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par TAkAO KOMATSU

RESUME. On s’intéresse aux valeurs de
M(6,9) = 11mmf|¢1l||q9 sl

lorsque # est un réel ayant un developpement en fraction continue
quasi-périodique.

ABSTRACT. We consider the values concerning
M(0,¢) = lim inf lalllg® — &l

where the continued fraction expansion of 8 has a quasi-periodic
form. In particular, we treat the cases so that each quasi-periodic
form includes no constant. Furthermore, we give some general
conditions satisfying M(8, ¢) =

1. INTRODUCTION

Let 0 be irrational and ¢ real. We suppose throughout that ¢ — ¢ is
never integral for any integer q. Define the value of the function

M(6,¢) = lll?fllnfltllllq‘9 ¢l

which is called inhomogeneous approzimation constant for the pair 6, ¢. It
is convenient to introduce the functions

M..(6,4) = liminf gllg6 — 4|

and
M-(6,¢) = liminf ll¢f + ¢|| = liminf |q[[|g6 — ¢ .
Then M(6, ¢) = min(M(6,4), M_(6,4)). Several authors have treated

M(8, ) or M (6,¢) by using their own algorithms (See [1], [2], [4], [5],
[11] e.g.), but it has been difficult to find the exact values of M(6,¢) for

Manuscrit regu le 2 avril 1998.
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the concrete pair of 6 and ¢. For example, Cusick, Rockett and Sziisz ([2])

obtain ) . .
M(og) -2z = M%) =5
when 8 = (14 v/5)/2 = [1;1,1,...]. And author ([5]) obtains
1
m(0.3) = arae
1
M (0’ 513) RN vy
M(07) = Ve

1 1
M(6,-)=——— (aisodd>3
( 2) YW/, (aiso )

when 6§ = (Va2 + 4 — a)/2 = [0;a,a,...]. However, it is not easy to apply
these methods to find the value M(6,#) about the different types of 6.

In [6] author establishes the relationship between M(8, ¢) and the algo-
rithm of Nishioka, Shiokawa and Tamura. If we use this result, we can
evaluate the exact value of M(6, ) for any pair of 6 and ¢ at least when 6
is a positive real root of the quadratic equation and ¢ € Q(8). For example,

™ (0’ 1) _ {‘“—;‘;i/—%ﬂ if both a and b are odd,

2 ﬁl‘) otherwise,
1 a
MO, — ) = —— d
( \/1_7> pvD "
1 1 '
- = —— > =
M (9, a) /D (a>2) (D = ab(ab + 4))

are given when 6 = (y/ab(ab + 4) — ab)/(2a) = [0; a,b,a,b,...].

Furthermore, in [7] author is so successful applying the Nishioka-Shiokawa-
Tamura algorithm that the exact value of M(8,¢) can be calculated even
if 0 is a Hurwitzian number, namely its continued fraction expansion has
a quasi-periodic form. And it is the first time to find a concrete pair of 6
and ¢ so that M (6, ¢) = 0. For example, for a positive integer s

M (e%,l) _ 01 if352. (mod 3),
3 75 otherwise
is given.
In this paper we consider the cases so that each quasi-periodic form
includes no constant, and conditions satisfying M(8, ¢) = 0.
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2. NST ALGORITHM

We first introduce the NST algorithm ([9]). 6 = [ ao; a1, a2, ...] denotes
the continued fraction expansion of 6, where

0 = ag + 6o, ao = |0],
1/6,_1 = an + 6y, ap =|1/6p,-1] n=1, 2, ...).
The k-th convergent px/qr = [ ao; a1, ..., ag | of @ is then given by the
recurrence relations
Pk =anpk-1+pr-2 (k=0,1,...), p2=0, p1=1,
O = akqk-1+qk-2 (k=0,1,...), g2=1, ¢g1=0.

