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Diophantine Approximation on Algebraic
Varieties

par MICHAEL NAKAMAYE

RÉSUMÉ. Nous donnons un apergu de progrès récents en théorie
de 1’approximation diophantienne. Le point de départ étant le
théorème de Roth, nous nous intéressons d’abord à la conjecture
de Mordell, puis ensuite à des résultats analogues en dimension
supérieure, résultats dûs à Faltings-Wustholz et à Faltings.

ABSTRACT. We present an overview of recent advances in dio-
phantine approximation. Beginning with Roth’s theorem, we dis-
cuss the Mordell conjecture and then pass on to recent higher
dimensional results due to Faltings-Wustholz and to Faltings re-
spectively.

0. INTRODUCTION

The theory of diophantine approximation often begins with a finite col-
lection of polynomials f 1 (X), ..., In (X) E (~~.X l, ... , Xm) with rational co-
efficients. There are then two distinct types of questions commonly asked.
First, one can look for rational points (pl/ql, ... which lie on the

common set of zeroes of the polynomials, i.e. pm/qm) = 0 for
all i. This line of inquiry leads to the Mordell conjecture (which deals with
the case of a single polynomial in two variables) and higher dimensional
generalizations due to Faltings and Vojta. Alternatively, one can look for
rational points (pl/ql, ... ,Pm/qm) which are ’approximate solutions’ or in
other words lie very close the set of common zeroes of the f i’s. This question
is perhaps older than the first and is aptly called diophantine approxima-
tion because one is looking not for solutions to diophantine equations but
for approximate solutions. In this direction, the most striking results are
Roth’s theorem, dealing with the case of a single irreducible polynomial in
one variable, and the Schmidt subspace theorem which allows for several
variables but deals with very specific (linear) polynomials.
One of the simplest results in diophantine approximation is Liouville’s

theorem. For this, we consider a single irreducible polynomial f (X ) E Q(X~
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of degree d &#x3E; 2 with a root a E R. Since f is irreducible, a g Q and it
makes sense to approximate this zero of f (X) by rational numbers. Liou-
ville’s theorem states that for any rational p/q one always has an inequality
of the form

where c(a) is an explicity determined constant depending only on a. It
turns out, however, that the exponent d in the denominator is not best
possible except for quadratic f (X ). In fact, Roth proved that 0.1 can be
improved by replacing d with 2 + E for any f &#x3E; 0. The disadvantage to
Roth’s theorem is that the constant c(a) is no longer explicitly determined.

Roth’s theorem was generalized fifteen years later by Schmidt who deals
with the case of n independent linear forms Li(X) E k[Xl,... Xnj where
Q has now been replaced by a finite extension k/Q. The Schmidt subspace
theorem (see §5 for an explicit statement) states that the set of rational
points (pl/ql, ... , pn/qn) which are close to the n linear subspaces 
0 are degenerate; here degenerate means contained in a finite union of
proper linear subspaces. In the one variable case, choosing L(X) = X - a,
one recovers Roth’s theorem since a degenerate linear subspace of Q is
just a point. Schmidt’s subspace theorem has recently been extended by
Faltings and Wüstholz to deal with the case when the Li are no longer
linear.

Returning to the first question posed in diophantine approximation we
take the subvariety X C pn defined over Q as the common zero locus of
our collection of polynomials. As noted above, in this case one is not ’ap-
proximating’ a geometric object with rational points but rather looking for
actual rational solutions to the system of equations defining X. The con-
nection between the problem of finding actual as opposed to approximate
solutions to polynomial equations was developed by Vojta in his proof of
the Mordell conjecture [V2]. The Mordell conjecture states that if X is a
smooth projective curve of genus at least 2, defined over a number field
k, then X has only finitely many rational points. Like Roth’s theorem,
the result is ineffective in that it does not bound the size of the solutions.

Building upon Vojta’s ideas, Faltings [Fl, F2] was able to obtain similar
results for higher dimensional varieties under certain restrictions.

The goal of these notes is to give an introduction to the ideas and argu-
ments occurring in diophantine approximation, beginning with the simplest
result, Liouville’s theorem, and culminating with the difficult results of Falt-
ings and Vojta on the one hand and Faltings-Wilstholz on the other. The
rough structure of these notes is as follows: the first section begins with
Liouville’s theorem and procedes to analyse the difficulties encountered
when trying to sharpen Liouville’s result to obtain Roth’s theorem. The
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second section then deals with these difficulties, concentrating on the geom-
etry behind Roth’s theorem, specifically the product theorem and Dyson’s
lemma. The third lecture moves from Roth’s theorem to Vojta’s proof of
the Mordell conjecture, developing the necessary theory of height functions
and the corresponding metrics on line bundles along the way. We will once
more emphasize the geometric aspects of the proof and give a rough idea of
the difficult arithmetic machinery involved. Lectures four and five will be
devoted to higher dimensional problems, one to higher dimensional Mordell
type theorems and one to the Schmidt subspace theorem respectively. The
proofs presented here will not, in general, be complete but we hope to em-
phasize all of the important points so that the interested reader can then
consult the literature for rigorous proofs and hopefully the account here
will facilitate this process.

There are several expositions of the material covered in these lectures.
For Roth’s theorem and the Schmidt subspace theorem one can consult
Schmidt’s two collections of lecture notes [Sl, S2]. For Dyson’s lemma, in
addition to Dyson’s original paper [D], one can consult [Bl, EV, Nl, N3].
Vojta has two proofs of the Mordell conjecture, [V2, V3], the second of
which is closer to the exposition given here. He also has a beautiful paper
[V4] giving a full proof of the higher dimensional results of Faltings [Fl , F2].
For surveys of the material behind Faltings’ work, one can consult [H] for
a beautiful overview or [EE] for a more thorough treatment.

These notes form the basis of a series of five lectures delivered at the Isaac
Newton Institute from March 23 through March 27, 1998. It is a pleasure
to thank the organizers of the workshop, Christophe Soul6, Jean-Louis
Colhot-Th6l6ne, and Jan Nekováf, for inviting me to present this material.
I would also like to thank all of those who attended the lectures and whose
comments have helped to remove many errors from these notes as well as
to add better and more complete explanations. I also thank those who
attended courses I gave on part of this material at Harvard in the spring of
1995 and at Bayreuth in the winter of 1996: it is only after trying to teach
the material several times that I have reached a full appreciation of the
subtleties involved. The spirit of these notes is hopefully the same as that
of the lectures, namely informal but aiming to give a reasonably complete
picture of the difficult techniques involved in these questions of arithmetic
geometry.

1. FROM LIOUVILLE TO ROTH

We begin by recalling the quick and elegant proof of Liouville’s theorem.

Theorem 1.1 (Liouville). Suppose a E R is an algebraic irrational num-
ber of degree d over Q. Then there exists an effectively computable constant
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The proof can be formally divided into three stages which will reappear
in all of our arguments but which are particularly transparent in this case.
We begin with the irreducible polynomial f (X ) E Q[X] for a over Q. To
specify f uniquely one can take f E Z[X] with relatively prime coefficients.
The outline of the argument is as follows:

Step 1: 0 for any p/q E Q since otherwise f would not be
irreducible over Q.

Step 2: since qd is a common denominator for the terms
in 1(P/q).

Step 3: a~ for an explicit constant b(a).
Liouville’s theorem follows, with c(a) = 1/2b(a), by comparing the bounds
in Steps 2 and 3. Only the upper bound in Step 3 requires further comment.
Suppose we take the Taylor series expansion of f (X ) about a. Since f (a) _
0 the first term is zero:

Thus

This establishes Step 3, provided lplq - al  1, with b(a) = Ed 1 jail
and proves Liouville’s theorem (taking c(a) = As for

effectivity, the numbers ai depend only on a as they are the coefficients of
the Taylor series expansion of f(X) about a. Consequently, b(a) and c(a)
depend only on a.

Suppose now that one tries to improve the exponent d in Liouville’s
theorem. One idea would be to run through the same argument with a
different auxiliarly polynomial f (X). Of course this risks losing effectivity
because f (X) was determined uniquely by a. Nonetheless, one could try. A
review of the argument reveals that the exponent d in the theorem comes
by taking the quotient of deg f(X) by multa ( f (X )). Thus if we replace
f (X ) with a different polynomial g(X) which also vanishes at a we will get
the same result with an exponent of
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But for Step 2 to work, we need to have g(X) E Q[X] and thus g(X)
will be divisible by Thus we always will have

degg(X)/multa(g(X)) &#x3E; d
and there is no improvement.

Thus some new idea is needed in order to improve the exponent d of
Liouville’s theorem. At the beginning of the century, Thue had the idea of
running the same argument with an auxiliary polynomial in two variables.
Thus in order to bound how close a single rational number can be to a,
Thue considers a pair of rational numbers both of which are
close to a. The reason why an extra approximating rational point helps is
that now the auxiliary polynomial will be in two variables and this gives
additional degrees of freedom allowing for an improvement in the important
ratio

which occurs as the exponent in Liouville’s theorem. There are of course
immediate complications in the argument, particularly with Step 1 as with
two variables there will not be a well-defined choice of auxiliary polyno-
mial with big multiplicity at (a, a). But without a canonical choice of

f (X,Y) there is no longer any reason why f (pl/q,,P2/q2) should be non-
zero, without which the argument runs aground. Thus the simplest step in
the proof of Liouville’s theorem, Step 1, becomes the most cult when
one considers an auxiliary function in more than one variable.
Of course, once one is willing to consider f (X, Y) there is no reason to

stop there and Roth was finally able to obtain the best result possible by
considering an auxiliary polynomial with an arbitrary number of variables:

Theorem 1.2 (Roth’s Theorem). Suppose a E R is algebraic and irra-
tional. Then for any e &#x3E; 0 there are only finitely many solutions to

Note that the formulation of Roth’s theorem is slightly different from that
of Liouville’s theorem. It follows from the fact that 1.3 has only finitely
many solutions that there exists a constant c(a) such that

The problem is that the constant c(a) is not effective and this is why Roth’s
theorem is formulated in this alternative style.
The strategy for proving Roth’s theorem is identical to that of Liouville’s

theorem except that we will use several good approximating points. So we
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assume that Roth’s theorem is false and this gives a sequence of good
approximating points

The strategy for the proof will be to choose m of these good approximating
points, where m -+ oo as e --~ 0, and construct an auxiliary polynomial
in m variables with large order vanishing at (a, ... , a). Steps 2 and 3 of
Liouville’s theorem will then tell us that the approximations are too good,
giving a contradiction. In order for Steps 2 and 3 to yield a contradiction,
one needs to choose the appropriate notion for the order of vanishing of our
polynomial f (X 1, ... , X,,,~ ) at (a, ... , a) . We will see as we go through with
the proof that the following, though at first awkward, is the apt definition:

D efinit ion 1.5. Let 0 7~ /(Xi,...,X~) E and let

(al, ... , 7 am) E Consider the Taylor series expansion of f about
(a , ... , 7 am):

Suppose f has multi-degree (dl , ... , The ind ex of f at (a~ , ... , 
is defined as follows:

The index of a at a point x E cm is a

weighted multiplicity. For example, if di ==...== dm = d then

In general, each variable is weighted so that it can contribute a maximum
of 1 to the index.
To see the relevance of the notion of index, we run through the three

step proof of Roth’s theorem which we would like to model after Liouville’s
theorem: we construct an auxiliary polynomial f (Xl, ... , of multi-

degree (dl, ... , with large index at the point (a, ... , a). Then the

proof should procede as follows:

Step 1: Show that 0.

Step 2: I 
as in Liouville’s theorem.

Step 3: If(PI/ql,... I is small since lpilqi - al is small and f
has large index at (a, ... , a).
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As it stands, much work is needed in order to make this into a proof.
Only Step 2 requires no further justification. We begin by explaining the
upper bound for ,Pm/qm)1 in Step 3 as this is what motivates
the notion of index. As we did in Liouville’s theorem, consider the Taylor
series expansion of f about (a, ... , a):

Using 1.4 will give the following upper bound

for some constant C which depends on the number of terms in 1.6 and
the size of the coefficients of P. We see, ignoring the constant C for the
moment, that 1.7 contradicts the lower bound of Step 2 provided provided
aj=0 whenever

Since we do not know the relative sizes of the qz, the only reasonable way
to guarantee inequality 1.8 is by choosing di so that qai are all roughly
proportional, i.e. we need to choose

Moreover, with this choice of di inequality 1.8 translates into the following:
we want aj=0 whenever

And here the index has finally reappeared as a natural consequence of the
argument: indeed, 1.10 says that we want

To summarize, the lower and upper bounds for given
in Steps 2 and 3 respectively contradict one another, assuming we can
suitably bound the constant C in 1.7, provided that m/(2+e).

At this point there are three technical issues to deal with in order to
make this sketch a rigorous proof
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Problem 1: Show that f (pl/ql, ... , 0.
Problem 2: Bound the constant C occurring in 1.7.
Problem 3: Show that one can find 0 ~ f with index &#x3E; m/(2 + e) at

(a, ... , a).
We will deal with the three problems in reverse order. Problem 3 is

essentially a counting problem. We want to kill leading terms aj in the
Taylor series expansion 1.6 provided J satisfies 1.10. In order to guarantee
that one can force all of these a~ to vanish, it suffces to show that the
number of m-tuples ( jl, ... , jm) with 0  j~  c~ satisfying 1.10 is a small
f raction of the total number of monomials; for if this is true then a dimen-
sion count shows that there are lots of polynomials, with coefficients in a
finite extension having index at least m/(2 + e) at (a, ... , a) and
all of its Galois conjugates. Taking the norm over Q of such a polynomial
and clearing denominators gives the desired auxiliary polynomial. To show
that all of this works in our particular setting is a special case of what Falt-
ings and Wiistholz [FW2] refer to as the ’law of large of numbers’. Rougly
speaking, this says the following: for each i, the "average" value of ji/ dï
is 1/2 so if one randomly chooses a set the probability that 1.10
is violated approaches zero as m approaches infinity. For a rigorous state-
ment and proof one can consult [FW2] Proposition 5.1. Alternatively, for
the case in which we are interested, one can make an explicit computation
as in [L1] pp. 170-171.

