JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

TAKAO KOMATSU

On inhomogeneous diophantine approximation with some quasi-periodic expressions, II

Journal de Théorie des Nombres de Bordeaux, tome 11, n° 2 (1999), p. 331-344

http://www.numdam.org/item?id=JTNB 1999 11 2 331 0>

© Université Bordeaux 1, 1999, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

On inhomogeneous Diophantine approximation with some quasi-periodic expressions, II

par TAKAO KOMATSU

RÉSUMÉ. On s'intéresse aux valeurs de

$$\mathcal{M}(\theta, \phi) = \liminf_{|q| \to \infty} |q| ||q\theta - \phi||$$

lorsque θ est un réel ayant un développement en fraction continue quasi-périodique.

ABSTRACT. We consider the values concerning

$$\mathcal{M}(heta,\phi) = \liminf_{|q| o \infty} |q| ||q heta - \phi||$$

where the continued fraction expansion of θ has a quasi-periodic form. In particular, we treat the cases so that each quasi-periodic form includes no constant. Furthermore, we give some general conditions satisfying $\mathcal{M}(\theta,\phi)=0$.

1. Introduction

Let θ be irrational and ϕ real. We suppose throughout that $q\theta - \phi$ is never integral for any integer q. Define the value of the function

$$\mathcal{M}(heta,\phi) = \liminf_{|q| o \infty} |q| \|q heta - \phi\|$$
 ,

which is called *inhomogeneous approximation constant* for the pair θ , ϕ . It is convenient to introduce the functions

$$\mathcal{M}_+(heta,\phi) = \liminf_{q o +\infty} q \|q heta - \phi\|$$

and

$$\mathcal{M}_{-}(heta,\phi) = \liminf_{q o +\infty} q \|q heta + \phi\| = \liminf_{q o -\infty} |q| \|q heta - \phi\|$$
 .

Then $\mathcal{M}(\theta, \phi) = \min(\mathcal{M}_{+}(\theta, \phi), \mathcal{M}_{-}(\theta, \phi))$. Several authors have treated $\mathcal{M}(\theta, \phi)$ or $\mathcal{M}_{+}(\theta, \phi)$ by using their own algorithms (See [1], [2], [4], [5], [11] e.g.), but it has been difficult to find the exact values of $\mathcal{M}(\theta, \phi)$ for

the concrete pair of θ and ϕ . For example, Cusick, Rockett and Szüsz ([2]) obtain

$$\mathcal{M}\left(heta, rac{1}{2}
ight) = rac{1}{4\sqrt{5}} \quad ext{and} \quad \mathcal{M}\left(heta, rac{1}{\sqrt{5}}
ight) = rac{1}{5\sqrt{5}}$$

when $\theta = (1 + \sqrt{5})/2 = [1; 1, 1, ...]$. And author ([5]) obtains

$$\begin{split} \mathcal{M}\left(\theta,\frac{1}{a}\right) &= \frac{1}{a^2\sqrt{a^2+4}},\\ \mathcal{M}\left(\theta,\frac{1}{2a}\right) &= \frac{1}{4a^2\sqrt{a^2+4}},\\ \mathcal{M}\left(\theta,\frac{1}{a^2+4}\right) &= \frac{1}{(a^2+4)\sqrt{a^2+4}} \quad \text{and}\\ \mathcal{M}\left(\theta,\frac{1}{2}\right) &= \frac{1}{4\sqrt{a^2+4}} \quad (a \text{ is odd } \geq 3) \end{split}$$

when $\theta = (\sqrt{a^2 + 4} - a)/2 = [0; a, a, ...]$. However, it is not easy to apply these methods to find the value $\mathcal{M}(\theta, \phi)$ about the different types of θ .

In [6] author establishes the relationship between $\mathcal{M}(\theta, \phi)$ and the algorithm of Nishioka, Shiokawa and Tamura. If we use this result, we can evaluate the exact value of $\mathcal{M}(\theta, \phi)$ for any pair of θ and ϕ at least when θ is a positive real root of the quadratic equation and $\phi \in \mathbb{Q}(\theta)$. For example,

$$\mathcal{M}\left(heta, rac{1}{2}
ight) = egin{cases} rac{\min(a,b)}{4\sqrt{D}} & ext{if both a and b are odd,} \\ rac{a}{4\sqrt{D}} & ext{otherwise,} \end{cases}$$
 $\mathcal{M}\left(heta, rac{1}{\sqrt{D}}
ight) = rac{a}{D\sqrt{D}} \quad ext{and}$ $\mathcal{M}\left(heta, rac{1}{a}
ight) = rac{1}{a\sqrt{D}} \quad (a \geq 2) \quad (D = ab(ab + 4))$

are given when $\theta = (\sqrt{ab(ab+4)} - ab)/(2a) = [0; a, b, a, b, \dots].$

Furthermore, in [7] author is so successful applying the Nishioka-Shiokawa-Tamura algorithm that the exact value of $\mathcal{M}(\theta,\phi)$ can be calculated even if θ is a Hurwitzian number, namely its continued fraction expansion has a quasi-periodic form. And it is the first time to find a concrete pair of θ and ϕ so that $\mathcal{M}(\theta,\phi)=0$. For example, for a positive integer s

$$\mathcal{M}\left(e^{\frac{1}{s}},\frac{1}{3}\right) = egin{cases} 0 & ext{if } s \equiv 2 \pmod{3}, \ rac{1}{18} & ext{otherwise} \end{cases}$$

is given.