Denote ¢ = ¢[ bo; b1, bz, ..., ]| be the expansion of ¢ in terms of the
sequence {6, 0y, ...}, where

d=bo—o, bo=[¢],
Sn-1/0n_1 = by — P, bn = [Pn-1/0n-1] (n=1,2,...).
Then, ¢ is represented by
¢ = bo — b10 + b20oB1 — - -+ + (—1)*bxB00; - - O_1 — (—1)*0001 - - - Or_16%

[o o] [o o]
=bg — Z(_l)kbk+10001 v =bo — Zbk+le ,
k=0 k=0

where D = q40 — pr = (—1)%696; ...60;. Now, the following theorem is
established in [6].

Theorem 1.
M_(0,¢) = liminf min(By||Bn8 + ¢||, B || Bp6 + ¢ll) ,
n—-+00
where B, = Y p_; brqk—1 and B} = B, — gn_1.

Remark. It is also known in [6] that || B,0 + @|| = ¢n|Dn-1| and || B0 +
&l = (1 — ¢n)|Dp—1]- Together with M (8,¢) = M_(6,1 — ¢), one can
obtain the value M(6,¢).

3. THE CASE M(0,¢) =0

Continued fraction expansions of the form

[CO; Cly; .-+ Cny Ql(k), ceey QP(k) ]I(:—-l
are called Hurwitzian if ¢ is an integer, ¢, ..., ¢, are positive integers,
Q1(k), ..., Qp(k) are polynomials with rational coefficients which takes

positive integral values for k = 1,2,... and at least one of the polynomials
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is not constant. Qi(k), ..., Qp(k) are said to form a quasi-period. The
expansions

e=[2%1, 2k 1], and €/=[1(2k-1)s-1,1,1]2,

where s is a positive integer with s > 2, are well-known examples (See [3],
[8], [10] e.g.). In [7] for a positive integer s we have M(e'/?, (e'/*~1)/2) = 0,
M(e'/#,1/2) =1/8 and M(e}/*,1/3) = 0if s = 2 (mod 3); 1/18 otherwise.

Then, what is the condition such that M(6,¢) = 0 holds? It seems
that a non-constant polynomial in a quasi-periodic part influences whether
M(0,¢) = 0 or not. So, we consider the cases each quasi-periodic form
includes no constant.

B R —

il [0; (4k —2)s |5y,
where s is a positive integer, or

-1

m=[0; (2k—1)s 24,

where s is an odd positive integer with s > 3, is one of the well-known
examples (See [10] e.g.).

In any of two expansions of 6 above aj, is increasing and a; — oo (k —
00). So, one may be apt to conjecture that M(8,¢) = 0 for almost all of
@. But, there is a case satisfying M(8, ¢) # 0.

M el/s_l, el/a =l.
el/s +1’el/s +1 4

Proof. First, note that in the expansion of 8 = (e!/* — 1)/(e'/* + 1)

Theorem 2.

a, =(dn—-2)s 200 (n=12,... > 00),

yielding
1
0., _1 = -0 =1,2,...—) .
1= (n 00)
It is convenient to see that
1
D, q|l=—7———7-—-21 n=12,... >0
qnl " ll 1+0nQn—1/Qn ( )
and
1
@n-1|Dn—1| = -0 (n=1,2,... 5 ).

(4n —2)s + 0, + gn—2/qn—1
¢ =(0+1)/2 =e'*/(e'/* +1) is expanded as

¢ = q1;(2k — 1)s]gZ; = d1;ax/2]52,



ON INHOMOGENEOUS DIOPHANTINE APPROXIMATION 335

and
1-6,
bn = 2 - = (n=0,1,2,...-—>oo).
Forn=1,2,...
n
_ a; _ @ntgn-1-—1
Bu=3 qei=t g —
=1
Hence,
Bn”Bna + ¢" = Bn(anDn—l'
1
= 'Z'(qnan—ll + Qn—lan—ll - |Dn—1|)¢n
1 1 1
and

B;“B:ze + ¢” = (Bn - ‘In—l)(l - ¢n)|Dn—1|

= 2(anIDn-1| ~ @a1IDn sl = IDaca)(1 — )

