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On inhomogeneous Diophantine approximation
with some quasi-periodic expressions, II

par TAKAO KOMATSU

RÉSUMÉ. On s’intéresse aux valeurs de

M(03B8,~) = 

lorsque 03B8 est un réel ayant un développement en fraction continue
quasi-périodique.

ABSTRACT. We consider the values concerning

M(03B8, ~) = ~~

where the continued fraction expansion of 03B8 has a quasi-periodic
form. In particular, we treat the cases so that each quasi-periodic
form includes no constant. Furthermore, we give some general
conditions satisfying M (03B8, ~) = 0.

1. INTRODUCTION

Let 0 be irrational and 0 real. We suppose throughout that is

never integral for any integer q. Define the value of the function

which is called inhomogeneous approximations constant for the pair 0, 0. It
is convenient to introduce the functions

Then M(8,cP) = Several authors have treated

M (0, q5) or M+(8, Ø) by using their own algorithms (See [1], [2], [4], [5],
[11] e.g.), but it has been difficult to find the exact values of M (0, Ø) for

Manuscrit regu le 2 avril 1998.



332

the concrete pair of 8 and ~. For example, Cusick, Rockett and Szusz ([2])
obtain

when 0 = (1 + ~)/2 = (1;1,1, ... ~. And author ([5]) obtains

when 0 = ( a2 + 4 - a)/2 = [0; a, a, ... ~. However, it is not easy to apply
these methods to find the value .Nl(e, ~) about the different types of 8.

In [6] author establishes the relationship between ,~l~l (8, Ø) and the algo-
rithm of Nishioka, Shiokawa and Tamura. If we use this result, we can
evaluate the exact value of M (0, Ø) for any pair of 0 and 0 at least when 0
is a positive real root of the quadratic equation and 0 E Q(8). For example,

are given when 0 = ( ab(ab + 4) - ab) / (2a) = [0; a, b, a, b, ... .
Furthermore, in [7] author is so successful applying the Nishioka-Shiokawa-

Tamura algorithm that the exact value of M (0, 0) can be calculated even
if 0 is a Hurwitzian number, namely its continued fraction expansion has
a quasi-periodic form. And it is the first time to find a concrete pair of 8
and 0 so that = 0. For example, for a positive integer s

is given.
In this paper we consider the cases so that each quasi-periodic form

includes no constant, and conditions satisfying ,~1~1 (8, ~) = 0.
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2. NST ALGORITHM

We first introduce the NST algorithm (~9~). 8 = a2, - - - ] denotes
the continued fraction expansion of 9, where

The k-th convergent = ao; at, ... , ak ~ ] of 6 is then given by the
recurrence relations

Denote 0 = 0 [ bo; bl, b2, ... , ~ ] be the expansion of q5 in terms of the
sequence ~80, ~1, ... }, where

Then, 0 is represented by

where Dk = (-1)~‘6oB1... 8k. Now, the following theorem is
established in (6~.
Theorem 1.

where Bn = :E~==1 
Remark. It is also known in [6] that + ~~~ = and +

_ (1 - Together with J1~1+(B,~) = M-(C,1 - ~), one can
obtain the value ~l~t(B, ~).

3. THE CASE ,M~B, ~~ = 0

Continued fraction expansions of the form

are called Hurzuitziarc if co is an integer, cl, ... , are positive integers,
..., Qp(k) are polynomials with rational coefficients which takes

positive integral values for k =1, 2, ... and at least one of the polynomials
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is not constant. Ql(k), ... , Qp(k) are said to form a quasi-period. The
expansions

where s is a positive integer with s &#x3E; 2, are well-known examples (See [3],
[8], [10] e.g.). In [7] for a positive integer s we have M( e1/8, (el/8 -1)/2) = 0,
M(e’/-’, 1/2) = 1/8 and M(eI/8, 1/3) =0if~=2 (mod 3); 1/18 otherwise.