Next we deal with Problem 2. There are two separate issues here, first
counting the number of terms aj and second bounding the size of the jail.
The first of these is simple as the number of aj is

Bounding the size of the aj is equivalent to bounding the size of the co-
efficients of the auxiliary polynomial f (X) which is potentially a serious
manner as f was constructed abstractly to satisfy certain vanishing condi-
tions. The fact that the size of the coefficients of f can be controlled is a
consequence of the famous Siegel lemma:

Lemma 1.11 (Siegel’s Lemma). Consider a system of rra linear equations
in n unknowns, with m  n:

Suppose az j E Z for all i, j and that laijl I  A for all i, j . Then there
exists a solution (xl, ... , xn) E Zn to the system of equations with ixi I 
1 + (nA)mj(n-m) for all i.
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We apply Siegel’s lemma by viewing the condition ind~a ... a~ ( f ) &#x3E; m/(2+
e) as a system of linear equations in the coefficients of f , i.e. we view the
coefficients of f as variables. Siegel’s lemma cannot be applied directly in
this situation because our system of linear equations will have coefficients
in the number field K = Q(a) since we are trying to impose large index at
a. Choosing a basis for K as a vector space over Q allows one to make the
reduction to Lemma 1.11 (for details, see [S2] Lemma 9A). One then ob-
tains a polynomial g E 0~[Yi,... , with large index along (a, ... , a)
and its conjugates such that the coefficients have bounded size; taking the
norm of g then gives the desired f .
The crucial observation to make about Siegel’s lemma is that the ex-

ponent m/(n - m) is small provided that the number of unknowns is a
fixed multiple of the number of equations. At this point, one needs to do
a lot of accounting to check that Siegel’s lemma gives an auxiliary polyno-
mial f E Z(Xl, ... , such that the constant C in 1.7 is small enough
to obtain a contradiction when comparing the lower and upper bounds on

In practice, to get the numbers to work out one
chooses m big enough to impose index m/(2 + e/2) at (a, ... , a) and the
extra e/2 allows one to absorb the bound for C in 1.7 and still obtain a
contradiction when comparing the numbers in Steps 2 and 3.

2. INTERLUDE: DYSON’S LEMMA

We still have not faced the most difficult of the obstructions to proving
Roth’s theorem, namely the issue arising at the beginning of the argument
in Step 1: how can we guarantee that

Without this information, all of our computations to obtain a contradiction
from comparing upper and lower bounds of [ are in
vain. This is by far the most difficult part of Roth’s theorem as the rest
of the argument essentially consists in counting. In general, there is of
course no way to guarantee that 0 because f has
not been explicity constructed: we simply know from dimension counting
that such an f exists but of course there may be several and most of them
will vanish at the approximating point Roth originally
dealt with this problem in an essentially arithmetic manner. He proved,
in what is now called Roth’s lemma, that provided di W d2 ... » d",,
(or, equivalently, given 1.9, ql « q2 « ... « q."a) the polynomial f (X )
constructed using Siegel’s lemma cannot have large order of vanishing at
(pi/9i)’ " Taking the appropriate derivatives of f then yields a
contradiction (since the number of derivatives is small, it does not affect
the contradiction arrived at in Steps 2 and 3 of the argument). Roth’s
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lemma is essentially arithmetic in nature, using the facts that f has integer
coefficients and that we are interested in its order of vanishing at a rational
point. For a proof, one can consult [Ll] pp. 179-181.
An alternative geometric argument to establish non-vanishing of

,pm/4m) was developed thirty years later by Esnault and
Viehweg [EV] building upon previous work of Dyson [D], Bombieri [Bl],
and Viola [Vi]. Esnault and Viehweg approach the problem from the
following point of view. Suppose that whichever f (X) we choose with
large index at (a, ... , a) we always find that f (X ) also has large index at
(pl/qi,... This says that certain linear conditions on the space
of all polynomials of degree (dl, ... , fail to be independent. Thus if
one could establish this independence then this would also yield a contra-
diction. The advantage to this viewpoint is that it is entirely geometric;
the fact that the points in which we are interested are all algebraic becomes
unimportant.
To state the powerful result which Esnault and Viehweg were able to

prove, we introduce some new notation. Let

be a product of m projective lines defined over k, an algebraically closed
field of characteristic zero. We will assume for simplicity that k - C,
the field of complex numbers although the argument remains valid in the
general case. Let 7ri : P - Pl be the projection to the ith factor. For

positive integers d 1, ... , dm write d = ( d 1, ... , dm ) and

For fixed d let 0 # s E H°(P,Op(d)). The index of s at a closed point
, of P is defined by locally identifying s with a polynomial and applying
Definition 1.5. We need to define certain volumes as in [EV] Definition 0.2:
Definition 2.1. Let 1m = l~ = (~1, ... , £m) E Rm 0  ~~  1 for all i}
and let Vol(t) denote the volume of

I 

Of course 1 - Vol(t) measures, asymtotically in d, the proportion of
sections of HO (P, Op (d)) with index &#x3E; t at a point C. Dyson’s lemma
gives conditions on a set of points {~~} C P and a line bundle Op (d)
so that requiring index ti imposes almost independent conditions on
global sections of The following is an alternative, slightly more
transparent formulation of Esnault and Viehweg’s Dyson lemma:

Theorem 2.2. Suppose 0 f= s E H°(P, and ~1, ... , Cm C P so
that no two (i are contained in a proper product subvariety, i.e. the points
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Note that if t  0 then Vol(t) = 0.

Theorem 2.2 says that the linear conditions for imposing index ti - m8
are independent inside H°(P, Op(d)). The key observation about

Theorem 2.2 is that if di » d2 » ... » then mJ is small so in this case
Theorem 2.2 says that the conditions to impose index ti at (i are nearly
independent inside This will then allow us to derive the
desired contradiction and prove Roth’s theorem, provided we can arrange
for dl W d2 » ... » d",,. But by 1.9 this is equivalent to choosing rational
approximations with denominators satisfying ql C q2 « ... « q",, and we
can achieve this since we have assumed that there are infinitely many good
rational approximating points. It should be noted that there is still some

arguing left because Dyson’s lemma only shows that there exists g(X) E
C[X1,... Xm] with large index at (a, ... , a) and its conjugates which
has small order of vanishing at (pllql,... ,P."6/q",,). From here one can
construct f (X ) E Z[X1,... Xm] with large index at (a, ... , a) and small
index at (pi/9i,... but a priori we have no control on the size of
the coefficients of f . Thus more calculations of dimensions and of Siegel
type are necessary (see [EV] §10 for details).
We now turn to the proof of Theorem 2.2. In the statement of Theorem

2.2, the volumes which occur have been perturbed by m8. The reason for
this is that suitable derivatives of the non-zero section 8 E 
with index at (; still have index &#x3E; ti - m8 at z. The product theorem
will tell us that the common zero locus of these sections is contained in a
finite union of proper product subvarieties. Let P’ C P be one of these

product subvarieties and let 7r : P - P’ denote the natural projection.
Taking Ci’ = one then shows, except in certain degenerate cases, that
on P’ one can produce a new non-zero section s’ E H° (P’, Op (d)) with
suitable indices at the (I. This procedure is then iterated to produce a
zero cycle representing and the part of the class associated
to ~’= measures the cost of imposing index ti - m6 at ~t. These classes
have disjoint supports and this implies the desired conclusion: the cost of
imposing index ti - mJ at (i for all i is the sum of the individual costs, i.e.
the conditions are independent.
The details of the proof of Theorem 2.2 are as follows. We are given a

non-zero section s E H°(P, with ti = ind(¡ (s ). Given a point ( E P,
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an af&#x26;ne open subset U = Spec A C P, and a local trivialization of Op (d)
on U, the sections Q E H°(P, Op (d)) such that &#x3E; t generate an
ideal c A. This ideal does not depend on the trivialization and as U
varies over an a£ne cover of P this defines an ideal sheaf 2£, d t c Op . Let

Since we are trying to show that the various index conditions are inde-
pendent, as a first approximation one should expect the supports of these
ideal sheaves to be disjoint. This is not cult to show because one can
write down explicit monomial generators for and hence determine its

support (see [EV] Lemma 2.5). It then follows readily ([EV] Lemma 2.8),
as desired, that

As discussed above, we would like to be able to produce sections sat-
isfying the relevant index conditions on proper product subvarieties. To
this end, let Id (s) = IÇj,d,tj and for P’ C P a product subvariety
let Op’ (d) = Op(d)[P’. If one is unlucky and P’ C Zi for some i then
H° = 0 for all k &#x3E; 0 so there will be no hope of
producing a new section. On the other hand, [EV] 2.9 (ii) implies that
whenever P’ 0 Zi for any i then for k sufficiently divisible

There is one more crucial ingredient in the proof of Theorem 2.2 as it
allows us to use the sections guaranteed by 2.4 to construct an intersection
class representing cl ( Op (d))m. This is the so-called product theorem which
establishes a certain degeneracy in the locus where the non-zero section
s E can have large index. Initially inspired by the product
theorem of Faltings [Fl], the result presented here strengthens Theorem
3.1 of [Nl].
Theorem 2.5 (Product Theorem). Let f E C[Xl, ... , Xm] be of multi-
degree d 1, ... , d,~ and for an m - 1--tupl e of non-negative integers a =
11 

Let W C X ( f ) be an irreducible component. Then W is contained in a

proper product subvariety.

Proof of Theorem 2.5. We will show that either is a point or
else W = W’ x C for some W’ C In the former case, W is contained
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in a proper product subvariety and we are done. In the latter case, choose
a general A E C and replace f with

Since a/axl, ... , commute with evaluation at A we have
"""""- -- -

B ut ’9011 ... irm-2 2 2 f ( X 1, ... , X m ) vanishes along W’ x C for aZ But 5X " ... "!-2 f (Xi,... X.,,,) vanishes along W’ x C for ai :5a1 ,gxm 2
assumption. Hence by 2.5.1

Thus, using the notation in the statement of Theorem 2.5, W’ C 
and we can conclude by induction on m that W’, and hence W , must be
contained in a proper product subvariety.
We now proceed to establish that if is not a point then W =

W’ x C, concluding the proof of Theorem 2.5. Choose a general point
’11 E W so that

Let denote the tangent space to W at 17. Since we are assum-

ing that W - C is surjective it follows, choosing q still more gen-
eral if necessary, that we may assume the induced map on tangent spaces

is surjective. Consequently, viewing Tl1(W), after

translation to the origin, as a subspace 

We claim that for some 1  i  m - 1

Observe first that if DO. is any differential operator of order  tll(f) - 1
and if 8/8X E T,7 (W) then = = 0 since

D°‘ ( f ) vanishes on W and E Thus

Suppose, contrary to 2.5.5, that for have
. ...... -- " - ’" Br. - .." -"
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By 2.5.4 and 2.5.6 we also have But this
would imply that + 1, a contradiction. Thus 2.5.5
holds. Applying the same argument inductively and using 2.5.3 shows that
for some non-negative il, ... , 

But by the definition of X ( f ), = 0 for any 0 ~ Qi ~ dj. Thus
+ 1. Since f has degree dj in this is only possible if W

is of the form W’ x C. This concludes the proof of the product theorem.

Observe that if we replace d with Nd for N sufficiently divisible then we
can assume without loss of generality that if Z 0 Zi for any i then there
exists

Indeed, applying the product theorem to the section s of Theorem 2.2
gives sections of H° (P, Op (d) o which generate off a finite
union of proper product subvarieties. If P’ is one of these proper product
subvarieties, not contained in Zi for any i, then 2.4 gives a non-zero section

for some positive integer n. Since 2.4 only needs to be applied finitely many
times in order to obtain sections on any subvariety Z 0 Zi, we can choose
N sufficiently divisible to give all of the sections sz at once.
We will use 2.6 in order to construct an effective cycle representing

This is done inductively as follows. With sp as in 2.6, Z(sp)
represents cl(Op(d)). Let Z be an irreducible component of Z(sp). If
Z C Zi for some i, then choose some 0 ~ Sz E H°(Z,Op(d)) and Z(sz) is
an effective representative for cl (Op (d)) fl Z. Suppose next that Z 0 Zi for
any i. Then by 2.6 there exists E H° 
and Z(sz) represents cl (Op (d)) fl Z. Repeating this procedure inductively
gives an effective representative for Moreover, since by 2.3 the
Zi are mutually disjoint, we can write

where is the part of the intersection supported on Z; . Since R is effective,
the result of this construction is that
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We have deg = m! die Thus to conclude the proof of
Theorem 2.2 it suffices to prove that for 1  j  M we have

Combining 2.8 with 2.7 yields Theorem 2.2.

A rigorous proof of 2.8 involves blowing up the ideal sheaf 
but intuitively it has an easy explanation. Suppose Cl, C2 C p2 are two
distinct, irreducible curves meeting in a point P. Suppose moreover that
both 01 and C2 have multiplicity m at P. Let C2 ) denote the part
of the intersection class C2 supported at P. Then one has

But of course m2 measures precisely the cost of imposing multiplicity m
at P. In the situation of 2.8, things are more complicated because the
condition we are imposing will force vanishing not only at points but also
along higher dimensional subvarieties. The fundamental principle, however,
is the same: the part of the intersection class we have produced supported
on Zj measures by definition the cost of imposing index t~ - m6 at ~~ . The
right hand side of 2.8 is the cost of ixnposing tj - mb at (; whence the
inequality.
More precisely, suppose 7r : Y - P is the blow-up of P along -EC, -m5 .

The ideal sheaf has been defined so that it is generated locally
by global sections of H° (P, C~p (d) ) . Hence if E denotes the exceptional
divisor of 7r, it follows that is numerically effective. Lifting
the construction of to Y one verifies that

Since x*Op(d)(-E) is numerically effective is deter-
mined by the growth of for large n. Pushing back
down to P, a direct computation (see [N3]) then derives 2.8 from 2.9.