ﬁ%u_o—mofé)=% (n = o0),

yielding that M_(0,¢) = 1/4.
Next, 1 — ¢ = (1 — 0)/2 = 1/(e}/* + 1) is expanded as

1—-¢p=4d1;s+1, (2k—1)s]2,=d1; a1/2+1, ar/2 |3,

and
1+ 6 1-86 1
¢0= 20, ¢n=_2_n"_)§ (n=172) —)00)
Forn=1,2,...
n
a; Gt gn1+1
Bn=1+z;'§“1i—l— 2 .
i=

In a similar manner, by
1 ol T 1
BalBu6— ¢l 7 and BiIB0-¢l 7 (n— )
one has M, (0, ¢) = 1/4. Therefore, M(0,¢9) = M+(6,¢) =1/4. O
Contrary to this result, there is, of course, a case satisfying M(6, ¢) = 0.

el/*—11
M(el/’+1’§ =0

Theorem 3.
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Remark. It is interesting to see that in [7]

1/s _ 1
M(el/‘,e 1) =0 and M(el/’,i) =—;-;£0

2
in comparison with Theorem 2 above and this Theorem.
Proof. ¢ =1/2 is expanded as
1/2=41; s+1, (8k—2)s, (4k+1)s ]2,
= d1; a1/2+1, az, azk1/2 |2,
and ¢9 =1/2, forn=1,2,...

1 1 1
¢2n_1=1—-2-02n_1—>1, ¢2n=§"‘92n_>§ (n-—)oo)
Since forn =1,2,...
a iy 1 1
By, 1 = ?1 +1+ ; (aziQ2i—1 + 502i+1¢12i) = 5921:—1 + qon—2,

one finds that
Ban_1||Ban-10 + ¢|| = Ban—1¢2n—1|D2n—2|

1
= (§q2n—1ID2n—2| + q2n—2|D2n—2|) dan—1

N (%.1+o> -1=%,
B3 111B5n—10 + ¢ll = (Ban-1 — g2n—2)(1 — ¢p2n—1)|Dan—2|
= %Q2n—1'D2n—2|(1 — $an-1) = % ‘1-(1-1)=0,
Banl||Banf + ¢|| = (Ban-1 + b2ngzn—1)@2n|D2n-1|

1
= (Q2n|D2n—1 + §q2n—1|D2n—1|) ¢2n

1 1 1

B’2kn”B§n0 + ¢” = (B2n - ‘I2n—1)(1 - ¢2n)|D2n—1|
1
= (q2n|D2n—1| - '2'<12n—1lD2n—1l) (1 — ¢2n)

(-9 (-3

as n tends to infinity. Therefore, we have M(6,1/2) = M4(6,1/2) =0.
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We shall show one more case satisfying M (8, ¢) = 0.

el/s -1 1
M (el/-’—i-l’g) =0

Proof. When s =0 (mod 3), ¢ =1/3 is expanded as

Theorem 4.

1 2 2

3= d1; zu 1, ag, 302k+1 ol
and ¢g =2/3, forn =1,2,...

2 2 2

¢2n—1=1—§92n—1—>1, ¢2n=§—92n—>§ (n = o0).
Since forn =1,2,...
2 = 2 2
Ban-1 = 3% +1+ Z (azi412i—1 + §a2i+1¢I2i> = 3%n-1 + @2n-2,
=1

one finds that

B;,_1||B3p_10 + 9|l = (Ban—1 — @2n—2)(1 — ¢2n-1)|D2n—2|
2

2
= §q2n—IID2n—2|(1 — ¢an—1) = 3 1-1-1)=0,

as n tends to infinity. Hence, we have M_(0,1/3) = 0.
1 - ¢ =2/3 is expanded as

2 1 1
§ = 6{ 1; §a1 +1, agg, §GZk+1 ]1?;1

and ¢p =1/3,forn=1,2,...