In this paper we consider the cases so that each quasi-periodic form includes no constant, and conditions satisfying $\mathcal{M}(\theta, \phi) = 0$.

2. NST ALGORITHM

We first introduce the NST algorithm ([9]). $\theta = [a_0; a_1, a_2, \dots]$ denotes the continued fraction expansion of θ , where

$$egin{aligned} heta = a_0 + heta_0, & a_0 = \lfloor heta
floor, \ 1/ heta_{n-1} = a_n + heta_n, & a_n = \lfloor 1/ heta_{n-1}
floor & (n=1, \ 2, \ \ldots). \end{aligned}$$

The k-th convergent $p_k/q_k = [a_0; a_1, \ldots, a_k]$ of θ is then given by the recurrence relations

$$p_k = a_n p_{k-1} + p_{k-2}$$
 $(k = 0, 1, ...),$ $p_{-2} = 0,$ $p_{-1} = 1,$ $q_k = a_k q_{k-1} + q_{k-2}$ $(k = 0, 1, ...),$ $q_{-2} = 1,$ $q_{-1} = 0.$

Denote $\phi = \theta[b_0; b_1, b_2, \dots,]$ be the expansion of ϕ in terms of the sequence $\{\theta_0, \theta_1, \dots\}$, where

$$\phi = b_0 - \phi_0, \qquad b_0 = \lceil \phi \rceil, \ \phi_{n-1}/\theta_{n-1} = b_n - \phi_n, \qquad b_n = \lceil \phi_{n-1}/\theta_{n-1} \rceil \quad (n = 1, 2, \ldots).$$

Then, ϕ is represented by

$$\phi = b_0 - b_1 \theta_0 + b_2 \theta_0 \theta_1 - \dots + (-1)^k b_k \theta_0 \theta_1 \dots \theta_{k-1} - (-1)^k \theta_0 \theta_1 \dots \theta_{k-1} \phi_k$$

$$= b_0 - \sum_{k=0}^{\infty} (-1)^k b_{k+1} \theta_0 \theta_1 \dots \theta_k = b_0 - \sum_{k=0}^{\infty} b_{k+1} D_k,$$

where $D_k = q_k \theta - p_k = (-1)^k \theta_0 \theta_1 \dots \theta_k$. Now, the following theorem is established in [6].

Theorem 1.

$$\mathcal{M}_{-}(\theta,\phi) = \liminf_{n \to +\infty} \min(B_n \|B_n \theta + \phi\|, B_n^* \|B_n^* \theta + \phi\|),$$

where
$$B_n = \sum_{k=1}^n b_k q_{k-1}$$
 and $B_n^* = B_n - q_{n-1}$.

Remark. It is also known in [6] that $||B_n\theta + \phi|| = \phi_n|D_{n-1}|$ and $||B_n^*\theta + \phi|| = (1 - \phi_n)|D_{n-1}|$. Together with $\mathcal{M}_+(\theta, \phi) = \mathcal{M}_-(\theta, 1 - \phi)$, one can obtain the value $\mathcal{M}(\theta, \phi)$.

3. The case
$$\mathcal{M}(\theta, \phi) = 0$$

Continued fraction expansions of the form

$$[c_0; c_1, \ldots, c_n, \overline{Q_1(k), \ldots, Q_p(k)}]_{k=1}^{\infty}$$

are called *Hurwitzian* if c_0 is an integer, c_1, \ldots, c_n are positive integers, $Q_1(k), \ldots, Q_p(k)$ are polynomials with rational coefficients which takes positive integral values for $k = 1, 2, \ldots$ and at least one of the polynomials

is not constant. $Q_1(k), \ldots, Q_p(k)$ are said to form a quasi-period. The expansions

$$e = [2; \overline{1, 2k, 1}]_{k=1}^{\infty}$$
 and $e^{1/s} = [1; \overline{(2k-1)s-1, 1, 1}]_{k=1}^{\infty}$

where s is a positive integer with $s \ge 2$, are well-known examples (See [3], [8], [10] e.g.). In [7] for a positive integer s we have $\mathcal{M}(e^{1/s}, (e^{1/s}-1)/2) = 0$, $\mathcal{M}(e^{1/s}, 1/2) = 1/8$ and $\mathcal{M}(e^{1/s}, 1/3) = 0$ if $s \equiv 2 \pmod{3}$; 1/18 otherwise.

Then, what is the condition such that $\mathcal{M}(\theta,\phi)=0$ holds? It seems that a non-constant polynomial in a quasi-periodic part influences whether $\mathcal{M}(\theta,\phi)=0$ or not. So, we consider the cases each quasi-periodic form includes no constant.

$$\frac{e^{1/s}-1}{e^{1/s}+1}=[\ 0;\ \overline{(4k-2)s}\]_{k=1}^{\infty}\,,$$

where s is a positive integer, or

$$\frac{e^{2/s}-1}{e^{2/s}+1}=[\ 0;\ \overline{(2k-1)s}\]_{k=1}^{\infty}\,,$$

where s is an odd positive integer with $s \geq 3$, is one of the well-known examples (See [10] e.g.).

In any of two expansions of θ above a_k is increasing and $a_k \to \infty$ $(k \to \infty)$. So, one may be apt to conjecture that $\mathcal{M}(\theta, \phi) = 0$ for almost all of ϕ . But, there is a case satisfying $\mathcal{M}(\theta, \phi) \neq 0$.