We now pass to Vojta’s version of Dyson’s lemma on products of curves
of any genus. This is a simple and beautiful theorem which initially inspired
Vojta’s diophantine proof of the Mordell conjecture [V2] and serves as a
key ingredient in that proof. We begin by fixing some notation. Let Ci
and C2 be smooth projective curves over an algebraically closed field of
characteristic zero. Suppose L is a line bundle on Cl x C2. Let F1 = Pi x C2
be a fibre of the first projection and F2 = C1 x P2 a fibre of the second
projection for arbitrary points PI E Cl and P2 E C2. Let di = L - F2
and d2 = L - Fl so d1 and d2 measure the ’degrees’ of the line bundle L in
analogy to the multi-degree of our auxiliary polynomial in Roth’s theorem.
In fact, the two notions of degree correspond when Cl and C2 are both
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isomorphic to the projective line. If s is a non-zero section of L it makes
sense to talk about the index of s at a point x E 01 x C2: Definition 1.5
applies in this situation, with weights di, d2, as it is a local definition. We
let the genus of Ci be gl and the genus of C2 will be denoted 92.

Theorem 2.10 (Vojta). Suppose there is a non-zero section 8 E H°(Cl x
C2, L). moreover that are points in Ci x C2 such that
no two are contained in a proper product subvariety and let = t~.
Write Z(s) = E~=1 aiZ¡ where Zi is irreducible and let

Several remarks are in order to explain the strength of Theorem 2.10.
If, as will be the case in the Mordell conjecture, the genus of both 01 and
C2 is at least 2, then 2g1 - 2 + M &#x3E; 0 and one does not need to take the
maximum. In these circumstances, inequality 2.11 reads

..- ..

Moreover, we know that e  d2 } since any curve Zi which is not a
fibre of either projection satisfies 1 and 1. If we assume
that d1 » d2, as we did in Roth’s theorem, this will kill the second term
of 2.12 leaving us with In the case we dealt with previously
where both Cl and CZ had genus zero, we have cl (L)2 = 2d1d2 and this
gives the 1 on the right hand side of our previous Dyson lemma. On higher
genus curves, however, there are more line bundles because the diagonal
inside C x C is only linearly equivalent to fibres of the two projections
when the genus of C is zero. Thus if one can choose a line bundle with

cl (L)2 « then Vojta’s version of Dyson’s lemma says that no section
of L can have big index at any point of C x C. It is exactly in this fashion
that Dyson’s lemma will be applied to prove the Mordell conjecture.

The proof of Theorem 2.10 is essentially identical to that of Theorem 2.2,
the only difference being that taking derivatives is slightly more complicated
on a curve of larger genus: this, in fact, is what creates the 2gi - 2 occurring
on the right hand side of 2.11. To see the similarity between Theorem
2.2 and Theorem 2.10 we consider first the special case of Theorem 2.10
where both Cl and CZ are projective lines. In this case, the theorems
are qualitatively identical but the perturbation term involving 8 = 
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appears on the left hand side of Theorem 2.2 while it has been moved to
the right hand side in Theorem 2.10.

To see how our proof of Theorem 2.2 can be adapted to this new situ-
ation, suppose we make sure, when constructing our intersection product,
that the sections which we intersect all have rather than

settling for index ti - 28 as we did. In other words, after identifying s with
a polynomial f (X, Y) on an affine open subset and then differentiating
,f (X, Y), we increase the index by multiplying by some other fixed polyno-
mial. Of course, since the goal of the proof is to induct on the dimension
of product subvarieties, the polynomial one multiplies by should if possible
have zeroes in a proper product subvariety, i.e. one should just add fibres
of one of the two projections. Thus the simplest solution is to replace the
derivatives by

Indeed, the polynomials in 2.13 still have index at least ti at as for all i and
the possible decrease in index incurred by differentiating has been remedied.
The only problem is that the degree of the polynomial has been increased.
To minimize the increase, note that one of the points, say can be taken
to be (oo, oo) with respect to the affine open patch where we differentiate.
Then the derivatives do not affect the index of the projectivization of f
at ~1. Also, since each derivative decreases the degree of f, we have some
additional room to twist in order to get a section of In particular,
taking C2 = (0, 0), we note that Xi axi (f ) has degree  (di, d2) and index
&#x3E; t2 at ~2. So with this modification 2.13 gives us polynomials of bi-degree
(d, + (M - 2)i, d2). The number of derivatives which need to be taken in
order for the common zeroes to be contained in a proper product subvariety
is by definition the number e because is transverse to all non-fibral
C and so these partial derivatives always decrease the order of vanishing
along such components of Z(s). Thus the conclusion, if we run through the
argument used to prove Theorem 2.2, is that

Expanding 2.14 yields exactly 2.11 up to a factor of two on the second term:
for a discussion of how to remove this factor of 2, see [EV] §10.
We now turn to proving Vojta’s version of Dyson’s lemma in full gener-

ality. In order to take derivatives of a section of L on 01 x C2 we recall
the method used by Faltings ([F1] p. 560 and p. 566) in a more general
setting. The basic idea is this: the reason why one cannot just naively take
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derivatives of a section s E x C2, L) is first that there are no global
vector 2 and second that after identifying s locally
with some polynomial and differentiating this polynomial, the derivatives
no longer patch together to give a section of L. To remedy this we con-
sider the following construction. Suppose we are given a dominant map
pl : Ci - Then one can pull back the derivation on Pl via with

poles along the ramification divisor R of pl and so obtain:

Definition 2.15. Let s E H°(Cl x C2, L) and suppose Z C Z(s). Then
is the global section of + L(1riKcl)IZ

obtained locally by differentiating s via the pull-back of the derivation
on Opi by the composition pi - 1r1. Higher order derivatives are defined
analogously so for a &#x3E; 0

provided all partial derivatives D/3 ( s) with Q  a vanish identically along
Z.

Using Definition 2.15, one can derive Theorem 2.10 in exactly the same
manner in which we proved Theorem 2.2. The only difference is that when
we take e derivatives of the section s we have to twist by e7ri Kc¡. Since we
also have to add one fibre for each of the points ~~ in order to preserve the
index of the derivative of s at (i this means that the total twist we need in
order take the necessary e derivatives is

and, since deg(Kcl ) = 2g1 - 2 this is exactly what occurs on the right and
side in 2.11. Thus arguing exactly as before one finds, for J = max2g -
2+M,0}

which is 2.11 up to a factor of 2 on the second term. We already saw this
factor of 2 appear after 2.14 and to avoid it one makes a direct intersection
theoretic construction as in [Vl] or [EV] §10.
Two further remarks are necessary in order to turn this sketch into a

proof. First, one needs to be careful about twisting the line bundle L
because this can make it difficult to compute deg R~ in 2.8; indeed the
proof is cohomological in nature and requires that the sections constructed
all be sections of the same line bundle. This problem is not serious, however,
as we are merely twisting by fibres of the first projection and so one can
twist all bundles involved without adversely affecting the construction. The
second possible problem is that on higher genus curves, the derivative of
s only makes sense as a section of a line bundle on a proper subvariety,
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not as a section of a line bundle on Cl x C2. This too, however, plays no
crucial role in the proof of 2.14 (and its analogue on Cl x C2). Again the
proof is cohomological in nature and only depends on numerical effectivity
of a line bundle on a blow up of 01 x C2 (see [N3] for details) and for this
one does not need global sections but just non-zero sections on any curve
a c 01 x C2.

To conclude this section, it is worth pointing out that Theorem 2.10 does
not hold, as stated, on a product of three or more curves of genus &#x3E; 1: in
other words, the data of the degrees di of L and the top intersection number
c1 (L)t°p are not sufficient to bound the sum of the relevant volumes. The
reason for this, thinking of the proof of Theorem 2.10, is that the only
proper product subvarieties X of Cl x C2 are points or fibres of the two
projections. In both cases, the degrees dl, d2 determine, at least up to
numerical equivalence, the line bundle In higher dimension this is no
longer the case and we take advantage of precisely this fact in producing
a higher dimensional example where the direct generalization of Theorem
2.10 fails.

Let C be a smooth projective curve of genus g &#x3E; 1 and let Y = C x C.
Let Fl C Y be a fibre of the first projection, FZ C Y a fibre of the second
projection, and A’ = tl - Fl - F2. Finally, let n = (nl, n2, n3) be a 3-tuple
of integers. We consider divisors of the form

Since F1 + F2 is ample and Vn ~ (Fl + F2 ) = nl + n2, some multiple of Vn
is effective provided nl + n2 &#x3E; 0 and Vri &#x3E; 0. We have

Hence given any E &#x3E; 0 there exist nl, n2, n3 such that nl » n2 » 0, Yn is
effective, and

LetX=CxCxCandfixapointPEC. Let p : X -~ Y denote the
projection to the first two factors and let x3 : X ~ C denote the projection
to the third factor. Define

Choose 0 0 s E H° (Y, OY (Vn) ) and let t E HO(C,Oc(P)) be the section
whose divisor of zeroes is P. Then 1 for any point C E X
with ~r3(~) = P. A computation using 2.16 shows that
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Thus if Theorem 2.10 held for G one would find (up to an o(1) depending
on the constants implied in nj » n2 W 0) that

contradicting 2.17.
It should be noted that the particular divisor Yn which we chose above

will play a central role in Vojta’s proof of the Mordell conjecture to be
given in the next section. As was noted above, Vojta’s Dyson lemma is
extremely powerful when applied to a divisor like Yn as it says that no
section of H°(C x C, vn) can have large index at any point.

3. THE MORDELL CONJECTURE

In this section we will give a sketch of Vojta’s proof [V2, V3] of the
famous Mordell conjecture

Theorem 3.1 (Faltings). Suppose C is a smooth projective curve of genus
&#x3E; 2 defined over a number field k. Then C has at most finitely many
k-rational points.

Of course, Mordell originally conjectured Theorem 3.1 only for the case
where k = Q. This is in fact the case which we will ultimately consider,
not because it is intrinsically easier than the general case but because there
is less notational complication as Q admits only one embedding in C.
How does one use Vojta’s Theorem 2.10 to prove the Mordell conjecture?

Vojta’s beautiful idea is to take advantage of the freedom to choose the line
bundle L in Theorem 2.10. If C is a curve of genus at least one then there
are more line bundles on C x C than the pull-backs of bundles from the
two projections because the diagonal is not linearly equivalent to a sum of
fibres. This additional parameter of freedom allows for the choice of a line
bundle L (given in fact by the divisor Vn at the end of the last section)
such that 

,

As was noted after the statement of Theorem 2.10, if we also arrange for
di » d2 then 2.12 tells us that no section s E HO(C x C, L) can have
large index at any point. Thus all of the hard work we spent in Roth’s
theorem trying to show that the auxiliary polynomial P(Xl, ... , Xm) has
small index at p.,,Iq.,,,) is accomplished automatically, regardless
of our choice of section s.

This sounds too good to be true and indeed it is. It will turn out that
what was easy in the case of Roth’s theorem (namely to produce an arith-
metic reason why P must vanish at the rational approximating point) will
be extremely difficult in Mordell’s conjecture and conversely the difficult
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part of Roth’s theorem has been rendered easy by Vojta’s beautiful trans-
lation of Dyson’s lemma to higher genus curves.
Why is it so difficult to force a section s E H° (C x C, L) to vanish at a

rational point (x, y) E C x C? One reason is that unlike Roth’s theorem
which took place on Pl x ... x Pl where there are explicit coordinates, we
are now on a curve of higher genus and instead of constructing a polynomial
we are trying to construct a section of a line bundle. In addition to the lack
of coordinates there is also no way to evaluate a section at a point without
fixing a trivialization. These difficulties can all be dealt with by introducing
a metric on L but there is one even more fundamental difllculty: what will
play the role of a in our argument? How can we force a section of some
line bundle to vanish at (~, y) without actually geometrically imposing this
condition?

Here again, Vojta had a beautiful idea, inspired by Mumford’s argument
[M] which showed that if there are infinitely many rational points on a curve
of genus &#x3E; 2 then they are very ’sparsely’ distributed in the sense that the
size of their coordinates grows rapidly. Mumford’s argument uses height
theory and the Mordell-Weil theorem, two key ingredients in Vojta’s proof
of Mordell’s conjecture so we will begin by briefly recalling the key results.

We begin with a brief review of height theory. A thorough discussion
with proofs can be found in Chapters 3 and 4 of [Ll] . Suppose

Suppose that one chooses the projective coordinates ~Z to be relatively
prime integers. Then the Weil height of x is defined by

The logarithmic Weil height is defined by

More generally, if k is a number field and Mk denotes the set of absolute
values on k, normalized so that the product formula holds, then for x E
pn (k) one defines

These height functions unfortunately depend on the field k, but can be
normalized so as to avoid this problem. In particular, if x E then we
can define the normalized height

Similarly one defines
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The fact that these height functions do not depend on the choice of k is
shown in [Ll] pages 51-52 and consequently the subscript k can be ommit-
ted. One thus obtains height functions H and h defined on the algebraic
points P"(Qa). As noted above, to avoid the cumbersome notation, we
will limit sometimes limit ourselves to Q-valued points. Observe that by
definition h(x) is a non-negative function on 

Suppose now that L is an ample line bundle on a smooth projective
variety X and ~L : X -~ P’ is an embedding such that L.

Then one can try to define

The trouble with this is of course that the map IOL is not uniquely deter-
mined by L; it depends on the choice of n + 1 sections of H°(X, L). One
can show, however, that if Øl, Ø2 are two different embeddings of X, via
global sections of L, in Pnl and pn2 respectively, then

The result of this is that there is a map

Pic(X) - real valued functions on modulo bounded functions.

If L is a line bundle then the associated ’function’ (which is only well-
defined up to a bounded function) is denoted by hL. Furthermore, this
association is unique if one requires that for each very ample L in Pic(X),
the function hL must be equivalent to the function hL in 3.2. As an imme-
diate consequence of the definitions we see that if L is an ample line bundle
and hL any choice of height function associated to L then

We should note here that 3.3 will be the basic idea used to force a
section s E H° (C x C, L) to vanish at a point x. In particular, 3.3 can be
strengthened to say that if L®n is generated by global sections on an open
set U, for some positive integer n, then

Thus if we can choose L and x so that hL () W 0 then we can hope to force
all sections of L to vanish at x. Moreover, the vanishing is being controlled
by arithmetic properties of L and x as in Roth’s theorem.