1 1 1
¢2n~—1:1"‘§02n—1—)11 ¢2n:§_02n_)_ (n—)oo)

3
Since forn =1,2,...

1 = 1 1
Bon_1 = 3at 1+ Z (aziqzi—l + 5‘12i+1‘I2i) = 3%n-11 -2,

=1

one finds that
B, 1l1B3,_10 — ¢ll = (B2n-1 — @2n-2)(1 — ¢2n-1)|D2n—2|

1 1
= §q2n—1lD2n—2|(1 - ¢an—1) — 3 1-(1-1)=0,

as n tends to infinity. Hence, we have M, (6,1/3) = 0.
Therefore, M(6,1/3) = 0.
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When s =1 (mod 3), ¢ = 1/3 is expanded as

1 2

=41 = 1

3 d 1) 3(al + )’
2 20613 +1 2 2ask -1
§‘16k—4a = L 33 y Q6k—2, gaek—l, QG ———;1 ]Zil

and ¢ =2/3, forn=1,2,...

2 2 2 2
Pon—s5 = 5(1 — O6n—s5) — 3 Pen—4 = §(1 —O6n—4) > 3
2 2 2
ben—3=1— 5061;—3 =1, Pen—2 = 3” Osn—2 — =,
2 2 2
bon-1=1— §9en—1 =1, Pon = 3 Osn — 3
as n tends to infinity. Since forn=1,2,...
2 19 2a6;_3+1
Ben_s = 5(01 +1)+ ; (5‘%1'—4‘161‘—5 + I a—

2 20641 — 1
+agi—296i-3 + gaﬁi—l%i—2 + agigsi—1 + 'T%i
2
= E(QGn—S + QGn~6) )
one finds that
Bgn_3lBgn-30 + &l = (Ben-3 — g6n—1)(1 — ¢6n—3)| Den—s|

2 2
= 5‘16n—3|D6n—4|(1 - ¢6n—3) — § -1 (1 - 1) =0,

3

as n tends to infinity. Hence, we have M_(6,1/3) = 0.
1 - ¢ =2/3 is expanded as

* . 2 2
Bgn_1llBn—10 + ¢|| = §QGn—lID6n—2I(1 — Pon-1) = --1-(1-1) =0,

2 1 1 agr—3 + 2 1 a -2
3= d1; 5(01 +1), 306k, —6%—'7‘16]:—2’ 396k—1, acks 6k+ oy
and ¢g =1/3,forn=1,2,...
1 1 1 1
Pen—s5 = §(1 —On—s5) o 3 Don—4 = §(1 —O6n—4) — 3
1 1 1
Pon-3=1— geen—.% =1, Pen—2 = 3~ Osn—2 — 3’

1 1

1
Pen—1=1— §06n—1 -1, Pen = 3~ O6n. — 3
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as n tends to infinity. Since forn =1,2,...

1
Bgn—s = g(%n-s + gén—6)

one finds that
* * 1 1
Bgn—3l|Bgn—36 — ¢ll = §‘I6n—3'D6n—4|(1 — Pen—3) = 3 1-(1-1)=0,
1 1
Bgn_1lBgn-10 — ¢l = 3%n- 1/Dén—2|(1 — gn—-1) — 31 1-1)=o0,

as n tends to infinity. Hence, we have M (8,1/3) = 0.
Therefore, M(6,1/3) = 0.
When s =2 (mod 3), ¢ =1/3 is expanded as

—-dl 2a.1+1

1
§GGk—4; §(“6k-3 +1), agr—2,

and ¢ = 2/3, for n =1,2,..