Theorem 2.

$$\mathcal{M}\left(rac{e^{1/s}-1}{e^{1/s}+1},rac{e^{1/s}}{e^{1/s}+1}
ight)=rac{1}{4}\,.$$

Proof. First, note that in the expansion of $\theta = (e^{1/s} - 1)/(e^{1/s} + 1)$

$$a_n = (4n-2)s \to \infty \quad (n=1,2,\ldots \to \infty),$$

yielding

$$heta_{n-1} = rac{1}{a_n + heta_n} o 0 \quad (n = 1, 2, \ldots o \infty) \, .$$

It is convenient to see that

$$|q_n|D_{n-1}|=rac{1}{1+ heta_nq_{n-1}/q_n}
ightarrow 1 \qquad (n=1,2,\ldots
ightarrow\infty)$$

and

$$|q_{n-1}|D_{n-1}| = \frac{1}{(4n-2)s + \theta_n + q_{n-2}/q_{n-1}} \to 0 \qquad (n=1,2,\ldots \to \infty).$$

$$\phi = (\theta + 1)/2 = e^{1/s}/(e^{1/s} + 1)$$
 is expanded as

$$\phi = {}_{\theta}\![1; \overline{(2k-1)s}]_{k=1}^{\infty} = {}_{\theta}\![1; \overline{a_k/2}]_{k=1}^{\infty}$$

and

$$\phi_n = \frac{1-\theta_n}{2} \to \frac{1}{2} \qquad (n=0,1,2,\ldots \to \infty).$$

For n = 1, 2, ...

$$B_n = \sum_{i=1}^n \frac{a_i}{2} q_{i-1} = \frac{q_n + q_{n-1} - 1}{2}.$$

Hence,

$$\begin{split} B_n \|B_n \theta + \phi\| &= B_n \phi_n |D_{n-1}| \\ &= \frac{1}{2} (q_n |D_{n-1}| + q_{n-1} |D_{n-1}| - |D_{n-1}|) \phi_n \\ &\to \frac{1}{2} (1 + 0 - 0) \cdot \frac{1}{2} = \frac{1}{4} \qquad (n \to \infty) \end{split}$$

and

$$\begin{split} B_n^* \| B_n^* \theta + \phi \| &= (B_n - q_{n-1})(1 - \phi_n) |D_{n-1}| \\ &= \frac{1}{2} (q_n |D_{n-1}| - q_{n-1} |D_{n-1}| - |D_{n-1}|)(1 - \phi_n) \\ &\to \frac{1}{2} (1 - 0 - 0) \left(1 - \frac{1}{2} \right) = \frac{1}{4} \qquad (n \to \infty) \,, \end{split}$$

yielding that $\mathcal{M}_{-}(\theta, \phi) = 1/4$.

Next, $1 - \phi = (1 - \theta)/2 = 1/(e^{1/s} + 1)$ is expanded as

$$1-\phi=\int_{\mathbb{R}} 1; \ s+1, \ \overline{(2k-1)s} \mid_{k=2}^{\infty}=\int_{\mathbb{R}} 1; \ a_1/2+1, \ \overline{a_k/2} \mid_{k=2}^{\infty}$$

and

$$\phi_0=rac{1+ heta_0}{2}, \qquad \phi_n=rac{1- heta_n}{2}
ightarrow rac{1}{2} \qquad (n=1,2,\ldots
ightarrow\infty)\,.$$

For n = 1, 2, ...

$$B_n = 1 + \sum_{i=1}^n \frac{a_i}{2} q_{i-1} = \frac{q_n + q_{n-1} + 1}{2}$$
.

In a similar manner, by

$$B_n\|B_n heta-\phi\| o rac{1}{4} \quad ext{and} \quad B_n^*\|B_n^* heta-\phi\| o rac{1}{4} \quad (n o\infty)$$

one has $\mathcal{M}_{+}(\theta,\phi)=1/4$. Therefore, $\mathcal{M}(\theta,\phi)=\mathcal{M}_{\pm}(\theta,\phi)=1/4$.

Contrary to this result, there is, of course, a case satisfying $\mathcal{M}(\theta,\phi)=0$.

Theorem 3.

$$\mathcal{M}\left(rac{e^{1/s}-1}{e^{1/s}+1},rac{1}{2}
ight)=0\,.$$

Remark. It is interesting to see that in [7]

$$\mathcal{M}\left(e^{1/s}, rac{e^{1/s}-1}{2}
ight) = 0 \qquad ext{and} \qquad \mathcal{M}\left(e^{1/s}, rac{1}{2}
ight) = rac{1}{8}
eq 0$$

in comparison with Theorem 2 above and this Theorem.

