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Lubin-Tate formal groups and module structure

over Hopf orders

par WERNER BLEY et ROBERT BOLTJE

RÉSUMÉ. Ces dernières années les ordres de Hopf ont joué dans
des situations diverses un rôle important dans l’étude de la struc-
ture des module galoisiens en géométrie arithmétique. Nous intro-
duisons ici un cadre qui rend compte des situations précédentes, et
nous étudions les propriétés des algèbres de Hopf dans ce contexte
général. Nous insistons en particulier sur le rôle des résolvantes
dans les calculs explicites. Nous illustrons cette étude en appli-
quant nos résultats à la détermination de la structure de module
de Hopf de l’anneau des entiers d’une extension de Lubin-Tate
relative.

ABSTRACT. Over the last years Hopf orders have played an im-
portant role in the study of integral module structures arising in
arithmetic geometry in various situations. We axiomatize these
situations and discuss the properties of the (integral) Hopf alge-
bra structures which are of interest in this general setting. In

particular, we emphasize the role of resolvents for explicit compu-
tations. As an illustration we apply our results to determine the
Hopf module structure of the ring of integers in relative Lubin-
Tate extensions.

1. INTRODUCTION

In this article we axiomatize the situation considered in Taylor’s article
(T2) .

1.1. Assume the following situation:
. C7 is a Dedekind domain of characteristic 0, K its field of fractions, K
an algebraic closure of K, and Q := Gal( K / K) the absolute Galois
group of K.

. G is a finite group on which Q acts from the left via group automor-

phisms.

Manuscrit reçu le 14 juillet 1997.
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. r is a finite set on which G and f2 act from the left such that G acts

simply transitive (thus IGI = with ’(9y) = ("’9)( cu’Y) for all w E Sl,
9 E G, and 7 E r (the last condition just means that the semidirect
product G x Q acts on r).

We always write the action of w E 0 on G and r exponentially from the left
(like CUg and cu¡ for g E G and 7 E r) and its action on K as for x E K.
For any intermediate field K C L C K, we set OL := 0, and
denote by OL the integral closure of 0 in L.

There is a variety of natural examples for the general situation described
in 1.1.

1.2. Examples. For any field of characteristic 0 let Mn, n E N, denote the
multiplicative group of n-th roots of unity in its algebraic closure.

(a) Let and set K := G := I-tm. Fix a primitive r-th
root of unity (3 E and set r E K ~ I xl =,81. Then r C itr+m and
G acts on r by multiplication.

(b) More generally, let K be a number field, let m e N and G := 11m. For
(3 E KX set r := Ix E K ~ (3}. Then G acts on r by multiplication.

(c) For K as in 1.1, let L/K be a finite Galois extension with Galois
group G, and let 0 act on G by conjugation. Moreover, let qo e L be a
primitive element (L = K(~yo)), and let r be the set of Galois conjugates
of 70.

(d) Let E / F be an elliptic curve with complex multiplication by C~M,
where F is a finite extension of a quadratic imaginary number field M. For
any integral ideal a C nM write E[a] for the subgroup of points of E(F)
that are annihilated by all elements a E a. For x E nM let [x] E End(E) be
the corresponding endomorphism of E. Let, for simplicity, (a) = a C C~~
be a principal ideal and set G := E[a]. For P E E(F) define K := F(P)
and r := {Q E E(F) ~ I [a](Q) = Pl. Then G acts on r by translation.

This kind of example is extensively studied in [A], [ST] and [T2].
(e) Let ~ C F be a finite field extension of the field of p-adic numbers,

and let p F = (7r) be the maximal ideal of the ring dF of integers in F.
Let F be a Lubin-Tate formal group attached to a Lubin-Tate power series

f (X ) E OF[[X]]. Let [-]: OF - End(.F) be the usual ring isomorphism
with [7r](X) = f (X ). For n E N set Gn := ~a~ E pF I (~rn~ (x) = 01, the
subgroup of 7rn-torsion points in the dF-module pp endowed with the F-
group law and the OF-action aac := [a] (a?) for a E CF and x E PP, and let
Fn := F(Gn) denote the field obtained by adjoining the elements of G,~.
For fixed r, m e N, set K := Fr, G := G~, choose ~i E Gr , Gr-i , and set
r := ~x E p p I [7rm](x) = (3} ç Then G acts on r by translation.

For more details about this example in the case m  r see [CT, Ch.
X],[By], [T1], [By], and [CL].
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1.3. Following [T2] we define in the situation described in 1.1
B := Map(G, K) , C := Map(r, K) ,

the group algebra of G over K, the set of maps from G and from r to K,
respectively. Then A is a K-Hopf algebra, B is its K-dual Hopf algebra,
C is a K-algebra and a right A-module by the K-linear extension of the
action ( f ~ g)(’Y) := of G on C, where g E G, f E C, and y E r.