On an abelian variety A one can use the group structure to obtain more
information about the height functions hL on A and in fact they can be
normalized so that one has honest functions rather than entire equivalence
classes modulo bounded functions ([Ll] Chapter 5 gives a full account of
this theory). The theory of heights on abelian varieties was developed by
N6ron and Tate. The basic results which we will use are the following:
suppose L is a line bundle on A. Let (-1~ : A -~ A denote the morphism
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given by taking inverses under the group law. A line bundle L on A is said
to be symmetric if

Thus, given a line bundle L, ~-1~ * L ® L is always symmetric. If L is a

symmetric line bundle on an abelian variety A then

for some quadratic function qL ; here quadratic means that q(x + y) - q() -
q(y) is a bilinear function of x and y. This means that it is possible to
uniquely determine hL by choosing qL within the equivalence class of height
functions modulo bounded functions. The function qL is called the N6ron-
Tate height function associated to L and it is denoted hL. The Néron-Tate
heights satisfy the following properties (we assume here that the abelian
variety A is defined over a number field k):

1: + ·

2: If L is ample and symmetric then ~j,(~) ~0, dx E A. Moreover,
h(x) = 0 if and only if x is a torsion point.

3: If L is ample and symmetric then (X, Y)L = 
is a symmetric bilinear form on A(k).

4: If L is ample and symmetric then hL is a positive definite quadratic
form on A(k)/torsion.

In order to fully utilize the strength of 4 above one needs

Theorem 3.5 (Mordell-Weil). If A is an abelian variety defined over a
number field k then the set of k-valued points of A, A(k), is a finitely
generated abelian group.

Using Theorem 3.5 together with 3 and 4 one sees that an ample sym-
metric line bundle L on A gives the vector space A(k) 0z R a Euclidean
structure:

Furthermore, with respect to this Euclidean structure, the cosine between
two points 0 ~ x, y E A(k) 8z R is defined by

Suppose now that C is a curve of genus at least 2 defined over a number
field k. Let J denote the Jacobian of C, viewed as the divisor classes of
degree zero on C modulo linear equivalence. Choose a divisor class co in
Pic(C) of degree 1 such that the embedding C - J given by P t-4 cl(P-ca)
gives an ample, symmetric e divisor (one essentially needs for co to satisfy
(2g - 2)co = Kc: see [SE] pp. 74-75 for details). In general, the class
co will only be defined over a finite extension of k so this will require a
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base change. With these conventions, Mumford’s Theorem can be stated
as follows:

Theorem 3.6 (Mumford). Consider the positive definite quadratic form
(x, y)e on J(k) and its associated I and cosine. There exists a
constant c depending only on C such that for all non-torsion points x, y E
J(k)

The upshot of Theorem 3.6 is that if cos(x, y) is close to 1 (i.e. the

angle between and y is small) then it must be that Ixl and ~y~ differ by a
multiple of at least 2g, i.e. the size of the rational points on J must grow
exponentially inside the finite number of slices of J(k)~R where the angles
are small.

Proof of Mumford’s Theorem. The proof of Theorem 3.6 is elementary,
using linear equivalence of divisors and functoriality of heights. To this end,
let pl : J x J - J and pz : J x J - J denote the projections to the first and
second factors respectively. Also, let p12 : J x J - J denote the addition
morphism. Consider the Poincar6 bundle on J x J:

One shows that if i : C -~ J denotes our embedding

where A C C x C denotes the diagonal and - denotes linear equivalence.
Using the functorial properties of heights, 3.6.1, and 3.6.2, we obtain for
any non-torsion x, y E 
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where - denotes equality up to the bounded function always implied when
writing standard Weil heights. It then follows from 3.6.3 that

But since A is effective 3.4 implies that for all a ~ y (i.e. for all (~, y) 0 A)
we have

Thus for afl x 0 y we have

, . - ... , ,....- .

Of course computing the constant implied in the 0(1) term would involve
going through each choice being made of a height function on C x C and
comparing it with the corresponding N6ron-Tate height function on J x J.

Mumford’s result falls short of showing finiteness of C(k) although it
certainly points in this direction by indicating that the rational points are
sparse in J(k). Vojta’s idea to improve upon this result is to associate
to each pair of points x, y E C(k) a line bundle L on C x C, similar in
form to Mumford’s bundle but designed specifically in order to force its
sections to vanish at the point (x, y) E C x C. As in Mumford’s argument,
Vojta’s bundles are linear combinations of the diagonal and fibres of the
two projections. To this end, we write Fl = co x C and F2 = C x co so
Fi and Fz are (numerically equivalent to) fibres of the first and second
projections respectively. Write

Vojta considers divisors of the form

By functoriality of heights and 3.6.1, 3.6.2, one can choose the following for
.

As explained above after 3.4, we would like to force sections of V to vanish
at the point (x, y) by showing that y) « 0. On the other hand, this is
of little use if L has no global sections so one must look for a very particular
line bundle.
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Vojta’s choice of divisor V is

where N » 0 and e « 1. It should be remarked that one needs to be

slightly careful here because one wants the coefficients d1, d2, d to be in-
tegers. This can of course be arranged by perturbing e or N slightly but
the perturbations may need to be different for dl, d2, and d. We will ignore
this as it has no practical impact on the argument so we will simply assume
that dl, d2, and d are integers. For this particular choice of V, we see from
3.7 that

Since g &#x3E; 2, the right hand side of 3.9 can be made negative if is
close to 1, i.e. if the points are nearly parallel in J(k) ® R. This is half
of what we need; it remains to show that this choice of divisor is linearly
equivalent to an effective divisor. In fact, an even stronger result holds

Lemma 3.10 (Vojta). Given E &#x3E; 0 if di » d2, with implied constant
depending on c, then the divisor V with d1, d2, and d as in 3.8 is ample.

Proof of Lemma 3.10. One can compute explicitly the self-intersection
number V2 = 2d1d2 - &#x3E; 0. On the other hand, Fl -f- FZ is an ample
divisor with

which implies that some multiple of V must be effective. Thus we may
assume that V itself is effective by increasing N. Moreover, the same
argument applies to V - E(Fl + F2) so this is also an effective divisor.

Taking derivatives of a non-zero section of V - + F2 ) as we did in
the product theorem gives a nef divisor and finally one can add F, + F2 to
make the divisor ample. We have differentiated a section of V - + F2 )
so that there is room to add the necessary fibres in order to make V itself

ample.

Lemma 3.10 and 3.9 form the foundation of the basic argument used to
prove the Mordell conjecture. Observe first that with the choice of V in

3.8, di and d2 are exactly the degrees appearing in in Theorem 2.10. Since
is small by construction, this means that as long as di » d2,

Theorem 2.10 will bound the index of any non-zero section s E H°(C x



465

C, V) at any point of C x C. Suppose now that we choose x, y E C(k) with
cos (x, y) ’" 1: this can be done if C(k) is infinite because for any e &#x3E; 0 one
can divide J(k) (9 R into finitely many regions such that any two points
lying in the same region have cosine at least 1 - e. Suppose in addition
that Ixl W lyl: one can do this because one of the regions of J(k) (9 R
described above must itself contain infinitely many points and hence points
of arbitrarily large height. We choose Ixl W so that dl W d2 by 3.8.
Since the Vojta divisor V is ample by Lemma 3.10, we can choose a section
s E x C, V) such that s (x, y) ~ 0. On the other hand, by 3.9 we have

Thus we can try to invoke 3.4 to force s to vanish at (z, y), thereby giving
a contradiction. As in the proof of Roth’s theorem, however, the argument
will not be quite so simple: just as we needed to choose a very specific
auxiliary polynomial P E Z~X1, ... , so in the proof of the Mordell
conjecture we will need to make a special choice for the section s E x

C, V ) . Consequently it will no longer be clear that ~(a:,~/) 7~ 0. But we
know in any case by the choice of V and Theorem 2.10 that ind~z~y~ (s) is
small so an iteration of the above height theoretic argument, applied to
derivatives of s, will ultimately lead to a contradiction.

In order to make this argument rigorous, we need to make the constant
in 3.4 explicit and then show that 3.9 contradicts 3.4. We will first deal
with the constant implicit in 3.4 which is equivalent to choosing a particular
height function in the equivalence class of hv. For this, choose no &#x3E; 0 such
that noco is a very ample divisor on C and fix an embedding

Next choose a positive integer s such that sFl + sF2 - A’ is very ample and
consider a second embedding

We will write B = sFl + sF2 - A’. Taking J, = (dI + sd)/no and 82 =
(d2 + sd)/no we have

By the basic properties of height functions we can choose

where the heights hnoFl’ hnoF2’ and hB come from the morphisms o and
1/J above. The advantage to and need for choosing height functions as in
3.11 is that in order to prove the Mordell conjecture we will need to deal
with a pair of rational points (ac, y) of C and allow them to vary: since the
height functions are only defined up to a bounded function, there will be no
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hope of deriving a contradiction unless the bounded functions are chosen
in a uniform way, independent of the pair (x, y). More explicitly, with the
choice of height functions in 3.11 we have

This is because the height functions associated to the embeddings 0 and
~ differ from the corresponding N6ron-Tate heights by fixed constants and
these heights are then extended linearly to compare 3.11 to its associated
N6ron-Tate height.

Having now chosen explicit height functions, we have a quantitative ver-
sion of 3.9. Recalling the definition 3.8 of d1, d2, and d, we see from 3.12
that

Thus if we choose Ixl and Iyl sufficiently large with respect to the implied
constant, then 3.13 gives an explicit negative value for a particular choice
of height function. We now need to work on making 3.4 effective in order
to contradict 3.13.

The problem with 3.4 as stands is that it is abstract, having nothing
to do with our particular embeddings and choices of height functions. We
have chosen height functions by choosing the two embeddings ql : C -&#x3E; P"

and 0: C x C - Pl. By 3.11 we have

In order to compare these three height functions, let the coordinates on
P’ be denoted by Xo, ... , Xn and on P’’n we take projective coordinates
Yo, ... , Let

denote the embedding given by bi-homogeneous monomials of bi-degree
(81, J2) in the coordinates Xo, ... , Xn. Let 0 # s E H°(C x C, V) and
consider the map

The map is defined on the open set U = {(x, y) E C x C : s(x, y) 34 01.
Since
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and since the linear series H° (C x (1)) is complete for ~1, ~2 suf-
ficiently large, it follows that there is a rational map

such that g o f = (38 on U, where the gi are linear forms:

Now suppose (x, y) E U and hence s(x, y) ~ 0. Consider

Since ~(a?,~/) 7~ 0 we have

- 

B

On the other hand, we have

And from this we derive

where the constant 0(1) measures the size of the coefficients of the linear
forms go, ... , gn. Combining 3.14, 3.15, and 3.16 gives

and this is exactly what we want, an effective version of 3.4 which can con-
tradict 3.13 if the implied constant term of 3.17 is small enough. Assuming
3.17 and 3.13 are contradictory, this means that the section s must have
vanished at the point (x, y) and we have achieved our goal, namely to force
s to vanish at (~, y) for arithmetic reasons.

Controlling the size of the constant 0(1) in 3.17 is very much analogous
to Siegel’s lemma bounding the size of our auxiliary polynomial in the
proof of Roth’s theorem. Indeed, as the section s E x C, V) varies,
the linear forms 9i also vary and we want to choose s so that these forms
have small coefhcients. Siegel’s lemma requires an integral structure in
order to work (one looks for solutions to equations with coefficients in the
ring of integers of k) and consequently we need to introduce an integral
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structure on H°(C x C, V ), the vector space in which we are looking for
our section s. This is relatively straightforward as it involves choosing a
model for C over Spec Ok - So we choose a model p : C - Spec dk whose
generic fibre is isomorphic to C. One asks in addition that C be regular,
reduced, projective, and flat over Spec dk: if necessary, one can pass to a
finite extension of l~ in order to achieve this. We then consider

The model X can be singular and some modification is necessary in order
to assume that X is regular and flat over Spec Ok (for details, see [V2] p.
514). Choose a very ample line bundle J’ on C whose restriction to the
generic fibre is noco and a very ample line bundle B on X whose restriction
to the generic fibre is B. Consider the two projections C and

7r2 : X - C. We define.Ti = 7riF and J’2 = 7r2:F. Thus we have

(3.18) x + J2noF2) = + 62J’2 ) 0z Q.
Hence + 62X2 ) is a lattice inside HO(C x + 

giving us the desired integral structure.

Now that we have an integral structure on H°(C x C, inpF1 + 62noF2 )
we can try to find a section s of ’small size’ by applying Siegel’s lemma.
There is, however, one other technical issue to deal with. In particular, we
need an intrinsic notion for the size of s which is not at all clear since there
is no fixed basis for H°(C x C, ~inoFl + b2nOF2) to give us coordinates
whose size we can attempt to bound. Bombieri [B2] introduces coordinates
and gives a very explicit construction. We will instead follow Faltings [Fl] ,
introducing metrics on our line bundles and use these to recover the height
functions we are interested in computing.

Suppose Y is a smooth complex variety and L a line bundle on Y. Let
be an open cover of Y on which we have trivializations

Then we have the transition functions

which are sheaf isomorphisms and hence can be identified with multiplica-
tion by a unit C 

Definition 3.19. A metric on a line bundle L is a collection of smooth
real-valued functions

satisfying the compatibility relations
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The importance of a metric p on a line bundle L is that it allows one to
measure the ’size’ of a section s E at a point y E Ui:

The metric p is exactly what is needed to make this value independent of
the open set Uz on which one evaluates the section s.