Proof. $\phi = 1/2$ is expanded as

$$1/2 = \theta \left[1; \ s+1, \ \overline{(8k-2)s, \ (4k+1)s} \ \right]_{k=1}^{\infty}$$
$$= \theta \left[1; \ a_1/2 + 1, \ \overline{a_{2k}, \ a_{2k+1}/2} \ \right]_{k=1}^{\infty}$$

and $\phi_0 = 1/2$, for n = 1, 2, ...

$$\phi_{2n-1} = 1 - rac{1}{2} heta_{2n-1} o 1, \quad \phi_{2n} = rac{1}{2} - heta_{2n} o rac{1}{2} \qquad (n o \infty) \,.$$

Since for $n=1,2,\ldots$

$$B_{2n-1} = \frac{a_1}{2} + 1 + \sum_{i=1}^{n-1} \left(a_{2i} q_{2i-1} + \frac{1}{2} a_{2i+1} q_{2i} \right) = \frac{1}{2} q_{2n-1} + q_{2n-2},$$

one finds that

$$\begin{split} B_{2n-1} \| B_{2n-1} \theta + \phi \| &= B_{2n-1} \phi_{2n-1} |D_{2n-2}| \\ &= \left(\frac{1}{2} q_{2n-1} |D_{2n-2}| + q_{2n-2} |D_{2n-2}| \right) \phi_{2n-1} \\ &\to \left(\frac{1}{2} \cdot 1 + 0 \right) \cdot 1 = \frac{1}{2} \,, \end{split}$$

$$\begin{split} B_{2n-1}^* \| B_{2n-1}^* \theta + \phi \| &= (B_{2n-1} - q_{2n-2})(1 - \phi_{2n-1}) |D_{2n-2}| \\ &= \frac{1}{2} q_{2n-1} |D_{2n-2}| (1 - \phi_{2n-1}) \to \frac{1}{2} \cdot 1 \cdot (1 - 1) = 0 \,, \end{split}$$

$$\begin{split} B_{2n} \|B_{2n}\theta + \phi\| &= (B_{2n-1} + b_{2n}q_{2n-1})\phi_{2n}|D_{2n-1}| \\ &= \left(q_{2n}|D_{2n-1} + \frac{1}{2}q_{2n-1}|D_{2n-1}|\right)\phi_{2n} \\ &\to \left(1 + \frac{1}{2} \cdot 0\right) \cdot \frac{1}{2} = \frac{1}{2} \,, \end{split}$$

$$\begin{split} B_{2n}^* \| B_{2n}^* \theta + \phi \| &= (B_{2n} - q_{2n-1})(1 - \phi_{2n}) |D_{2n-1}| \\ &= \left(q_{2n} |D_{2n-1}| - \frac{1}{2} q_{2n-1} |D_{2n-1}| \right) (1 - \phi_{2n}) \\ &\to \left(1 - \frac{1}{2} \cdot 0 \right) \left(1 - \frac{1}{2} \right) = \frac{1}{2} \end{split}$$

as n tends to infinity. Therefore, we have $\mathcal{M}(\theta,1/2)=\mathcal{M}_{\pm}(\theta,1/2)=0$.

We shall show one more case satisfying $\mathcal{M}(\theta, \phi) = 0$.

Theorem 4.

$$\mathcal{M}\left(rac{e^{1/s}-1}{e^{1/s}+1},rac{1}{3}
ight)=0\,.$$

Proof. When $s \equiv 0 \pmod{3}$, $\phi = 1/3$ is expanded as

$$\frac{1}{3} = e[1; \frac{2}{3}a_1 + 1, \frac{2}{a_{2k}, \frac{2}{3}a_{2k+1}}]_{k=1}^{\infty}$$

and $\phi_0 = 2/3$, for n = 1, 2, ...

$$\phi_{2n-1} = 1 - rac{2}{3} heta_{2n-1} o 1, \quad \phi_{2n} = rac{2}{3} - heta_{2n} o rac{2}{3} \qquad (n o \infty) \,.$$

Since for $n=1,2,\ldots$

$$B_{2n-1} = \frac{2}{3}a_1 + 1 + \sum_{i=1}^{n-1} \left(a_{2i}q_{2i-1} + \frac{2}{3}a_{2i+1}q_{2i} \right) = \frac{2}{3}q_{2n-1} + q_{2n-2},$$

one finds that

$$\begin{split} B_{2n-1}^* \| B_{2n-1}^* \theta + \phi \| &= (B_{2n-1} - q_{2n-2})(1 - \phi_{2n-1}) |D_{2n-2}| \\ &= \frac{2}{3} q_{2n-1} |D_{2n-2}| (1 - \phi_{2n-1}) \to \frac{2}{3} \cdot 1 \cdot (1 - 1) = 0 \,, \end{split}$$

as n tends to infinity. Hence, we have $\mathcal{M}_{-}(\theta, 1/3) = 0$.

 $1 - \phi = 2/3$ is expanded as

$$\frac{2}{3} = \theta \left[1; \ \frac{1}{3}a_1 + 1, \ \overline{a_{2k}, \ \frac{1}{3}a_{2k+1}} \ \right]_{k=1}^{\infty}$$

and $\phi_0 = 1/3$, for n = 1, 2, ...

$$\phi_{2n-1} = 1 - rac{1}{3} heta_{2n-1} o 1, \quad \phi_{2n} = rac{1}{3} - heta_{2n} o rac{1}{3} \qquad (n o \infty) \,.$$

Since for $n = 1, 2, \ldots$

$$B_{2n-1} = rac{1}{3}a_1 + 1 + \sum_{i=1}^{n-1} \left(a_{2i}q_{2i-1} + rac{1}{3}a_{2i+1}q_{2i}
ight) = rac{1}{3}q_{2n-1} + q_{2n-2}\,,$$

one finds that

$$\begin{split} B_{2n-1}^* \| B_{2n-1}^* \theta - \phi \| &= (B_{2n-1} - q_{2n-2})(1 - \phi_{2n-1}) |D_{2n-2}| \\ &= \frac{1}{3} q_{2n-1} |D_{2n-2}| (1 - \phi_{2n-1}) \to \frac{1}{3} \cdot 1 \cdot (1 - 1) = 0 \,, \end{split}$$

as n tends to infinity. Hence, we have $\mathcal{M}_{+}(\theta, 1/3) = 0$. Therefore, $\mathcal{M}(\theta, 1/3) = 0$.