Note that SZ acts on A, B, and C by

for w E r. This is an
action via K-Hopf algebra automorphisms on A and B, and via K-algebra
automorphisms on C. Hence, we may take fixed points with respect to the
subgroup OL = Gal(K/L) for any intermediate field K C L C K:

We omit the index L for L = K. Then AL and BL are L-Hopf subalgebras of
A and B, and they are L-dual to each other. Moreover, CL is an L-algebra
and an AL-module by restriction of the A-action on C. In Proposition 5.2
we show that CL together with its AL-module structure is a Galois object
in the sense of [CS], and, if G is abelian, that CL is a free AL-module of
rank 1. In the abelian case, we also define a resolvent (, f , x) E I~, for f E C
and X E G := and show that, for given f E CL, one has
, f - AL = CL if and only if ( f , x) ~ 0 for all X E G, see Proposition 5.3.

1.4. For any intermediate field K C L C K, the L-algebras BL and
CL are commutative. Let us assume that G is abelian. Then also AL is
commutative, and we may define the maximal OL-orders

- -- , F - - I -- I

of AL, BL, and CL, respectively. Moreover, for arbitrary G, set

which is an O L-order of AL. Then, CL is an .A.L-module and we may define
the associated order

of CL in AL , which cont ains If G is ab elian, then we have inclusions

Again, we omit the index L in AL, BL, CL, L = K.
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1.5. Remark. (a) Suppose that the action of 0 on r is transitive. Fix an
element qo and denote its stabilizer by S2L corresponding to an intermediate
field K C L C K. Then one has a bijection SZ/StL G, where is

mapped to g E G, if ’-yo = Moreover, associating to f E C the value

f (-yo) E K, defines isomorphisms C ~ L and C ~ C~L of L- (resp. OL-)
algebras.

(b) The absolute Galois group Q acts trivially on G if and only if A =
KG.

1.6. If one assumes suitable Kummer conditions in Examples 1.2 (a), (d)
and (e), then A = KG. Moreover, in many interesting examples SZ acts
transitively on r and, in the notation of Remark 1.5 (a), the fixed field L
of the stabilizer is an abelian Galois extension of K such that

«

the bijection Gal(L/K) = St/SZL =~ G is a group isomorphism (see e.g.
Lemma 6.1). In this case, the A-module structure of C corresponds to the
KG-module structure of L, and we are in the classical situation of Galois
module structure theory. Then, there are results due to Cassou-Nogues,
Schertz, and Taylor, stating that OL is free over its associated order in
KG, see e.g. [CT, Ch. X, Ch. XI], (S). In Section 6 we will study a slight
generalization of Example 1.2 (e), namely relative Lubin-Tate extensions.
We will show that also without any Kummer condition, the maximal order
C ~ OL is a free rank one module over its associated order A~’ (see The-
orem 6.11). But note that in general the algebra A is not the group ring
KG. Combining ideas of [Tl] and [T2] we will give an explicit description
of as the Cartier dual of the OK-Hopf order which represents the OK-
group scheme of 7rm-torsion on Y (see Proposition 6.5 and Corollary 6.9).
In contrast to the methods used in [CT, Ch. X] the main tool for our proof
of Theorem 6.11 will be the factorization of a suitable resolvent function
which takes values in Op[[X]] (see Theorem 6.10). This will be of great
importance for further applications of these local results to fields obtained
by the division of points on elliptic curves as in Example 1.2 (d). These

examples are dealt with by the first author in his habilitation thesis [B].

1.7. The article is arranged in the following way. Sections 1-5 are devoted
to the general situation as stated in 1.1. In more details, the sections 2 and
3 summarize properties of the Hopf algebras AL and BL, respectively, for
intermediate fields K C L C K. Most of these properties can already be
found in [T2] without proofs. For the reader’s convenience and for later use
we provide proofs of all assertions. In Section 4 we show that AI, (resp. AL
if G is abelian) is an OL-Hopf order in AL if and only if the discriminant
ideals dBL of BL (resp. dAL of AL) over OL are trivial, see Proposition 4.6
(resp. Proposition 4.8). Thus, the structural information of being a Hopf
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order is completely described by an arithmetic invariant, the discriminant.
Moreover, we compute the index ideal [AL : in terms of dAL and
dBL , see Lemma 4.3. Section 5 is concerned with the L-algebra structure
and the AL-module structure of CL. If G is abelian we determine, for any
f E CL with f - AL = CL, the index ideal [CL : f - A’ in terms of dBL,

and the resolvents ( f , x), x E G, see Proposition 5.3.
Finally, in Section 6, we apply the results from Sections 1-5, in particular

the index formula of Section 5, to the Example 1.2 (e).