Then, what is the condition such that ,Jt~l (9, ~) - 0 holds? It seems
that a non-constant polynomial in a quasi-periodic part influences whether
M (0, Ø) = 0 or not. So, we consider the cases each quasi-periodic form
includes no constant.

where s is a positive integer, or

where s is an odd positive integer with s &#x3E; 3, is one of the well-known

examples (See [10] e.g.).
In any of two expansions of 0 above ak is increasing and ak - oo (k -

oo). So, one may be apt to conjecture that Jl~l(8, ~) = 0 for almost all of
0. But, there is a case satisfying .M(~,~) 7~ 0.

Theorem 2. 
x  B

Proo f . First, note that in the expansion of ~ I

yielding

It is convenient to see that

and
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and

Hence,

and

yielding that M - (0, q5) = 1/4.
Next, 1 - ~ = (1 - 0)/2 = 1/(e1~9 + 1) is expanded as

and

In a similar manner, by
’1

Contrary to this result, there is, of course, a case satisfying M(0, §) = 0.

Theorem 3. 
1 - I
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Remark. It is interesting to see that in [7]
, - , B.

in comparison with Theorem 2 above and this Theorem.

Proof. 0 = 1/2 is expanded as

one finds that

as n tends to infinity. Therefore, we have .M(~ 1/2) = M±(0, 1/2) = 0. D
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We shall show one more case satisfying ,NI (8, §) = 0.

Theorem 4.
/ -, "

Proof. When s - 0 (mod 3), ~ = 1/3 is expanded as

as n tends to infinity. Hence, we have M - (0, 1/ 3) = 0.
1 - ql = 2/3 is expanded as

as n tends to infinity. Hence, we have M+(9, 1/3) = 0.
Therefore, A~, 1/3) = 0.
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When 5=1 (mod 3), ~ = 1/3 is expanded as

as n tends to infinity. Since for n =1, 2, ...

one finds that
i a.__1I

as n tends to infinity. Hence, we have M - (0, 1/3) = 0.
1 - ~ = 2/3 is expanded as
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as n tends to infinity. Since for n = 1, 2, ...
1

one finds that

as n tends to infinity. Hence, we have .M+(~ 1/3) = 0.
Therefore, M(0, 1/3) = 0.
When s - 2 (mod 3), ~ = 1/3 is expanded as

as r~ tends to infinity. Since for n = 1, 2, ...

one finds that

as n tends to infinity. Hence, we have M-(O, 1/3) = 0.
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and 4&#x3E;0 = 1/3, for n = 1, 2, ...

as n tends to infinity. Since for n = 1, 2, ...

one finds that

as n tends to infinity. Hence, we have M+(0, 1/3) = 0.
Therefore, M (0, 1/ 3) = 0.

Let us calculate M (0, 0) when

where s is an odd positive integer with s &#x3E; 3. The situations are a little
bit different from the previous results. Notice that an = (2n - 1)s ~ oo,
so On-1 = 1/(an + 8n) -7 0 (rt = 1, 2, ... - oo). I = 1
and qn-, IDn-1 I = 0 hold for this 8 too. The first result is quite
different from Theorem 2.

Theorem 5.
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and

Since for n = 1, 2, ...

one finds that

and

Since for n = 1, 2, ...

one finds that

Theorem 6.
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Proof. 0 = 1/2 is expanded as

and

as n tends to infinity. Therefore, we have M(~, 1/2) = M±(O, 1/2) = 0. 0

Theorem 7. 
, ,

- ,-

with s 0, s 1, s - 2 (mod 3), respectively. 0

5. SOME CONDITIONS SATISFYING cp) = 0

We have already seen several examples so that M (0, q5) = 0 holds. Then,
what is the condition of M(0, cp) = 0? Of course, the following is clear.

Theorem 8. If §n - 0 or 1 (n -3 f or infinitely man y positive
integers n, then = 0.

Proof. First, we shall show that  BnlDn-11 [  4 for any positive
integer n. Since
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we obtain

On the other hand,

’--’

Corollary. When bn =1, On-, -+ 0 i f and 1 (n - oo).
This is very generous. So, we state the following.

Theorem 9. If I an - c and an -+ 00 (n -~ oo) f or infinitely many
positive integers n, then M (0, §) = 0. Here, c is a constant not depending
npon n.

Remark. In fact, an = bn -~ oo (n - oo) holds in all previous theorems
above implying JI~! (8, Ø) = 0.

0
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