When $s \equiv 1 \pmod{3}$, $\phi = 1/3$ is expanded as

$$\frac{1}{3} = d \left[1; \frac{2}{3}(a_1+1), \frac{2}{3}a_{6k-4}, \frac{2a_{6k-3}+1}{3}, a_{6k-2}, \frac{2}{3}a_{6k-1}, a_{6k}, \frac{2a_{6k+1}-1}{3} \right]_{k=1}^{\infty}$$

and $\phi_0 = 2/3$, for n = 1, 2, ...

$$egin{aligned} \phi_{6n-5} &= rac{2}{3}(1- heta_{6n-5})
ightarrow rac{2}{3}, & \phi_{6n-4} &= rac{2}{3}(1- heta_{6n-4})
ightarrow rac{2}{3}, \ \phi_{6n-3} &= 1 - rac{2}{3} heta_{6n-3}
ightarrow 1, & \phi_{6n-2} &= rac{2}{3} - heta_{6n-2}
ightarrow rac{2}{3}, \ \phi_{6n-1} &= 1 - rac{2}{3} heta_{6n-1}
ightarrow 1, & \phi_{6n} &= rac{2}{3} - heta_{6n}
ightarrow rac{2}{3}. \end{aligned}$$

as n tends to infinity. Since for n = 1, 2, ...

$$B_{6n-5} = \frac{2}{3}(a_1+1) + \sum_{i=1}^{n-1} \left(\frac{2}{3} a_{6i-4} q_{6i-5} + \frac{2a_{6i-3}+1}{3} q_{6i-4} + a_{6i-2} q_{6i-3} + \frac{2}{3} a_{6i-1} q_{6i-2} + a_{6i} q_{6i-1} + \frac{2a_{6i+1}-1}{3} q_{6i} \right)$$

$$= \frac{2}{3} (q_{6n-5} + q_{6n-6}),$$

one finds that

$$\begin{split} B_{6n-3}^* \| B_{6n-3}^* \theta + \phi \| &= (B_{6n-3} - q_{6n-4})(1 - \phi_{6n-3}) |D_{6n-6}| \\ &= \frac{2}{3} q_{6n-3} |D_{6n-4}| (1 - \phi_{6n-3}) \to \frac{2}{3} \cdot 1 \cdot (1 - 1) = 0 \,, \\ B_{6n-1}^* \| B_{6n-1}^* \theta + \phi \| &= \frac{2}{3} q_{6n-1} |D_{6n-2}| (1 - \phi_{6n-1}) \to \frac{2}{3} \cdot 1 \cdot (1 - 1) = 0 \,, \end{split}$$

as n tends to infinity. Hence, we have $\mathcal{M}_{-}(\theta, 1/3) = 0$.

 $1 - \phi = 2/3$ is expanded as

$$\frac{2}{3} = d[1; \frac{1}{3}(a_1+1), \frac{1}{3}a_{6k-4}, \frac{a_{6k-3}+2}{3}, a_{6k-2}, \frac{1}{3}a_{6k-1}, a_{6k}, \frac{a_{6k+1}-2}{3}]_{k=1}^{\infty}$$
 and $\phi_0 = 1/3$, for $n = 1, 2, ...$

$$egin{aligned} \phi_{6n-5} &= rac{1}{3}(1- heta_{6n-5})
ightarrow rac{1}{3}, & \phi_{6n-4} &= rac{1}{3}(1- heta_{6n-4})
ightarrow rac{1}{3}, \ \phi_{6n-3} &= 1 - rac{1}{3} heta_{6n-3}
ightarrow 1, & \phi_{6n-2} &= rac{1}{3} - heta_{6n-2}
ightarrow rac{1}{3}, \ \phi_{6n-1} &= 1 - rac{1}{3} heta_{6n-1}
ightarrow 1, & \phi_{6n} &= rac{1}{3} - heta_{6n}
ightarrow rac{1}{3} \end{aligned}$$

as n tends to infinity. Since for n = 1, 2, ...

$$B_{6n-5} = \frac{1}{3}(q_{6n-5} + q_{6n-6}),$$

one finds that

$$\begin{split} B_{6n-3}^* \| B_{6n-3}^* \theta - \phi \| &= \frac{1}{3} q_{6n-3} |D_{6n-4}| (1 - \phi_{6n-3}) \to \frac{1}{3} \cdot 1 \cdot (1 - 1) = 0 \,, \\ B_{6n-1}^* \| B_{6n-1}^* \theta - \phi \| &= \frac{1}{3} q_{6n-1} |D_{6n-2}| (1 - \phi_{6n-1}) \to \frac{1}{3} \cdot 1 \cdot (1 - 1) = 0 \,, \end{split}$$

as n tends to infinity. Hence, we have $\mathcal{M}_{+}(\theta, 1/3) = 0$. Therefore, $\mathcal{M}(\theta, 1/3) = 0$.