2. FORMS OF GROUP ALGEBRAS

We assume the situation defined in 1.1 and the notation introduced in
Section 1.

In this section we study the properties of the K-Hopf algebra A and its
subalgebras AL = A OL, for intermediate fields K C L C ~K.

For a K-Hopf algebra H we write as usual L1 H : H - H fi9K H for
the diagonal, SH : H - H for the antipode and EH : H --~ K for the
augmentation. If there is no danger of confusion, then we omit the index.
We view A as a Hopf algebra with A(g) = 9 (8) g, S(g) = g-1 and
=1, for g E G.

2.1. Lemma. Let K C L C K be an intermediate fields, and let gl, ... , gr E
G be a set of representatives for the of G. For each i E Ili ... , r~
let Li be the fixed field of stabOL (9i)  and let Xi,1, ... , xi,,.; be an L-
basis of Li. Finally, for 1  i  r and 1  j  ri, set

and assume that L C M C N C K are f urther intermediate fields. Then
the following assertions hold:

(i) The elements 1  i ~ r, 1  j  ri, f orm an L-basis of AL. If,
for each i E ~l, ... , rl the elements zj,i , ... , xi,r¡ form an OL-basis of OL¡
then the elements i ri, f orm an OL -basis of Aî.

(ii) One has dimL(Ay) _ IGI.
(iii) The elements 1  i  r, 1  j  ri, f orm also an M-basis of

AM; in particular, the y f orm a K-basis of A.
(iv) The map

is an injective L-algebra map such that iN 0 if = if. In particular, AL ~y
AL can be regarded as an L-subalgebra of A A.

(v) Under the identification AL (g)L AL 9 A A of (iv), AL is an

L-Hopf subalgebra of A.
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(vi) The map

is an isorrtorphisrn of M-Hopf algebras such that the diagrams

commute for each w E 0, where can: N ®M M -~ N is the multiplication
map.

Proof. (i) It is easy to see that the elements i  r, 1  j  ri, lie in
AL. On the other hand, for arbitrary a = EGEG Àg9 E AL, the coefficients
Ag is fixed under stabOL (g), for each g E G, and so Agi E Li for each
i 6 {!,... r } . Moreover, for e ach i E 11, - .. , ,y} and each w E one

has = Now it follows easily that the elements 1 ~ i  r,

1  j  ri, form an L-basis of AL. The second assertion is shown in a
similar way.

(ii) Indeed, by (i) we have

- - - - -

(ill) First we show that the elements 1  i  r, 1  j  ri, form a
X’-basis of A. Expressing the elements by the
basis G of A produces a block diagonal matrix with r blocks indexed by
the OL-orbits of G, where the i-th block is given by

whose determinant does not vanish, since is separable. This shows
the result for M = .I~. For arbitrary M, it suffices by (ii) to show that the
elements (1  i  r,1  j  ri) are M-linearly independent. But this
follows from the case M = I~’.

(iv) This follows immediately from (iii), since 2L maps an L-basis to an
M-basis.
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(v) It is easy to see that S(AL) C AL, since taking inverses in G com-
mutes with the f2-action on A. Let a E AL. Then, by (iii), we may write

with uniquely determined coefficients E K. We apply an arbitrary
element E OL on both sides. Since A respects the fraction, we obtain

Thus, by their uniqueness, the coefficients are contained in L, and
E if(AL 0L AL)·

(vi) It is easy to see that ~L is a homomorphism of M-Hopf algebras and
that the two diagrams commute. Moreover, by (iii), ølf is an isomorphism.

L

For the rest of this section we assume that G is abelian. Let L be a
subextension of K/K. In order to understand the L-algebra structure of AL
we work with the Wedderburn decomposition of A. Let G := Hom(G, Ï(X)
denote the abelian group of K-characters of G. Then n acts on G by

for X E G, w E f2, and g E G. It is well-known that the map

is an isomorphism of ,K-algebras. For X E G, we denote by ex E A the
element corresponding to the primitive idempotent Ex of IlxEG K which
has entry 1 in the component X and 0 everywhere else. Then

Note that 10(ex) = e~ ~x~ for each w and X E G. The f2-action on A is
transported via p to the action

for (ÀX)XEG E fiXEd ff and w E f2. Thus, the application of w moves the
x-component Ax to the cux-component while simultaneously applying w to
A.. This implies that p restricts to an isomorphism



276

2.2. Lemma. Assume that G is abelian and let K C L C K be an in-
termediate field. Let x1, ... , Xs E 6 be a set of representatives for the
fIL-orbits of 6. For each k E ~1, ... , s~, let lk denote the ,fixed field of
stabnl SZL, and let Yk,l,.. - be an L-basis of Lk- For 1 ~ k  s
and 1 ~ I ~ sk, set

Then the following assertions hold:
(i) The composition

where p denotes the projection to the xl, ... , X, -components, restricts to

an L-algebra isomorphism.