For us, the most important example of a metric is the standard metric
on C7Pn (1). Suppose the projective coordinates are Xo, ... , Xn and we take
the standard open affine cover Ui = {P E P’ : 0}. Then we define
p by

One verifies that this collection of (pil does indeed define a metric on
Metrized line bundles, like heights, have good functorial prop-

erties. In particular if (L, p) and (M, u) are metrized line bundles then
(L 0 M, p 0 Q) is also a metrized a line bundle. Similarly (L~-1, p-1) is a
metrized line bundle and if f : X - Y is a morphism and (L, p) a metrized
line bundle on Y then ( f * L, f * p) is a metrized line bundle on X.
We would like to use metrics in order to recover the height functions

defined in 3.11 so that now all of the information we need in order to prove
the Mordell conjecture will be encoded in the pair (X, V) where V will
be a metrized version of the Vojta divisor V exetended to our model X.
We need one more definition before putting everything together. Suppose
Y - Spec Z is regular. A metrized line bundle G on Y is a line bundle G
together with a metric on G over the complex points y 0z C. Recall the
line bundles and X2 on X. These give rise to maps to projective
space

endowing ~2, and B with metrics; this is completely analagous to the
manner in which we chose height functions for Fi , F2, and .B and so we
have used the same letters to denote the maps to projective space.

At this point, to recover our height functions, we will assume that C and
X are actually defined over Spec Z in order to avoid considering multiple
complex models. For a full discussion of this with details in the general
case, one can consult [FW1] Chapter II. Suppose 0 # s E H° (P’, Opg (1))
and suppose P E is a point on the generic fibre of pn - Let Ep
denote the closure of P in Pz so that Ep is a section of Pz over Spec Z .
Let

denote the morphism whose image is Ep .



470

Definition 3.20. Suppose s E Ho and suppose G denotes

the pair consisting of Opn (1) with the standard metric p on Opn (1). We
define the degree of G at P by

where s E H° does not vanish identically along Ep and r
denotes global sections.

One can check that the definition of deg£(P) does not depend on the
choice of s. Indeed, suppose s’ E H° (P-, Opg (1)) with s’ not identically
zero along Ep. Then, restricted to Ep, we have s = rs’ for r E Q. Equiv-
alently, ps = qs’ for p, q E Z. Thus it suffices to show that the definition
of deg£(P) does not change when one replaces s by as for a E Z. But this
is immediate as both terms in the definition of deg£(P) change by log a
under the substitution s ~ as.

Note moreover, for future reference, that identifying Ep with Spec Z
with C7Spec Z we obtain u xs E Z. Thus if v denotes a p-adic

norm of Z we can define

With this convention Definition 3.20 translates into the following:

where the sum ranges over all places, both finite and infinite, of GZ. This
definition of the arithmetic degree of P makes it clear that it does not

depend on the choice of s and will also be useful in §5.
We now return to our model X over Spec Z. We have extended the Vojta

divisor V to a divisor V on X which inherits a metric it from the metrics on
:fi,:F2, and B. Suppose (x, y) E and let be the corresponding
section over Spec Z. We claim that

Using the notation of Definition 3.20, we can establish 3.22 provided that
we can show

Indeed, both sides of 3.22 are defined via fixed maps of X and C x C to
projective space, extending by linearity. But 3.23 is routine and can be
found in [FW1] Chapter 2. Observe that according to Definiton 3.20 we
have

The advantage to this formulation in terms of metrics on line bundles
is that we are now coordinate free and have a quantitative formulation of
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3.17: in particular, according to 3.24 in order to obtain a lower bound
for degv(Exy) it is sufficient to find a section s E H°(X,V) such that

0 and is(P)I,, is small. At this point, we have finally come full
circle and returned to the simple terms of Roth’s theorem where we sought
an auxiliarly polynomial with coefficients of small size and which did not
vanish at P. To bound the size of the coefficients, we invoked Siegel’s
lemma. We now formulate a more general version of this principle due to
Faltings [Fl]:

Lemma 3.25 (Faltings). Suppose V, W are metrized vector spaces with
lattices AV C V and C W of maximal rank. Suppose 0 : V - W
and C Ayy. Suppose there exists a constant C &#x3E; 2 such that each
non-trivial elements of Atr or Ayy has norm at least 1/C. Furthermore, we
assume that Ay is generated by elements of norm at most C and that the
norm of the most C. Let b = dim(V) and a = 
Then there exists 0 ~ a E fl Ay with (C3bb!)1/a.

Before applying Lemma 3.25, we note how it generalizes the classical
Siegel lemma (Lemma 1.11). Suppose we apply Lemma 3.25 to the case
where V = Qn and W = Ql where V and W are endowed with the
standard metric and we take Zn and Zn as our respective lattices. Then
the map 0 is given by an n by m matrix M with integer entries which we
suppose are bounded in absolute value by A. Then the norm of the map 0
is at most nA. One checks readily that nA satisfies the other hypotheses
for the constant C in Lemma 3.25 and the conclusion is that there exists
an integer vector (xl, ... , ker( 1/J) satsifying

This is slightly weaker than Lemma 1.11 but qualitatively similar. Fi-

nally, for future reference, we give the full result as stated by Faltings ([Fl]
Proposition 2.18):

Lemma 3.26 (Faltings). With notation as in Lemma 3.25, suppose

Ai = min{ À &#x3E; 0 : there exist i linearly independent elements of
Vwith norms  Al.

Then C 

How do we apply Faltings’ version of Siegel’s lemma ? Faltings [Fl] had
the insight to use a Koszul-complex. To write down this sequence, recall
that 0 : : C x C - P’’’z is an embedding via sections of B and Y are the
projective coordinates on Furthermore, let ’Yi = ’r/J*Y;,. Consider the
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following exact sequence:

where

and
,, . - -

The lattice structure on these vector spaces comes from the arithmetic
model X (see 3.18). Some care is needed here (for details, consult [F2] pp.
567-8) because the sections -yi may not extend to sections over Spec Z and
consequently the sequence 3.27 may not be defined on the respective lattices
inside the cohomology groups. This is not a serious problem, however, in
this case, as the denominators over Spec Z can be cleared uniformly in d.
The vector spaces in 3.27 inherit metrics from the metrics we have put

on and ~3. Faltings applies Lemma 3.25 to the map ~C3 where the
cohomology groups are given the associated sup-norms: if L is a line bundle
with metric m on a smooth projective variety X and s E H°(X, L) then
we define

With these norms on the vector spaces in 3.27, Faltings’ Siegel lemma 3.25
gives 

-

with suitably bounded.
In order to compute the upper bound for we need to evaluate

the constant C in Lemma 3.25. If we choose generators of the cohomology
groups and H°(X,,Ci) then monomials in these will
give generators of the relevant lattices such that all norms involved are
 0(di + d2 + d). In addition we need to compare the metric with which
we have endowed

with the one which it inherits as a subspace of

For the details here, one can consult [EE] Chapter XI Lemma 3.1 or ~V4~
13.2. Once these technical issues have been dealt with, we obtain from 3.24
a bound of the form
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At this point, one must do a lot accounting to check to see that 3.28 gives
a better lower bound than 3.22 and 3.13. Since 3.22 only holds under the
assumption that s(x, y) # 0 the conclusion, as desired, is that s(x, y) = 0.
One would like to iterate this argument, applying it to derivatives of s

to give a lower bound for ind(z,y) (s) . Definition 2.15 gives us a means to
take derivatives of s over Q provided that all objects involved, i.e. the

projections to Pl and the derivation on P1, are defined over Q. This may
introduce poles when extending to our model X over Spec Z but this can be
corrected by multiplying by a fixed integer a. Moreover, since the derivative
is a linear map it can only increase norms by a fixed constant. In order to
make this argument rigorous, one needs to check uniformity of the constants
involved, i.e. taking a derivatives of s will only increase the norm of s by
O(a) for some fixed 0(l). There is some further subtlety here because s
and 8s are not sections of the same line bundles but the respective line
bundles differ by fibres and these can be metrized in a uniform way. For
precise details on this construction, one can consult [Fl] pp. 570-571 or

[EE] pp. 103-105.
Vojta [V4] §6 argues in a slightly different fashion. In particular, given a

point P E C x C, he takes a local generator sp for Ocxc(V) on a product
open set containing P. He then defines the derivative by taking a leading
term in the Taylor series expansion of s/sp. He then verifies that if the
sp are chosen "uniformly" as (dl, d2, d) varies, then the derivatives do not
increase lslsup too much (see [V4] Lemma 6.2).

We now summarize the argument used to prove the Mordell conjecture,
returning to the simple model of Liouville’s theorem. So we first assume
that there are infinitely many rational points of C and then choose x, y E
C(Q) such that 0 « I x I « Iyl I and cos(x, y) ’" 1. How large one needs
to take lxl and is determined by 3.13 as we need G 0. In

addition, one needs to make sure that jyj » Ixl so that Theorem 2.10 will
apply to the associated divisor V giving a very good bound for the index
of any section of H° (C x C, V) at any point. Once all of these choices have
been made, the basic argument has the same steps as Roth and Liouville :

Step 1: Choose 0 # s E H°(X,V) so that I s I sup,,, is small.
Step 2: Show that 
Step 3: Show that C 0.

The bounds in Steps 2 and 3 contradict one another, forcing s to vanish on
E,,y. Taking derivatives gives a lower bound for ind(z,y) (s) and we finally
obtain a contradiction from Theorem 2.10.
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4. RATIONAL POINTS ON SUBVARIETIES OF ABELIAN VARIETIES

Faltings [Fl] extended Vojta’s arithmetic tecnhiques to prove finiteness
results for some higher dimensional subvarieties of abelian varieties. The
main result is the following:

Theorem 4.1 (Faltings). C A is a subvariety of an abelian
vdriety with both X and A defined over a number field k. Suppose fur-
thermore that X contains no translates of a non-trivial abelian subvariety
B C A. Then X(k) is finite.

Of course the Mordell conjecture is a special case of Theorem 4.1 since a
curve of genus at least 2 can not contain an elliptic curve inside its Jacobian.
In [F2] Faltings generalized this result to deal with the case where X can
contain translates of non-trivial abelian subvarieties B C A.

Theorem 4.2 (Faltings). Suppose X C A is of general type where both X
and A nre defined over a number field k. Then X(k) is not Zariski dense
in X.

Using Ueno’s theorem (see [L2] p. 35) on the structure of subvarieties of
abelian varieties, one can in fact derive from Theorem 4.2 an even stronger
corollary: namely, if X C A is a subvariety and X(k) is dense in X, then
X must be a translate of an abelian subvariety.
We will first sketch the proof of Theorem 4.1: the proof of Theorem 4.2

is rather different and relies more heavily on the techniques of arithmetic
intersection theory. It is worth remarking from the beginning that there is
no analogue of Theorem 2.10 on products of higher dimensional varieties.
The fundamental difficulty, looking back at the proof of Dyson’s lemma,
is that the ideal sheaves II". d t. which were introduced in the proof always
have mutually disjoint support (see 2.3): this is no longer the case in higher
dimension and consequently the intersection theoretic construction used to
prove Dyson’s lemma breaks down as it is no longer possible to count inde-
pendently the contribution of each point (i. We will therefore introduce the
proof of Theorem 4.1 by returning first to the Mordell conjecture and show-
ing how our proof can be modified slightly to avoid appealing to Dyson’s
lemma.

Vojta’s Dyson lemma (Theorem 2.10) was invoked in order to establish
that the ‘auxiliary section’ 0 ~ s E H°(X,V) with small does not
have large index at (x, y) E C x C. This contradicts the lower bound
for obtained using the degree estimate 3.28 in conjunction with
Faltings’ Siegel lemma 3.25. Faltings’ method [F1] is to explicitly construct
s so that it is known to have small index at (x, y). Once this is accomplished,
it is no longer necessary to appeal to Theorem 2.10.
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Recall that in Lemma 3.10 it was shown that the Vojta divisor

is ample. But V has been chosen so that it is also very ’close’ to the

boundary of the ample cone of C x C; if d were increased slightly, the
new divisor would no longer be ample because it would no longer satisfy
V 2 &#x3E; 0. Moreover, Theorem 2.10 would not hold if V were not close to
the boundary of the ample cone: indeed, in this case one can always find
a section of H° (C x C,V) with large index at any given point. Faltings’
approach uses a different divisor which will be similar in form to the Vojta
divisor V. In particular we have

But the choice of dl, d2, and d is as follows:

Note that this is identical to Vojta’s choice of divisor (see 3.8) except that
d, and d2 have both been increased as v’ 9 + f has been replaced by g - e.
It follows immediately from Lemma 3.10 that F is ample but unlike the
Vojta divisor it is not close the boundary of the ample cone: indeed it has
been obtained from V by adding the ample divisor

to V.

Suppose now that E is chosen sufhciently small so that

Note that since in practice e can be taken arbitrarily small 4.4 is a very
weak condition; since g &#x3E; 2, one could in fact even assume that g - E -1 / 2 &#x3E;

The exact value of E is not, however, important in the argument.
By 4.4

is an ample divisor on C x C. Choosing d1 and d2 sufficiently divisible,
we can assume that F - c(dlfl + d2F2) is generated by global sections,
regardless of which fibers Fl and Fz are chosen. In particular, given any
polynomial f((I, (2) of degree  (dl, d2), where (i is a local parameter at x
and (2 a local parameter at y, it is possible to find a section s E F)
whose truncated Taylor series expansion about (x, y) is f((1, (2). In other
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words, if denotes the ideal sheaf of functions with index &#x3E; e at

(~, y) then the map

is surjective.
Now, as in the proof of the Mordell conjecture, we extend F to a line

bundle J’ on the arithmetic model X for C x C over Spec Ok. Since F,
like V, is a linear combination of fibres and the diagonal, one can metrize
~ using the metrics on Y2 , and xi, extending by linearity. Suppose, in
analogy to the Vojta divisor V in §3, we write

Consider now the Koszul complex for F, analogous to 3.27 for the Vojta
divisor V:

Each vector space in 4.6 inherits a metric from the metrics on ~1,~2, and
B.