When $s \equiv 2 \pmod{3}$, $\phi = 1/3$ is expanded as

$$\frac{1}{3} = d \left[1; \frac{2a_1 + 1}{3}, \frac{1}{3} a_{6k-4}, \frac{2}{3} (a_{6k-3} + 1), a_{6k-2}, \frac{2}{3} a_{6k-1}, a_{6k}, \frac{2}{3} (a_{6k+1} - 1) \right]_{k=1}^{\infty}$$

and $\phi_0 = 2/3$, for n = 1, 2, ...

$$\begin{aligned} \phi_{6n-5} &= \frac{1}{3}(1-2\theta_{6n-5}) \to \frac{1}{3}, & \phi_{6n-4} &= \frac{1}{3}(2-\theta_{6n-4}) \to \frac{2}{3}, \\ \phi_{6n-3} &= 1 - \frac{2}{3}\theta_{6n-3} \to 1, & \phi_{6n-2} &= \frac{2}{3} - \theta_{6n-2} \to \frac{2}{3}, \\ \phi_{6n-1} &= 1 - \frac{2}{3}\theta_{6n-1} \to 1, & \phi_{6n} &= \frac{2}{3} - \theta_{6n} \to \frac{2}{3} \end{aligned}$$

as n tends to infinity. Since for n = 1, 2, ...

$$B_{6n-5} = \frac{2a_1+1}{3} + \sum_{i=1}^{n-1} \left(\frac{1}{3} a_{6i-4} q_{6i-5} + \frac{2}{3} (a_{6i-3}+1) q_{6i-4} \right.$$

$$\left. + a_{6i-2} q_{6i-3} + \frac{2}{3} a_{6i-1} q_{6i-2} + a_{6i} q_{6i-1} + \frac{2}{3} (a_{6i+1}-1) q_{6i} \right)$$

$$= \frac{1}{3} (2q_{6n-5} + q_{6n-6}),$$

one finds that

$$\begin{split} B_{6n-3}^* \| B_{6n-3}^* \theta + \phi \| &= \frac{2}{3} q_{6n-3} |D_{6n-4}| (1 - \phi_{6n-3}) \to \frac{2}{3} \cdot 1 \cdot (1 - 1) = 0 \,, \\ B_{6n-1}^* \| B_{6n-1}^* \theta + \phi \| &= \frac{2}{3} q_{6n-1} |D_{6n-2}| (1 - \phi_{6n-1}) \to \frac{2}{3} \cdot 1 \cdot (1 - 1) = 0 \,, \end{split}$$

as n tends to infinity. Hence, we have $\mathcal{M}_{-}(\theta, 1/3) = 0$.

 $1 - \phi = 2/3$ is expanded as

$$\frac{2}{3} = \sqrt{1}; \ \frac{a_1+2}{3}, \ \frac{2}{3}a_{6k-4}, \ \frac{a_{6k-3}+1}{3}, \ a_{6k-2}, \ \frac{1}{3}a_{6k-1}, \ a_{6k}, \ \frac{a_{6k+1}-1}{3} \]_{k=1}^{\infty}$$

and $\phi_0 = 1/3$, for n = 1, 2, ...

$$egin{aligned} \phi_{6n-5} &= rac{1}{3}(2- heta_{6n-5})
ightarrow rac{2}{3}, & \phi_{6n-4} &= rac{1}{3}(1-2 heta_{6n-4})
ightarrow rac{1}{3}, \ \phi_{6n-3} &= 1 - rac{1}{3} heta_{6n-3}
ightarrow 1, & \phi_{6n-2} &= rac{1}{3} - heta_{6n-2}
ightarrow rac{1}{3}, \ \phi_{6n-1} &= 1 - rac{1}{3} heta_{6n-1}
ightarrow 1, & \phi_{6n} &= rac{1}{3} - heta_{6n}
ightarrow rac{1}{3} \end{aligned}$$

as n tends to infinity. Since for n = 1, 2, ...

$$B_{6n-5} = \frac{1}{3}(q_{6n-5} + 2q_{6n-6}),$$

one finds that

$$egin{aligned} B^*_{6n-3} \| B^*_{6n-3} heta - \phi \| &= rac{1}{3} q_{6n-3} | D_{6n-4} | (1 - \phi_{6n-3})
ightarrow rac{1}{3} \cdot 1 \cdot (1 - 1) = 0 \,, \ B^*_{6n-1} \| B^*_{6n-1} heta - \phi \| &= rac{1}{3} q_{6n-1} | D_{6n-2} | (1 - \phi_{6n-1})
ightarrow rac{1}{3} \cdot 1 \cdot (1 - 1) = 0 \,, \end{aligned}$$

as n tends to infinity. Hence, we have $\mathcal{M}_{+}(\theta, 1/3) = 0$. Therefore, $\mathcal{M}(\theta, 1/3) = 0$.

4. THE CASES
$$\mathcal{M}((e^{2/s}-1)/(e^{2/s}+1),\phi)=0$$

Let us calculate $\mathcal{M}(\theta, \phi)$ when

$$\theta = \frac{e^{2/s} - 1}{e^{2/s} + 1} = [0; \overline{(2k-1)s}]_{k=1}^{\infty},$$

where s is an odd positive integer with $s \geq 3$. The situations are a little bit different from the previous results. Notice that $a_n = (2n-1)s \to \infty$, so $\theta_{n-1} = 1/(a_n + \theta_n) \to 0$ $(n = 1, 2, ... \to \infty)$. $\lim_{n \to \infty} q_n |D_{n-1}| = 1$ and $\lim_{n \to \infty} q_{n-1} |D_{n-1}| = 0$ hold for this θ too. The first result is quite different from Theorem 2.