2 2
306k—1, Gsk, §(ask+1 -1) [,

1 1 1 2
Pen—s5 = 5(1 — 206n—5) = 3’ Pon—4 = '?;(2 — Opn—4) > 3’
2 2 2
Pen-3=1— 506n—3 -1, Pn—2 = 3~ O6n—2 — 3
2 2 2
Pon—1=1-— 50611.-—1 -1, Pen = 3" O6n — 3
as n tends to infinity. Since forn =1,2,...
2 +1 /1 2
Bgn-s = 13 + ; (é‘asi—4QGi—5 + g(asi—3 + 1)gei—4

2 2
+agi—296i-3 + gasi—lq&—-z + agigei—1 + §(asi+1 —1)gei

1
= '3‘(2‘1611—5 + g6n—6) »
one finds that

. 2 2
Bgp,—3l|Bgn—30 + ||l = §QGn—3|D6n—4|(1 — Pen—3) = 3 1-(1-1)=0,

2 2
Bgn— lllBﬁn—10+¢” 3%n-1/Den—2|(1 —Pon—1) = 3-1-(1-1) =0,

as n tends to infinity. Hence, we have M_(0,1/3) = 0.
1— ¢ =2/3 is expanded as

a+2 2 agr—3 +1 1 agr+1 — 1

2
§ = o[ 1; ——?;——, gask—«t, -—‘3——, a6k —2) §aﬁk—l, a6k, —‘—'3"— ]k=1
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and ¢g =1/3,forn =1,2,...

1 2 1 1
Pen—5 = 5(2 — On—s) — 3 Pen—a = 5(1 — 206n—4) — 3’
1 1 1
den-3=1— “3‘06n—~3 -1, Pen—2 = 3~ On—2 — 3
1 1 1
¢6n—1 =1- 50611—1 — 1’ ¢6n = § - 06n - 5

as n tends to infinity. Since forn=1,2,...
1
Bgn-5 = §(¢16n—5 + 2g6n—6) ,
one finds that

* * 1 1
Bgn—3l|Bén—30 — ¢ll = 2q6n-3|Den—4/(1 — pen-—3) = 7 -1-(1-1) =0,

3 3
. . 1 1
Bgn-1lBon-16 — ¢ll = 396n-1Den—2(1 = pon-1) = 3-1- (1 -1) =0,
as n tends to infinity. Hence, we have M, (8,1/3) = 0.
Therefore, M(6,1/3) = 0. a

4. THE CASES M((e%/* —1)/(e¥/* +1),4) =0

Let us calculate M (6, ¢) when
e/t — 1
e 41

where s is an odd positive integer with s > 3. The situations are a little
bit different from the previous results. Notice that a, = (2n — 1)s — oo,
00,1 =1/(apn+6,) > 0(n=12,... & 00). lim,,00qn|Dn-1| =1
and limp 00 gn—1|Dn—1| = 0 hold for this 6 too. The first result is quite
different from Theorem 2.

M 62/5_1’ e2/s —o.
e?/s +1'e?/s +1

Proof. ¢ = (0+1)/2 = €*/*/(e*/* + 1) is expanded as

=[0) (2k —1)3 ]z‘::lr

Theorem 5.

¢=41; &;’)ﬂi, (6k — 3)s, @k__;i:_l_]zozl
agr-2+1 asr —1

= L o, S
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and
¢3,,=1_203"—)-;- (n=0,1,2,... = 00),
1 1 1
Gain-2=1—-03, 21, ¢3n1=7—03, = - (n=1,2,... = 00).
2 2 2

Since for n =1,2,...

< (azi—2 +1 az; — 1
Bip = Y oy Bi-3t0si1Gsi-2 + —5 @il

=1
= %(Q:m +g3n-1—1).
one finds that
B3n11llB3n 410 + 8l = (Bant1 — ¢3n)(1 — @3n+1)|Danl
= 2 (@ns1IDsal ~ [Dsa)(1 ~ dan1)
S %(1—0)(1-1) —0 (n— o),

yielding M_(8, ¢) = 0.
Next, 1 — ¢ = (1 — 0)/2 = 1/(e*/* + 1) is expanded as

a; +3 asgk—1 age41+1

1- ¢ = d 1; T) a3k—1, 2 ) 2 ]I?;Z
and
1+ 6, 1
b0 = 5 ° P3n—2=1— 59311—2 -1,
1 1 1
¢3n—1=§"03n—1, ¢3n=§(1—03n)—>-2' (n=1,2,... 5 00).