Consider the vector space

By 4.5, we can estimate the codimension

On the other hand, by 4.3 and Riemann-Roch on C x C,

Choosing d, di and d2 sufficiently large to kill the 0(di + d2 + d) term in
4.8 and combining 4.7 with 4.8, we obtain

n ~ n , ~,. ". ~..,

Now we apply Lemma 3.26 with i = dim U, giving for
some constant A satisfying the hypotheses of Lemma 3.26. Thus there exist
dim U + 1 independent sections si E H°(X, 0), each satisfying

where b = (m + I)h° (6inoFi + b2noF2) and a = h°(C x C,V). Using 4.9
we see that 

-
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and consequently we obtain independent sections sl, ... , sa+1 each satisfy-
ing

By the choice of a, at least one of these sections s - 8i must satisfy
and one then checks that the bound on the norm of s, 4.10,

is good enough to force s to vanish at (x, y). Applying the same argument
to derivatives of s gives a lower bound on ind(z,y) (s) which is larger than E,
giving the desired contradiction.

The proof of Theorem 4.1 has the same structure as the proof of Mordell’s
conjecture outlined above. We will first give an overview of the strategy
and key steps and then fill in some of the missing details. As in the proof
of the Mordell conjecture, Theorem 4.1 is proven by contradiction so we
begin by assuming that X(k) is ’te.

Step 1: Fix an ample symmetric line bundle L on A giving us the cor-
responding positive definite quadratic form on A(k) 0z R. To an

m-tuple of points x = (xl, ... , one associates a line

bundle Lz on XI. Note that in the Mordell conjecture m = 2 but
in the higher dimensional case one can have m &#x3E; 2. One chooses Lx,
just as we did in the Mordell conjecture, so that

The line bundle Lz is, as in the proof of the Mordell Conjecture,
a linear combination of two types of line bundles, Poincar6 bundles
and pull-backs of L via the projection maps. More precisely, let 7ri :
Xm --t X denote the projection to the ith factor and for 1  i  m -1,
consider the map

Then, exactly as we did for C x C, we consider the Poincar6 bundle

The line bundle Lz is a linear combination of the bundles 7r; LIXm
and chosen precisely to guarantee negativity of the height
at (~1, ... , 7 xm).

Step 2: Next, one chooses integral models for X and A and extends Lz
to a line bundle Gx on the integral model X for X. We put metrics
on all of our line bundles and then apply Faltings’ Siegel lemma 3.25
to obtain a section s E of small norm and as in 3.28
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Step 3: By the choice of (xl, ... , and of height functions we obtain

Steps 2 and 3 force s to have large index at (xl , ... , zm). Unfortunately,
without Dyson’s lemma this is not yet a contradiction. We can alter the
argument slightly, however, by applying Lemma 3.26 in Step 2 instead of
Lemma 3.25. In particular, perturbing Lz by a small amount, we can
assume that we can specify any leading terms of index  6 at (xl, ... , zm)
and find a section of Lz with this truncated Taylor series expansion. As in
the revised proof of the Mordell conjecture, we let

As in 4.7, the fact that we can specify any leading terms of index  8 gives
an estimate for the codimension of U

for some function f of 6. The refined Siegel Lemma 3.26 then gives a section
index  9 at (~1, ... , with suitably bounded and a contradiction
is then obtained establishing Theorem 4.1.

The main technical issues in this sketch which remain to be clarified are
the choice of the line bundle Lz and its positivity, in Step 1, and how to
take derivatives of s once the bounds in Steps 2 and 3 force s to vanish at
(xl, ... , zm). We will deal first with the choice of L.. So suppose we are
given an (~1, ... , of rational points of X and we wish
to find a line bundle Lx, preferably ample, so that hL. (a~) « 0. This is a
more delicate question when X is of higher dimension essentially because
in this case the diagonal A C X x X is no longer a divisor (a fact which was
essential in constructing the Vojta divisor V on C x C) and consequently
more work needs to be done in order find the appropriate line bundle Lx.
The important observation is that in the proof of Theorem 3.6, the diagonal
A C C x C occurs in a linear equivalence relation involving the Poincax6
bundle.

Following Mumford’s lead, Faltings’ choice of line bundle on as

noted above in Step 1, is a linear combination of Poincar6 bundles and

pull-backs from the factors. To see how the bundle is chosen, first consider
how we can choose a line bundle M on X’"~ such that hM(Xl,... , 0.
So as in §3 we fix an ample symmetric line bundle L on A and let - I
denote the absolute value induced by hL on A(k) oz R. As in the Mordell
conjecture, we assume that ] is an integer for all i. Let N = [
and set
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is an integer for 1  i  m. Consider the morphism 0, : 
given by

Suppose, again as in the Mordell conjecure, that we choose the points
xl,.. - , to be nearly parallel in A(k) Oz R, i.e. we assume that

1 for all i ~ j . Then I is close to 0 and
hence 4.13 and the choice of si implies that

for J = cos(xz, « 1; the absolute value )’) on ~z R
is the one induced by ( ’ I on each factor. For a postive integer r, we
will denote by C~Ar ( 1, ... ,1 ) the line bundle where : Ar --t
A is the projection to the ith factor. Similarly, we let Oxr ( 1, ... ,1 ) =
~Ar ( 1, ... Suppose now that we choose

By functoriality of heights, we can choose

w i , ,

Thus we have produced a line bundle M,, depending on the m-tuple
x = (xi.... with h MIJ (x) small. Moreover, Ms is the pull-back of an
ample divisor on Am-’ and consequently it is nef on In fact, if one
knew that the morphism ~~ : xm --t Am-l were finite onto its image, this
would imply that Ms is ample on X" . Once this is known, one then needs
to check how close M8 is to the boundary of the ample cone of and
then subtract the appropriate divisor to make the height at ~c negative.

In practice, showing that Ms is ample and bounding its distance from
the boundary of the ample cone take place together. Therefore, we state
the full result and will divide the proof up into several pieces: for a detailed
discussion of the proof, see [EE] Chapter IX.

Lemma 4.16. Let
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where we assume that tsr E Z for all i. There exist positive integers
r, m &#x3E; 0 and a positive real number e such that for any integer m-tuple
(81, ... satisfying &#x3E; r for 1 ~ i ~ m - 1 the line bundle.

= (1, ... ,1) - FE is ample on xm.

Note that Ms = Mo,s and that = In particular once checks
by 4.15 that

provided 5 is chosen sufficiently small with respect to E, which one can

arrange from the beginning since 8 does not enter the statement of Lemma
4.16. Thus Lemma 4.16 produces precisely the analogue of the Faltings
divisor F used above in the revised proof of the Mordell conjecture.
To establish ampleness of ME,s Faltings uses Kleiman’s criterion for am-

pleness. In particular, it is enough to produce Eo such that is nef for
all s satisfying the hypotheses of Lemma 4.16. Indeed, taking e = 6o/2, one
sees that 

_

and the right hand side is ample by Kleiman’s criterion.
Next note that Lemma 4.16 implies that M~ = is itself an ample line

bundle under the hypotheses of the lemma. This means precisely that the
map 0, : xm -7 Am-l is finite onto its image. Faltings begins the proof of
Lemma 4.16 by showing that 0, is finite onto its image for a particuldr choice
of s. Then, using intersection theory and a higher dimensional version of
the product theorem, he is able to prove Lemma 4.16.

Thus we begin by choosing particular values

and then show that the corresponding map q5t is finite onto its image. This
follows from [Fl] Lemma 4.1 which says that for m sufficiently large the
map 0: Am-1 given by

is finite onto its image. Indeed, consider the finite map ~ : Am-l
given by

_ - -- ft _ _ -

Since Ot = q5 0 1/J it follows that Ot is also finite onto its image. The proof
that 0 is a finite map is more involved and it is for this that one needs to
take m possibly quite large.
We conclude that Mo,t = ~t C~Am-1 ( 1, ... 1) is ample on It follows

of course that M,,t is also ample for all e sufficiently small. In order to

quantify this, Faltings uses the following
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Theorem 4.19 (Product Theorem). Let P = pnl x ... x Pnm . Let d =

(dl, ... , dm) be an m -tuple of positive integers and suppose

Firtall y, let

Given 3 &#x3E; 0 there exists r &#x3E; 0 such that whenever r f or all
i the set Z6 is contained in a finite union of proper product subvarieties
Y1, ... , Yk- Moreover, the degrees of the subvarieties Yi with respect to
C~p (1, ... ,1) are bounded in terms of ~.

The statement of Theorem 4.19 is identical to that of Theorem 2.5
with the additional information that the proper product subvarieties have
bounded degree: of course, in Theorem 2.5 the only possibility for each YZ
is a point or each having degree one. The proof of Theorem 4.19 is
slightly more involved than the proof of Theorem 2.5 but the fundamental
principle is the same. Suppose W C is an irreducible component
which is not contained in a proper product subvariety; in particular, W is
not a point. Let

By a dimension argument, there exists 0  i  r - 1 such that Zi6/r and
Z(i+1)6/r have a common irreducible component Z with W C Z. The strat-
egy of the proof is to show that Z is itself a proper product subvariety. To
see why this is the case, let c = codim( Z, P ) . If D1 ( s ) , ... , Dc(s) denote
general derivatives of s of then W will be an irreducible com-

ponent of nj=lZ(Dj(s)). On the other hand, each of the derivatives Dj (s)
still has index at least A along Z because Z is also an irreducible component
of This gives a lower bound for the intersection multiplicity

and it turns out that this bound is too big if Z is not a product subvariety
of P. For details of the argument see [Fl] Theorem 3.1 or [EE] p. 80.
We would like, in practice, to be able to apply the product theorem to

a section a E H°(X, Ox (d)) where X C P is a proper product subvariety.
The difficulty encountered here, as we saw in formulating Dyson’s lemma
for higher genus curves, is that there is no simple way to differentiate a on
X. To do so requires twisting the line bundle Ox ( d). One can, however,
project from X to a product of projective spaces and apply the product
theorem there as on pp. 565-6 of [Fl]. Thus we will continue to use
Theorem 4.19 on proper product subvarieties.
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The product theorem is applied in the following fashion: suppose 0 ~ s E
Provided the degrees dj are chosen to be sufficiently rapidly

decreasing, Theorem 4.19 can be applied to show that Z6(S) is contained
in a finite union of product subvarieties of bounded degree. The conclusion
is that M,,, is generated by global sections, namely the derivatives of s,
on a large open subset. One would then like to apply the same argument
inductively to the exceptional proper product subvarieties Yi of Theorem
4.19. The inductive step is cohomological in nature and is achieved via the
following result:

Lemma 4.20. Let s = (sl, ... , be an arbitrary of positive
integers. Suppose Y1 x ... x Ym C P is a proper product subvariety with

for and for some real numbers N. Then there exists E(N) &#x3E;

0 such that for all 8

To see how to derive Lemma 4.16 from Lemma 4.20, choose E1 so that
Lemma 4.20 applies with Y = X for all i. Thus for any s, if ns sufficiently
large there exists a non-zero section 0 ~ Us E H° ~X’’~, We choose
the number r in Lemma 4.16 to guarantee that Theorem 4.19 applies to
the sections us. Thus we conclude that each of the line bundles M® ~a is

generated by global sections outside of a finite union of proper product
subvarieties Y = Y, x ... of course, the subvarieties Y may depend on
the particular choice of s. Moreover, Theorem 4.19 tells us that

Choose 0(cl), where O (E1 ) satisfies 4.21, and choose E2 - e(Ni),
with defined as in Lemma 4.20. For each proper product subvariety
Y appearing above in the first step of the induction, we apply Lemma
4.20, with N = Nl, giving sections of H° (Y, which generate off of
a finite union of still smaller product subvarieties. We can now iterate this
argument, possibly increasing the value of r at each stage when we need to
apply Theorem 4.19, and eventually we find c &#x3E; 0, namely the minimum of
the ei encountered in the inductive procedure, such that M,,, is xm
for all s satisfying the hypotheses of Lemma 4.16; since Theorem 4.19 needs
to be applied at each stage of the induction, one must choose the largest
value of r which occurs in the process. As noted above, this is sufficient to
prove Lemma 4.16.

Proof of Lemma 4.20. The proof of Lemma 4.20 can be found in [V4]
Proposition 11.5 or [F2] Proposition 3.4 and we sketch the important points
here. There are two steps in the proof of Lemma 4.20: we first establish
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the result for e(N) = 0 and then refine the argument to obtain a positive
lower bound for e(N). Recall that

Faltings evaluates intersection products of the form

for product subvarieties Y = Yl x ... x Y",, C The Chern class

ci ( 1, ... ,1 ) ) can be represented using two types of divisors, name-
ly pull-backs 7r¡ L and the Poincar6 bundles defined in 4.11. In the inter-
section class 4.20.1, most terms give zero contribution. Faltings shows that
those terms which are non-zero are all proportional to and
hence

for some constant cy. Since we know for the particular choice s = t, with t
as defined in 4.18, that ~t C~A ( 1, ... ,1 ) is ample it follows that cy &#x3E; 0 for
all Y.

Since C~Am- ~ ( 1, ... ,1 ) is ample it follows that ~~ C~A~- ~ ( 1, ... ,1 ) ) is nef
for all s. Thus we conclude from 4.20.2 that ~~ C?A,~- ~ ( 1, ... ,1 ) ~ Y is also
big for any product subvariety Y i.e.

Taking Y = X’, 4.20.3 establishes Lemma 4.20 for E(N) = 0. In order to
obtain a positive lower bound for E(N) suppose

Y=Yl x ... 

is given with deg(Yi)  N for all i. Observe that cy in 4.20.3 must be an
integer and hence cy &#x3E; 1: this follows from 4.20.2 once one observes that
the intersection number must be an integer.

Suppose Dn is an effective representative for M§f? - Mf7 . In other words,
in the notation of Lemma 4.16, Dn is an effective representative for FEfSn.
Consider the short exact sequence of sheaves on 

and the beginning of its associated long exact cohomology sequence

Thus we find
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Assuming without loss of generality that the fixed polarization L on A,
used to define is very ample, we can choose

where Dij are general effective representatives for H°(Yt, L). Applying
4.20.5 gives

Since N for each i we find for n » 0

Combining 4.20.6 and 4.20.7 shows that
/

Choosing f sufhciently small and applying 4.20.3 plus the observation that
1 concludes the proof of Lemma 4.20.