Theorem 5.

$$\mathcal{M}\left(rac{e^{2/s}-1}{e^{2/s}+1},rac{e^{2/s}}{e^{2/s}+1}
ight)=0\,.$$

Proof. $\phi = (\theta + 1)/2 = e^{2/s}/(e^{2/s} + 1)$ is expanded as

$$\phi = d \left[1; \frac{\overline{(6k-5)s+1}}{2}, (6k-3)s, \frac{(6k-1)s-1}{2} \right]_{k=1}^{\infty}$$

$$= d \left[1; \frac{\overline{a_{3k-2}+1}}{2}, a_{3k-1}, \frac{a_{3k}-1}{2} \right]_{k=1}^{\infty}$$

and

$$\phi_{3n} = rac{1- heta_{3n}}{2}
ightarrow rac{1}{2} \qquad (n=0,1,2,\ldots
ightarrow \infty)\,, \ \phi_{3n-2} = 1 - rac{1}{2} heta_{3n-2}
ightarrow 1, \quad \phi_{3n-1} = rac{1}{2} - heta_{3n}
ightarrow rac{1}{2} \qquad (n=1,2,\ldots
ightarrow \infty)\,.$$

Since for $n = 1, 2, \ldots$

$$B_{3n} = \sum_{i=1}^{n} \left(\frac{a_{3i-2}+1}{2} q_{3i-3} + a_{3i-1} q_{3i-2} + \frac{a_{3i}-1}{2} q_{3i-1} \right)$$
$$= \frac{1}{2} (q_{3n} + q_{3n-1} - 1).$$

one finds that

$$\begin{split} B_{3n+1}^* \| B_{3n+1}^* \theta + \phi \| &= (B_{3n+1} - q_{3n})(1 - \phi_{3n+1}) |D_{3n}| \\ &= \frac{1}{2} (q_{3n+1} |D_{3n}| - |D_{3n}|)(1 - \phi_{3n+1}) \\ &\to \frac{1}{2} (1 - 0)(1 - 1) = 0 \quad (n \to \infty) \,, \end{split}$$

yielding $\mathcal{M}_{-}(\theta, \phi) = 0$.

Next, $1 - \phi = (1 - \theta)/2 = 1/(e^{2/s} + 1)$ is expanded as

and

$$egin{align} \phi_0 &= rac{1+ heta_0}{2}, \qquad \phi_{3n-2} = 1 - rac{1}{2} heta_{3n-2}
ightarrow 1, \ \phi_{3n-1} &= rac{1}{2} - heta_{3n-1}, \quad \phi_{3n} = rac{1}{2}(1- heta_{3n})
ightarrow rac{1}{2} \quad (n=1,2,\ldots
ightarrow \infty) \,. \end{array}$$

Since for $n = 1, 2, \ldots$

$$B_{3n-2} = \frac{1}{2}q_{3n-2} + q_{3n-3} + \frac{1}{2}$$

one finds that

$$B_{3n-2}^* \|B_{3n-2}^* \theta - \phi\| = \frac{1}{2} (q_{3n-2} |D_{3n-3}| + |D_{3n-3}|) (1 - \phi_{3n-2})$$
$$\to \frac{1}{2} (1+0) (1-1) = 0 \quad (n \to \infty),$$

yielding $\mathcal{M}_{+}(\theta,\phi)=0$. Therefore, $\mathcal{M}(\theta,\phi)=\mathcal{M}_{\pm}(\theta,\phi)=0$.

Theorem 6.

$$\mathcal{M}\left(\frac{e^{2/s}-1}{e^{2/s}+1},\frac{1}{2}\right)=0$$
.

Proof. $\phi = 1/2$ is expanded as

$$\frac{1}{2} = d \left[1; \ \frac{a_1+1}{2}, \ \frac{\overline{a_{3k-1}+1}}{2}, \ \overline{a_{3k}, \ \frac{a_{3k+1}-1}{2}} \right]_{k=1}^{\infty}$$

and

$$\phi_0 = rac{1}{2}, \qquad \phi_{3n-2} = rac{1}{2}(1 - heta_{3n-2})
ightarrow rac{1}{2}, \ \phi_{3n-1} = 1 - rac{1}{2} heta_{3n-1}
ightarrow 1, \quad \phi_{3n} = rac{1}{2} - heta_{3n}
ightarrow rac{1}{2} \quad (n = 1, 2, \ldots
ightarrow \infty).$$

Since for $n = 1, 2, \ldots$

$$B_{3n-2} = \frac{a_1+1}{2} + \sum_{i=1}^{n-1} \left(\frac{a_{3i-1}+1}{2} q_{3i-2} + a_{3i} q_{3i-1} + \frac{a_{3i+1}-1}{2} q_{3i} \right)$$
$$= \frac{1}{2} (q_{3n-2} + q_{3n-3}),$$

one finds that

$$B_{3n-1}^* || B_{3n-1}^* \theta + \phi || = (B_{3n-1} - q_{3n-2})(1 - \phi_{3n-1}) |D_{3n-2}|$$
$$= \frac{1}{2} q_{3n-1} |D_{3n-2}| (1 - \phi_{3n-1}) \to \frac{1}{2} \cdot 1 \cdot (1 - 1) = 0$$

as n tends to infinity. Therefore, we have $\mathcal{M}(\theta,1/2)=\mathcal{M}_{\pm}(\theta,1/2)=0$. \square

Theorem 7.

$$\mathcal{M}\left(rac{e^{2/s}-1}{e^{2/s}+1},rac{1}{3}
ight)=0\,.$$

Proof. When $s \equiv 3$, $s \equiv 5$, $s \equiv 1 \pmod{6}$, the situation is completely the same as the case of

$$\theta = \frac{e^{1/s} - 1}{e^{1/s} + 1}$$

with $s \equiv 0$, $s \equiv 1$, $s \equiv 2 \pmod{3}$, respectively.