Since for n =1,2,...

Bans = ~asn_s + Gsns + =
3n—2 = 2Q3n—2 q3n—3 2"
one finds that
. 1
B3, 2llB3, 20 — ¢l = 5(413n—2|D3n—3| + |D3n—3|)(1 — ¢3n—2)
= %(1+0)(1-1) —0 (n—> o),

yielding M (8, $) = 0. Therefore, M(0,¢) = M+(0,¢) =0. O

e2/s -1 1
w(Z ) o

Theorem 6.
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Proof. ¢ =1/2 is expanded as

a1+1 asp—1 +1 ase+1 — 1
—“6[1 2 ,ask,—+—2’*]i?—.1

and
1 1 1
o = X P3n—2 = 5(1 —03n—2) = 2

1 1 1
¢3n—1=1—§03n—1—>1, ¢3n='2"_03n_)§ (n=1,2,... 5 ).

Since for n =1, 2,.

-1
a; +1 s a3-_1+1 a3-1—1
B3, 2 = ! 2 + E (1—2-1131'—2 + a3iq3i—1 + ——————Hz q3i
i=1

1
= §(q3n—2 + q3n-3),
one finds that

B3, _111B3,—10 + @l = (B3n-1 — @3n—2)(1 — ¢3n—1)|Dan—2|
1 1
= 5@n-1/Dsn—2|(1 = ¢sn-1) = 5-1-(1-1) =0
as n tends to infinity. Therefore, we have M(0,1/2) = Mi(O 1/2) =0. O

e/t -1 1
M (ez/’+1’§ -

Proof. When s = 3, s =5, s =1 (mod 6), the situation is completely the
same as the case of

Theorem 7.

el/s —1

Y|
with s =0, s =1, s = 2 (mod 3), respectively. a

5. SOME CONDITIONS SATISFYING M(0,¢) =0

We have already seen several examples so that M(6, ) = 0 holds. Then,
what is the condition of M(8,¢) = 07 Of course, the following is clear.

Theorem 8. If ¢, = 0 or ¢, = 1 (n = o) for infinitely many positive
integers n, then M(8,¢) =0

Proof. First, we shall show that 6,_; < B,|D,_1| < 4 for any positive
integer n. Since

n n
Bn=) bigi1< Z(ai +1)gi-1 =gn +2gn-1+ (gn—2+ -+ q1) < 4gn,
i=1 i=1
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we obtain 4
dn
Bp|Dp_q| < ———— < 4.
nl " ll Gn + Ongn_1
On the other hand,
n .

Gn+0ndn 1 Gnt0n
If ¢ = 0 (n — 00), then
By||Bnb + ¢|| = Ba|Dn—1]¢n = 0 (n — 00).
If ¢ = 1 (n = o0), then
BB + |l = Bp|Dn-1|(1—¢n) 0 (n— 00).

Corollary. When b, =1, ¢p—1 — 0 if and only if ¢, = 1 (n > ).
This is very generous. So, we state the following.

Theorem 9. If |a, — by| < ¢ and a, & © (n — o) for infinitely many
positive integers n, then M(0,$) = 0. Here, c is a constant not depending
upon n.

Remark. In fact, a, = b, = 00 (n — o0) holds in all previous theorems
above implying M(0, ¢) = 0.

Proof. If |an, — by| < ¢, then 01 -—q;"-l <c+20r0<1l—¢p1 <
-1 -1
(¢ +2)0,—1. And if lim,,_,o0 an, = 00, then
1
0,,_1—%—_’_(;—)0 (n-—)oo)

Thus, 1 — ¢p,—1 = 0 (n — o) entails that
By, _1llBa_10 + ¢l = By_1|Dn—2|(1 = $n-1) >0 (n — c0).
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