This completes Step 1 of the proof of Theorem 4.1; in particular, we
have associated to an m-tuple x = (xl, ... , zm) of rational points of X a
line bundle so that 0 (see 4.17). Moreover, provided that

( « ... « ~ and hence s 1 » ... » sum, we know from Lemma 4.16
that the line bundle ME,s is ample. Consequently, replacing f with c/2,
we can assume that there is a section s E H° with arbitrary
truncated Taylor series expansion at x up to degree In
order to find a section 0 ~ a E H° (X’n, ME,s) of small index at x and small
size, we wish to apply Lemma 3.26 as we did in 4.10. This will require an
arithmetic model for and an analogue of the Koszul complex 4.6.

In order to set up the arithmetic needed for the Koszul complex, we first
choose a model A for A, regular and flat over Spec Then we extend
the polarization L to an ample line bundle ~C on and we fix a metric
on ,~, given for example by a projective embedding of A in PÔk. As in the
Mordell conjecture, we will try to metrize all line bundles functorially in
terms of 1-". Suppose X is the closure of X in A, defined over Spec Ok. We
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would like to extend to a line bundle ME,s on and then endow

ME,s with a metric: here

To extend to X"~, observe that can be expressed as a linear
combination of two types of line bundles, namely the pull-backs via the

projections and the Poincar6 bundles Q,;+i defined in 4.11. Analogously to
the fibres Fl and F2 in the Mordell conjecture, the line bundles 7rs L extend
to 7ri.c and hence inherit a metric from the metric 1A on G. Similarly for
the Poincar6 bundles, one can choose the model so that there is a line

bundle P on A X gpec pk whose restriction to A x A is P; we then fix a
metric v on P and inherits a metric functorially fromu and v.

Next, we deal with the analogue of the Koszul complex 4.6. This complex
arose from a set of injections

without common zeroes in the sense that for any section s E H° (C x C, F)
the common zeroes of ~ f a ( s ) ~ are contained in Z ( s ) . Working over k,
we can try to implement the same technique on X~ . Returning to the
definition of ME,s, suppose we define a map p, : Am -+ in analogy
with 4.13, by

where as before s = ( s 1, ... , Using the theorem of the cube, one
checks that

Choosing a set of generators for 0 Am-l (1, ... ,1)) gives
sections 3i - which generate p~ C~Am (1, ... ,1), thus giving rise to a
Koszul complex for each positive integer n:

(4.23) 0 -+ H° (xm, 

Faltings and Vojta procede to embed MO-’ into

by tensoring with sections of the appropriate line bundle, giving a new
version of 4.23 where the bundles in the third direct summand are all of
the simpler form
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Taking n large then allows one to choose generators for the second and third
cohomology groups in 4.23 by taking polynomials of degree n in a fixed set
of respective generators, precisely as we did in the case of the Mordell
Conjecture. This is necessary because when we apply Lemma 3.26, we
need a bound for the constant C appearing therein.

At this stage there are difficulties as we need an integral structure on
the vector spaces in 4.23. The central difficulty here is that the morphism
p, does not necessarily extend to Am and consequently the line bundle

,1) does not necessarily extend to the arithmetic model A7.
On the other hand, we have already chosen extensions of and of
the Poincare bundles to Am and hence any linear combination of such
bundles also admits an extension. But (see [V4] 13.1 ) by the theorem of the
cube, if a and b are integers and f a~b : A x A -~ A denotes the morphism
given by = ax -f- by, then

here P denotes the Poincar6 divisor on A x A. Since all line bundles oc-

curring in 4.23 can be expressed in terms of bundles of the form 
we can use the isomorphisms of 4.24 to obtain an integral structure on the
cohomology groups occurring in 4.23.
One needs to bound the denominators introduced by the maps a and

(3 in 4.23 as these maps are not a priori defined over Spec this is

done [V4] Corollary 13.7 or [EE] Proposition 3.3. Then, as in 4.10, one
applies Siegel’s lemma 3.26 to the sequence 4.23 to obtain a section a E

with lulsup suitably small satisfying E. Note that
if lk then there are several complex models for X’n, each giving rise to
a different metric on Mon and 100Isup denotes the supremum over all infinite
places. Let Ex denote the fibre of corresponding to the rational point
~ _ ( x 1, ... , We know by 3.24 that provided ~ 0

On the other hand, 4.17 implies that

provided one chooses x l , ... , zm so that 0 « « ... « Using
3.22, one sees that 4.25 and 4.26 contradict one another, implying that o~
must have vanished identically along Ex .

In order to derive a contradiction, one needs to take derivatives of the
section a and check that the bounds in 4.25 and 4.26 continue to contradict
one another, establishing a lower bound for But we have explicitly
chosen a in order to have index  E at x and this gives the final contradiction
establishing Theorem 4.1. Some work is of course required in order to show
how the derivatives affect the norm the details can be found in [EE]
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chapter XI §4. Vojta [V4) deals with a more complicated situation where
derivatives are needed on singular subvarieties of P and this is not necessary
for the present situation. Finally, one must check all of the numbers to see
that the upper and lower bounds for ind2(Q) genuinely give a contradiction:
this is done in detail in [EE] Chapter XI §5.

The proof of Theorem 4.2 given in [F2] is rather different in flavor from
the proof of Theorem 4.1 just outlined. The main problem in the more
general setting is that Lemma 4.16 is false if X contains a translate of a
positive dimensional abelian subvariety B C A. Indeed, consider the case
where B C X for some abelian subvariety B of dimension &#x3E; 0. Then the
map 418, defined in 4.13, is not finite for any choice of s. To see why, let
ti = and note that

Since Øs is never finite, regardless of the choice of m or s, it follows that
the line bundle ( 1, ... ,1 ) is never ample and Lemma 4.16 is false.
On the other hand, one checks that Lemma 4.20 still holds in this more
general setting provided that x ... x is generically finite; indeed,
the proof of Lemma 4.20 is entirely cohomological and it is sufficient to
know that is big and nef on Y = Yl x ... x Ym which is true provided

is generically finite.
Thus we can still find an "auxiliary" section a E Ho (X’’m , Mon) of small

size so that a is forced to vanish to large index at x. Unfortunately, we do
not have a contradiction at this point because without ampleness of ME~~
it is impossible to ensure from the beginning that has small index at x.
Thus in order to derive a contradiction, more work is required. Faltings [F2]
ultimately derives an arithmetic contradiction in the following manner. If
we apply the product theorem 4.19 to ff (or more precisely, since Theorem
4.19 was only proven on a product of projective spaces, to the norm of a~
via a generically finite map to a product of projective spaces: see [Fl] p.
565 for details) we find a proper product subvariety X such that

and such that o, has appropriate index along X. This is unfortunately a
vacuous statement as stands since one could simply have Xi = xz for all
i. However, since X is cut out by appropriate derivatives of a, and in fact
’cut out with large index,’ one can gain some control over X. In particular,
one can show that X has bounded degree. More importantly, cr and its
derivatives are all defined over Spec Z so that one can use the machinery of
arithmetic intersection theory pioneered by Gillet and Soul6, already hinted
at when discussing metrized line sheaves. Using this theory, Faltings is able
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to show, [Fl] Theorem 3.3, that the subvarieties Xz in 4.27 satisfy

here h(Xj) denotes the arithmetic height of an invariant which mea-
sures the height of the equations defining Xj , generalizing the Weil height
of a point z E P(Q) . Strictly speaking, one needs a more general version
of the arithmetic product theorem as stated in [Fl] Theorem 3.3, one which
applies not only on a product of projective spaces but also on proper prod-
uct subvarieties. A similar version of this theorem, stated in the appropriate
generality, is given in [V4] Corollary 18.3.

If Xj = zj for some index j, then inequality 4.28 gives a contradiction
provided lulsup is appropriately small and is sufficiently large. Thus
to conclude the proof of Theorem 4.2, we procede by induction on the
dimension of product subvarieties of XI containing ~. It suffices to show
that for any product subvariety x E Y C Xm of bounded degree satisfying
4.28 one can produce a new section

again forced for arithmetic reasons to have large index at x. As in the proof
of Theorem 4.1, the numbers now have to be worked out so that when one
arrives at a proper product Z C Xm with Zi = xi for some i the analogue
of 4.28 still holds, giving the desired contradiction.

5. THE SCHMIDT SUBSPACE THEOREM

In Roth’s theorem, we examined how well rational numbers can approxi-
mate a fixed algebraic irrational number a. One possible generalization
of this problem to higher dimension would start with an af&#x26;ne variety
V C A"(k) defined over a number field k and then examine how close
a rational point x E An (Q) can be to V without lying inside V. The
Schmidt subspace theorem deals with the special case where V is a union
of hyperplanes in general linear position. Recall that for a point x E P ( Q ) ,

denotes the absolute Weil height and h(x) the logarithmic height.
Theorem 5.1 (Schmidt Subspace Theorem). Suppose k is a number field
with a fixed embedding in C and Lo, ... , L" are linearly independent linear
forms with coefficients in k. Let 8 &#x3E; 0 be given. Then the set of points
x = (xo, ... , satisfying

with xi E Z relatively prime

is contained in a finite union of proper linear subspaces.
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In the special case when n = 1, suppose we take Lo = Xo and L1 =
Xo - aXi for an algebraic irrational number a. Then Theorem 5.1 says
that there are only finitely many integer pairs (p, q) satisfying

Thus there are only finitely many rational solutions to

and this is equivalent to Roth’s theorem since q)6 = O(q2+a) for
all rational plq close to a.

There is a more intrinsic formulation of Theorem 5.1. In particular, we
can view x as a rational point of P’ and the linear forms Li as sections of

Opz (I) . If p denotes the standard metric on Op- (1), defined in §3, then
5.2 is equivalent, up to a constant, to 

z

This is how Faltings-Wiistholz ([FW2] Theorem 9.1) express 5.2. The

discrepancy between 5.2 and 5.3 is caused by the fact that for zj relatively
prime integers

Note that if 5.3 is satisfied, there must exist non-negative real numbers
po, ... , p~, with

such that

We now state a special case of the theorems of Faltings-Wustholz dealing
with solutions to the equations 5.4 for specific values of pi:

Theorem 5.5 (Faltings- W üstholz). Let Lo ... , Ln E H° pn, (1 ) be
linearl y independ ent. Suppose fpil!’ are non-negative real numbers satis-
fying

for &#x3E; 0. Then the set of rational points x E P(Q) satisfying
5.4 for all i lie in finitely many linear subspaces, at most one of which is
non-trivial.
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It is clear that the Schmidt subspace theorem implies Theorem 5.5 with-
out the added information that at most one of the exceptional subspaces
is non-trivial. The converse is also true: fix 8 &#x3E; 0 in Theorem 5.1 and for
each solution x let

By hypothesis, + 1 + 6; restricting to a subset of indices
I C {0,... , nl we can assume that 0 for all i E I and 
n + 1 + J. Theorem 5.5 then applies to each such set of indices I and each
collection a priori there could be infinitely many such cases but if
we apply Theorem 5.5 with 6/2 in place of 6 the excess of J/2 allows one
to partition these into finitely many cases.

The proof of Theorem 5.5 proceeds, as with Roth’s theorem, by con-
structing an auxiliary polynomial. To fix some notation, let L be a Galois
extension of Q containing k. Since Theorem 5.5 over L implies Theorem
5.5 over k we can assume without loss of generality that k itself is Galois
over Q with Galois group G. Let

P = Pn x ... x Pn, with m factors.

If R is a ring, usually either C~k or k in practice, we will denote by PR the
product P taken as defined over Spec R. Let 7ri denote the projection to
the ith factor. For fixed positive integers dl, ... , let

Suppose that Theorem 5.5 is false and choose rational points zj satisfying
5.4 with

We need to show that all but finitely many of the xi are contained in some
fixed linear subspace. As in Roth’s theorem, choose

The analogue of Step 2 in Roth’s theorem can now be carried out using the
language of metrized line bundles.
We will use p to denote the standard metric on (9pi ( 1 ) and also, abu-

sively, for all metrics defined functorially in terms of p by pull-backs and
tensor products. Let Ez denote the section of Pz corresponding to the
rational point (XI,... Ifu E and 0, then
3.21 implies
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On the other hand, one can use 3.23 to show that
- - ’B.

Putting together 5.7, 5.8, and 5.9 we see that

." ’" r,

Exactly as in Roth’s theorem, an upper bound on can be
obtained by using 5.4 and taking a "Taylor series expansion" of 0’ in terms
of the linear forms Li. To be more precise, since L°, ... , Lri are linearly
independent, they form a basis of H° (p;:, Op: (1) ). Thus monomials of
degree d in the Li generate H° (p;:, Opn (d) and can be used to write
down the analogue of the Taylor series expansion 1.6. Given a positive
integer r let

Let I = (Idl , ... , and write

In order to obtain an upper bound for log we define the weight of
the monomials Md; :

According to 5.4,

so in particular, using 5.7 and 5.12,

Combining 5.11 and 5.13 gives the following estimate for log anal-

ogous to 1.7 above:
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As with 1.7, C depends on the number of terms in 5.11 and the size of
the coefficients Comparing 5.10 with 5.14, we conclude that in order to
force 0’ to vanish we need aj = 0 unless

for suitable c &#x3E; 0. As in Roth’s theorem, 5.15 also admits a formulation
in terms of the index along certain subvarieties. In particular, if Hi is
the hyperplane defined by Li = 0 and then 5.15
is satisfied provided

This analysis leads naturally to the following definition, the direct general-
ization of the index in the one variable case:

Definition 5.16. Let (T E HO (Pk, OPk (d)) with expansion as in 5.11. Let

Note that the weight depends on the choice of Li used in 5.11 though this
has been suppressed from the notation.