5. Some conditions satisfying $\mathcal{M}(\theta, \phi) = 0$

We have already seen several examples so that $\mathcal{M}(\theta, \phi) = 0$ holds. Then, what is the condition of $\mathcal{M}(\theta, \phi) = 0$? Of course, the following is clear.

Theorem 8. If $\phi_n \to 0$ or $\phi_n \to 1$ $(n \to \infty)$ for infinitely many positive integers n, then $\mathcal{M}(\theta, \phi) = 0$.

Proof. First, we shall show that $\theta_{n-1} < B_n |D_{n-1}| < 4$ for any positive integer n. Since

$$B_n = \sum_{i=1}^n b_i q_{i-1} \leq \sum_{i=1}^n (a_i + 1) q_{i-1} = q_n + 2q_{n-1} + (q_{n-2} + \cdots + q_1) < 4q_n,$$

we obtain

$$|B_n|D_{n-1}| < \frac{4q_n}{q_n + \theta_n q_{n-1}} < 4.$$

On the other hand,

$$|B_n|D_{n-1}| \ge \frac{\sum_{i=1}^n q_{i-1}}{q_n + \theta_n q_{n-1}} > \frac{1}{q_n + \theta_n} = \theta_{n-1}.$$

If $\phi_n \to 0 \ (n \to \infty)$, then

$$B_n||B_n\theta+\phi||=B_n|D_{n-1}|\phi_n\to 0 \quad (n\to\infty).$$

If $\phi_n \to 1 \ (n \to \infty)$, then

$$B_n^* || B_n^* \theta + \phi || = B_n^* |D_{n-1}| (1 - \phi_n) \to 0 \quad (n \to \infty).$$

Corollary. When $b_n = 1$, $\phi_{n-1} \to 0$ if and only if $\phi_n \to 1$ $(n \to \infty)$.

This is very generous. So, we state the following.

Theorem 9. If $|a_n - b_n| \le c$ and $a_n \to \infty$ $(n \to \infty)$ for infinitely many positive integers n, then $\mathcal{M}(\theta, \phi) = 0$. Here, c is a constant not depending upon n.

Remark. In fact, $a_n = b_n \to \infty$ $(n \to \infty)$ holds in all previous theorems above implying $\mathcal{M}(\theta, \phi) = 0$.

Proof. If $|a_n - b_n| \le c$, then $\frac{1}{\theta_{n-1}} - \frac{\phi_{n-1}}{\theta_{n-1}} < c + 2$ or $0 < 1 - \phi_{n-1} < (c+2)\theta_{n-1}$. And if $\lim_{n\to\infty} a_n = \infty$, then

$$heta_{n-1} = \frac{1}{a_n + \theta_n} o 0 \quad (n o \infty).$$

Thus, $1 - \phi_{n-1} \to 0 \ (n \to \infty)$ entails that

$$B_{n-1}^* || B_{n-1}^* \theta + \phi || = B_{n-1}^* |D_{n-2}| (1 - \phi_{n-1}) \to 0 \quad (n \to \infty).$$

REFERENCES

- [1] J. W. S. Cassels, $\ddot{U}ber \lim_{x \to +\infty} x |\vartheta x + \alpha y|$. Math. Ann. 127 (1954), 288-304.
- [2] T. W. Cusick, A. M. Rockett and P. Szüsz, On inhomogeneous Diophantine approximation.
 J. Number Theory 48 (1994), 259-283.
- [3] C. S. Davis On some simple continued fractions connected with e. J. London Math. Soc. 20 (1945), 194-198.
- [4] R. Descombes Sur la répartition des sommets d'une ligne polygonale régulière non fermée. Ann. Sci. École Norm Sup. 73 (1956), 283-355.
- [5] T. Komatsu On inhomogeneous continued fraction expansion and inhomogeneous Diophantine approximation. J. Number Theory 62 (1997), 192-212.
- [6] T. Komatsu On inhomogeneous Diophantine approximation and the Nishioka-Shiokawa-Tamura algorithm. Acta Arith. 86 (1998), 305-324.

- [7] T. Komatsu On inhomogeneous Diophantine approximation with some quasi-periodic expressions. Acta Math. Hung. 85 (1999), 303-322.
- [8] K. R. Matthews and R. F. C. Walters Some properties of the continued fraction expansion of $(m/n)e^{1/q}$. Proc. Cambridge Philos. Soc. 67 (1970), 67-74.
- K. Nishioka, I. Shiokawa and J. Tamura Arithmetical properties of a certain power series.
 J. Number Theory 42 (1992), 61-87.
- [10] O. Perron Die Lehre von den Kettenbrüchen. Chelsea reprint of 1929 edition.
- [11] V. T. Sós On the theory of Diophantine approximations, II. Acta Math. Acad. Sci. Hung. 9 (1958), 229-241.

Takao KOMATSU Faculty of Education Mie University Mie, 514-8507 Japan

E-mail: komatsu@edu.mie-u.ac.jp