy.
Unfortunately this estimate is not the best possible one. We discuss this
topic in more detail in the next section.

For all q(l : k) E Z~ and a(l : N) E with k  N E N‘, let f (a(1 :
N), q(1 : k)) be the frequency of q(l : k) as subblock of a(l : N), and

the set of (e, k)-bad blocks of length N.
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Let

be the (e, k)-entropic rate of convergence.

Theorem 4 (Entropic bound). There are constants a and C depending
only on b and k, such that

Proof. Let v be the probability distribution on 7G6 generated by the b-adic
block a(l : N) as follows:

The number of b-adic blocks generating the same distribution can be
computed as follows.

Let k-1) the "multi-digraph" (where an arrow may appear several
times repeated) obtained from B(b, k - 1), by repeating each arrow q(I :
k - 1) ~ q(2 : k), (N - k + 1)v(q(l : k)) times.
By construction, this multi-digraph allows Eulerian paths, in particu-

lar the path defined by the b-adic block of length N which originally de-
termined v. As in the proof of Theorem 2, to each Eulerian path there
corresponds a table containing all the arrows in a given order. There are

flq(l:k-1) (Lq(k)(N - s + 1)v(q(l : k))) ! possible tables of that kind, not
all of them yielding an Eulerian path.

Each Eulerian path in Bv(b, k - 1) corresponds to a b-adic block gener-
ating the measure v, but the converse is not true. All the repetitions of one
arrow in B(b, k - 1) that we included in 1) give rise to different
Eulerian paths when they are permuted in the table, but all those paths
define the same b-adic block. Because of this, the number of b-adic blocks
of length N generating the same distribution v is less than

I I I I

The Stirling approximation gives us the more useful exponential bound
with
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and Ci a constant depending only on b and k. 
ZkOn the other hand, the number of probability distributions in Zj that

can be generated by a b-adic block of length N is bounded by C2N", where
C2 and a are constants depending only on b and k.
From these two bounds we finally deduce that

where hk(e) = I maxq(l:x) 11I(q(l : k)) - e) and C = CiC2
depends only on b and k.

It only remains to compute hk (e). We can do this by standard variational
procedures, taking into account some properties satisfied by hk that are
described in [EI]. Those properties allow us to restrict our search of the
minimum to the set of product probability distributions in Z~. We obtain

Remark: A similar result can be derived from general techniques of Large
Deviations Theory [El] . Here we use a combinatorial proof which follows the
ideas presented in [Cs], where they derive entropic rates from the counting
of possible Eulerian paths given by Tutte’s theorem.

Lemma 1. For all

Proof. The entropic rate [0, 1 - b-k] -4 1R is smooth, convex, and
increasing. Taylor’s Theorem applies, and gives us the quadratic behavior

From this we readily obtain the result. In fact, since both hk (e) and Pk (6) =-
(bkE/k) 2/(2(b - 1)) are convex, they intersect at most in two points. It is

easy to verify that they intersect only at E = 0, and for all e E (0, 1 - b-k~,
R
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4.1. Normality of the Eulerian numbers.

Theorem 5. E (0,1~ be a b-adic Eulerian numbers, then for all k

The implicit constant in 0 depends only on b and k.

Proof. Let n E N be the maximal integer such that bn  N - n + 1. By
construction, x ( 1 : bn + n - 1) contains all the b-adic blocks of length n as
subblocks, and there are of those subblocks having a given q(l : k) E
Zj as prefix. Then,

On the other hand, the frequency of a given q(l : k) in + k : N)
can be estimated from the frequency of q(1 : k) inside the blocks of lengths
n + 1 appearing in x(bn + k : N).

Theorem 4 ensures that if we take en such that a 

then the number of (En, k)-bad blocks of length is at most 

Under this condition we have

which gives

The last term in the right hand side is never larger than b/(n + 1). Note
also that Lemma 1 implies that
some C2 depending only on b and 1~. Then, for n large we can choose a
constant C, depending only on k and b, such that

for all q(1 : k) 0

As an immediate corollary of this result we obtain the normality of the
Eulerian numbers.
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5. CONCLUDING REMARKS

The estimate on the (N, k)-discrepancy given by the previous theorem is
not the best possible one. It was shown in [Sc] that for a huge class of normal
numbers including the Champernowne number 0.123456789101112131415
16 ~ ~ ~ , the best bound for the convergence rate to the equidistribution is
O(I / log(N)). Our numerical experiments show that the discrepancy for
the Eulerian numbers should be even o(I/log(N)), but at the moment we
are unable to prove it.
We also did numerical experiments using the generalized Champernowne

numbers (see [DK] for details), and we also found a convergence slightly
faster than 

Both the generalized Champernowne numbers and the Eulerian numbers
have in common a random disposition of all the blocks of a given length.
We think this is the source of a faster convergence. So, it is not the efficient
packing of blocks in the Eulerian numbers, but the random nature of the
extension function, that produces a convergence faster than 
We may think in a probabilistic result of the kind: "for almost all Eulerian
number x, DNk(x) = o( 1/ log (N) )". In order to prove such a statement
we should probably have to compute the distribution of DN,k, considered
as a random variable in and apply a kind of central limit theorem.
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