In the language of Definition 5.16, we want 0’ E H° (Pz, Opz (d)) with
wt(Q) &#x3E; m(l + e). As in the one variable case, it suffices to construct a
over Spec O~ having &#x3E; m(l + e) with respect to {Lo, ... , Ln~ and
its Galois conjugates. We will denote by wt7 the weight of Definition 5.16
computed with respect to the linear forms Thus, precisely as in
Roth’s theorem, we need to show that the number of m-tuples of monomials
violating 5.15 is small compared to the total number of monomials. Again
as in Roth’s theorem, this can be accomplished using probability theory:
a monomial in H° Pn Opn (d)) is a choice of integers ko, ... , kn with

ki = d so the "expected" value of each ki is d/(n + 1). Thus the law
of large numbers (see [FW2] Proposition 5.1) says that the expected weight
of 0’ in 5.11 By 5.6

and so we can construct a section a E H° (d)) such that the bound
5.14 is good enough to force a to vanish at x, provided of course that one
can deal with the constant C appearing in 5.14 (which is done, as usual,
with the appropriate version of Siegel’s lemma; see [FW2] §6). A refinement
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of the argument shows that a has large index at ~, in fact index &#x3E; o(6)
(see [FW2] p. 128 for details).

Unfortunately, in higher dimension there is no analogue of Dyson’s lemma
and consequently the fact that a is forced to vanish at x for purely arith-
metic reasons does not yield a contradiction. Instead, as in Theorem 4.2,
more arithmetic and in fact the same arithmetic is needed. Faltings-
Wiistholz apply the arithmetic product theorem discussed at the end of
§4, or rather the appropriate generalization given in [V4] Corollary 18.3, to
a at x concluding as in 4.28 that E Xi x ... where each X is defined
over Q and

But if Xj = Xj for some j then 5.17 yields a contradiction provided 
is suf&#x26;ciently large. Thus whenever X = Xi x ... x X, is a proper product
subvariety, defined over Q, containing x with &#x3E; 1 for all i, one
needs an inductive procedure to define wtq on HO(X,Ox(d)). We then
look for some 0 ~ QX E with large enough
to force to vanish to high index at a. Applying the arithmetic product
theorem 4.28 inductively as in the proof of Theorem 4.2 will then yield the
same contradiction, establishing Theorem 5.5.

At this point, we concentrate on how to find 0 ~ ax E 
with appropriate weights for a proper product subvariety X C PQ. Observe
that there is a natural filtration on

for all positive integers d given by the weight, namely for a E R+ let

, , - , j I /

Since we need to impose large weight not only with respect to the linear
forms but also with respect to their Galois conjugates, we define an
analogous weight filtration for each q E G:

" " i I ,

The filtrations F. in turn define a product filtration on H° 
still denoted by 

For any subvariety Y C PQ, Serre vanishing shows that
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is surjective for all d » 0 and consequently the filtrations Fy induce quo-
tient filtrations on HO(Y, Oy(d)) ~Q k for d » 0, still denoted by FY".
Similarly, we obtain an induced filtration F7 on H°(X,OX(d)) ~Q k for
any product subvariety X C PQ. The inductive part of the proof of The-
orem 5.5 can then be stated in terms of these filtrations as follows: given
non-trivial Xi, ... , X, C PQ and dl, ... , dm sufficiently large we wish to
show that there exists 0 ~ ox E H°(X, Oxx(d)) ~Q k such that

for some fixed e depending linearly on 6. As was the case with the finiteness
results of §4, one then needs to extend this construction over Spec Ok and
apply Siegel’s lemma to bound the norm of Ux. A quick computation, using
5.10 and 5.14, then shows that 5.18 forces ax to vanish to large index at x
(see [FW2] pp. 129-130).

Let 
, ,

The fundamental insight of Faltings-Wiistholz is that for all product sub-
varieties X c PQ the filtrations F,~ on H°(X, Ox (d)) ~Q k are naturally
induced by the weight filtrations wt7 on V 0Q k and hence the whole
problem reduces to studying properties of a set of filtrations on a finite
dimensional vector space.

Let Y C PQ be a subvariety. To each filtration F,~ on H°(Y, Oy(d))0Q&#x26;,
Faltings-Wustholz associate an expectation value E7(Y) (see Definition
5.22 below) for which the law of large numbers applies. More precisely, let
X = X, x ... x X,n C PQ be a product subvariety. Then for any Ei, e2 &#x3E; 0
there exists an m sufficiently large such that

for all X = Xl x ... x X’.,2 with Xi non-trivial for each i. As we have seen,
the assumption 5.6 guarantees that when Xi = P’ for all i, the expectation
value Eq (Pz) will be large enough to construct a E HO (Pk, (d)) with

with e depending linearly on J. Thus if we could show that for all subvari-
eties Y C PQ and for all -y E G we have E,~(Y) &#x3E; Ey (P’) then we would
be done. In fact, it is suf&#x26;cient to have
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a significantly weaker condition. The reason why only is relevant
is that whenever 5.18 is satisfied, ax is forced to have large index at x
(provided, as always, that luxlsup is suitably bounded). It turns out that
5.20 means precisely that the filtrations Fq on V OQ k are ‘jointly semi-
stable’ (see Definition 5.23 below). When the filtrations are not semi-stable,
all but finitely many solutions to 5.4 lie in the zero set of the maximal
destabilizing subspace and thus one obtains a geometrical insight into where
the solutions lie.

To make the discussion of the previous paragraph precise, we first need
to define an expectation value associated to a filtration on a vector space
and then examine how these filtrations behave in our particular situation
when restricted to product subvarieties X C P.

Definition 5.21. Let U be a finite dimensional vector space with a filtra-
tion indexed by positive integers:

The expectation value associated to the filtration is defined as

The invariant denotes the maximum ’average weight’ of a basis for U.
In practice, our filtrations are indexed by the weight of sections of Op. (d)
which can be real valued since they depend on the pi. One can, however,
by a limit procedure ([FW2] p. 119), reduce to the case where the pi are
rational and then clear denominators in order to have an integer-valued
filtration.

To see the meaning of Definition 5.21 and the reason why N,(U) is called
the expectation value, consider the case where U = H° (Pc, Opi c (d)) and
the filtration is given by order of vanishing at a fixed point P E Pl . Then
one sees that

and all further steps in the filtration are trivial. Thus

So the ’expected’ multiplicity of a monomial of degree d at a fixed point is
d/2 and the expected index is 1/2: we have of course already encountered
this in dealing with how much index we could impose at (a, ... , a) in
Roth’s theorem. The same analysis holds for Un = H° (P-, (d)) with
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the filtration given by wt’Y. Here the expected weight, asymtotically as
d

These examples indicate the following definition for the expectation value

ofYCPQ:
Definition 5.22. Let Y C PQ E G. For d large, we have defined
a filtration F,~ on C7Y (d) ) . Let P,7 be the invariant in Definiton 5.21
computed with respect to the filtration Let

Also define

Some work is necessary in order to show that the limit in Definition 5.22
exists and that it is an ’expectation value’ to which the law of large numbers
applies. This work is carried out in [FW2] §5. As observed above, we are
interested in how the expectation value E behaves under taking quotients.
To see how this is related to stability of filtrations, consider the following:

Definition 5.23. Let ’tl be a finite dimensional Q-vector space and 1~ a
finite Galois extension of Q. Suppose F1, ... , Fr are filtrations of V 0Q k
with associated invariants tti as in Definition 5.21. Then Fl, ... , F,. are
said to be jointly semi-stable if for all V’ C V

1=1 ~2013~

Here JLi(V’ 0Q l~) is computed with respect to the induced filtration on
V 0Q k C Tl OQ k.

In practice, we will be interested in filtrations induced not on sub-spaces
but rather on quotients, as H°(X, Oxx(d)) is a quotient of H° (Pe, C?pQ (d)) .
Definition 5.23 can be restated for this setting as follows: the filtrations

Fl, ... , F,. are jointly semi-stable if and only if for all quotients V --~ V’
with the quotient filtration

At this point we are almost prepared to prove Theorem 5.5. We apply
Definition 5.23 to the vector space Ho PQ, (d) with filtrations( Q q

Fl, ... , on given by weight relative to for y E G. As
we have already noted, for Y C pn each filtration induces a filtrationq
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on H°(Y, Oy (d)) ~Q k provided d » 0. Note morever that the filtrations
Fq on Un 0Q k are in turn induced by the weights wty on V OQ k. Thus we
would like to determine the joint semi-stability of the Fy on the cohomology
groups H° (Y, purely in terms of the filtrations on the vector

space V 0Q k.
At this point in the argument Faltings-Wustholz introduce the concept

of semi-stability for vector bundles on curves and are able to resolve the
semi-stability issues for the filtrations on V OQ k in these terms. To
be precise, let W be a complex vector space, V 0 C in practice, with
filtrations Fl, ... , Fr and associated expectation values To the
data W, Fl, ... , F,., Faltings-Wüstholz ([FW2] Theorem 4.1) associate an
algebraic curve defined over C with a vector bundle E(W) satisfying

r

(i) where p,(E(W)) denotes the slope of E(W),
i=l

(ii) W is jointly semi-stable if E(W) is slope semi-stable,

(iii) W ~ E(W) commutes with tensor products.
The only difficult part of this is (ii) and this is shown in [FW2] Theorem

4.1. But, due to a result of Narasimhan and Seshadri, the tensor product
of two semi-stable vector bundles on a curve is again semi-stable and so
by (ii) and (iii) it follows that are jointly semi-stable on Wod for all
d &#x3E; 0 provided that they are jointly semi-stable on W. Putting everything
together, we can now prove:

Theorem 5.25 (Faltings-Wustholz). Let

With assumptions and notation as in Theorems 5.5, assume in addition that
the weight filtrations F; on V, induced by JL7’ are jointly semi-stable. Then
5.1~ admits only finitely many solutions.

Proof of Theorem 5.25. To begin the proof, note that by direct com-
putation .

i=0

On the other hand, by the fundamental properties of the association 
E(V),

For any Y C PQ, we know that HO(Y, Oy(d)) ~Q k is a quotient of (V ~Q
for d sufficiently large. Thus 5.25.1 and joint semi-stability of the
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filtrations F,~ imply that

Since E is additive on product subvarieties Xi x ... x we see that for

any non-trivial Xl , ... , Xm C pn(Q)

We know, however, from 5.6 that

z=u

and, as noted in 5.18, this is sufficient to conclude the proof of Theorem
5.25.

To complete the proof of Theorem 5.5, it suffices to analyze the case
when the filtrations on V oq k are not jointly semi-stable. In this case
let W C V be the first step of the Harder-Narasimhan filtration so that

and W is of maximal dimension satisfying this property. In particular W is
jointly semi-stable with the induced set of filtrations Moreover,
being the first step in the Harder-Narasimhan filtration,

By a linear change of coordinates we can assume that W = (xt, ... , x,,).
Let

and write

for the natural projection away from A. Theorem 5.5 follows from the

following:

Proposition 5.27. With assumptions as in Theorem 5.3, there are only
finitely many points x E satisfying 5.5.
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Proof of Proposition 5.27. Proposition 5.27 implies Theorem 5.5 with
exceptional linear subspace A. Proposition 5.27 is proved by reducing to
Theorem 5.25, using the fact that W 0Q J~ with the induced filtrations
is jointly semi-stable. Although it may happen that none of the 
actually lie in W 0Q k, it follows from 5.26 that there exist linear forms

Ml , ... , Ml E W 0Q k and non-negative real numbers ql , ... qi (a subset
of such that, up to a constant c,

(5.27.2) give the same filtration on W 0Q k as 

We now view W as H° and apply Theorem 5.25 with the
induced filtrations F,~ (W ~Q k). By assumption the are jointly
semi-stable and hence it follows from Theorem 5.25, 5.26, and 5.27.2 that
the system of equations

has only finitely many solutions. One can check that the same holds when
we add the multiplicative constant c to the right hand side. But then by
5.27.1 we conclude that the solutions to

1

map to a finite set of points under 0 : The fibres of cP,
however, are isomorphic to affine space and if there were infinitely many
solutions contained in one of these fibres then their

()
heights would become arbitrarily large; but the M are constant on the
fibres of 0 and so 5.27.1 would be violated.

At this point we can state the general result of Faltings-Wiistholz. The
fact that we took a set of linearly independent forms and their Galois

conjugates is not essential. Suppose, in fact, that we are given an y finite
set of absolute values [ . 111’ possibly including p-adic absolute values of the
field k, and a system of inequalities

for linear forms E H° pn, Opn (1)). . For each such v there is associated’ ( k A: ) - 
,

a filtration Fv of V oq k where the linear form L;,v is assigned weight 
Let p,tJ(V) = denote the corresponding expectation value. Using
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5.14 and 5.19 we can choose a E H° (Po", 7 Opok (d)) so that for each place
v we have

for an appropriate constant Cv; here c can be chosen arbitrarily small pro-
vided that m is large enough to apply 5.19. In order to compute the con-
stant Cv one needs an appropriate version of Siegel’s lemma which can be
found in [FW2] Proposition 6.1.
We also need bounds analogous to 5.29 for places w which are not

amongst our finite set of places lvl. If zu lies over p for some prime p
then we have

since a is defined over For the archimedian places m one obtains a
bound from the appropriate Siegel lemma of type

Let Ex denote the section of Pz corresponding to the point ~. Then
we know from 3.21, or rather the appropriate extension to schemes over
Spec 5.29, 5.30, and 5.31 that

here z,v ranges over all places of k while v ranges only over the finite number
we selected in 5.28. On the other hand, by 5.9, again over Spec C~k,

Suppose now that

for some 6 &#x3E; 0. Combining 5.32, 5.33, 5.34 gives, for c sufficiently small
with respect to J,

" , -"

which is a a contradiction provided h(xl ) » 0. We conclude, as desired,
= 0; as usual, a refinement gives a lower bound for 

depending on J. The inductive argument on a proper product subvariety



501

X C P is completely analogous, provided of course that the filtrations
behave well when restricted to X. Thus one obtains

Theorem 5.35 (Faltings-Wiistholz). Let pv be the invdriant of De, fnini-
tion 5.11 computed with respect to the filtration induced b y Sup-
pose

Then outside of the zero set of the maximal destabilizing subspace, relative
to ~v /s", of V, there are only finitely many x E satisfying
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