In particul ar, the maximal ord er AL of AL is given b y ~L )’
(ii) The elements ak,l, 1 ~ k  s, 1  t  sk, form an L-basis of AL.

If, ,for each k E (I, ... , ~}~ the elements ~i)’" form an OL-basis
of Otic then the elements ak,l, 1  h  s, 1  t  sk, form an OL-basis of
AL-

Proo, f . ( i) This follows immediately from ( 1 ) .
(ii) The elements are contained in AL and the elements 

1~&#x26;~~,1~~~~ form an L-basis of LIc. Thus (ii) follows from
(i) . The integral version can be seen in the same way C7

3. DUALITY

We assume the situation described in 1.1 and the notation from Section 1.
It is well-known that the Hopf algebra dual of A is the K-Hopf algebra

B := Map(G, K) consisting of all set maps from G to K. The duality is
given by the non-degenerate bilinear form
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The K-linear structure of B is obvious. Multiplication is given by ( fl f2)(9)
= fi(9)f2(9), for fl, f2 E B and g E G, with the constant map with value
1 as unity. The diagonal A, augmentation e, and antipode S are given by

respectively, for f E B, g, gi, g2 e G, where in the definition of A we
identify B 0 K B with Map(G x G, K) in the obvious way. For the K -basis
elements lg, g E G, with := for h E G, we have

Note that 11 acts on B by

for w E 0, f E B, and g E G. This action respects the K-Hopf algebra
structure, as is easily verified. For a E A, f E B, and w E 11 one has

For each intermediate field K C L ç K we set

Then BL is an L-subalgebra of B.
The next lemma shows that BL is an L-Hopf subalgebra of B and is the

L-dual of AL with respect to the restricted bilinear form (-, -). By BL we
denote the maximal order in BL which is given by

3.1. Lemma. Let K C L C K be an intermediate field, and let gl, ... , gr E
G, L1, ... , L,., and xZ,l, ... , Xi,r¡ E Li (1  i ~ r) be given as in Lemma ~.1.
Moreover, for 1 i  r and 1  j  ri, let bi,j E B be defined by

I

Assume that L C M C N C K are further intermediate fields. Then the

following assertions hold:
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(i) The map

..-..

is an L-algebra isomorphism. In particular, oL restricts to an isomorphism

(ii) The elements bi,j, i  r, ri, form an L-basis of BL.
If, for each i E ~1, ... , r), the elements Xi,!, ... , Zi,r¡ form an OL -basis of
C7L= then the elements bi,j, 1 ~ i  r, 1  j  ri, form an OL -basis o, f ~L .

(iii) One has dimL (BL ) _ ~ IGI.
(iv) The elements 1  i  r, 1  j  rZ, , form also an M-basis of

BM .
(v) The map

is an injective L-algebra homomorphism such that jM 0 jL - jf. In par-
ticular, BL OL BL can be regarded as L-subalgebm of B Ok B.

(vi) Under the identification BL~LBL C of (v), BL is an L-Hopf
subalgebra of B.

(vii) The map

is an isomorphisrn, of M-HoPf algebras such that the diagrams

commute for all w E f2.
(viii) The map AL ®L BL H AM ®M Bwt, a ®L b H a 0M b, is injective;

in particular, AL ®L BL can be regarded as an L-subspace of A ®K B .
Moreover, the restriction of (-, -) to AL ®L BL takes values in L and is
non-degenerate.

(ix) The L-Hopf algebras AL and BL are dual to each other with respect
to (-, -) : AL ®L BL --~ L.

Proof. (i) For b E BL and i E ~1, ... , ,r}, the elements = 

w E OL, are determined by b(gi). Hence, aL is injective. On the other
hand, for given elements Ai E Li, i = 1,... , r, the map b : G - K, defined
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by b(dgi) := W(Ài), for i = 1, ... , r and w E SZL, is well-defined and is

obviously in BL.
(ii) This follows immediately from (i).
(iii) This follows from (ii) and the equation 
(iv) This is proved in a similar way as Lemma 2.1 (iii) by reduction to

the case M = k and using the basis Ig, 9 E G, of B which leads to the
same transition matrix as in the proof of Lemma 2.1 (iii).

(v) This follows from (iv).
(vi) This is proved in a similar way as Lemma 2.1 (v) using the basis

(vii) By (iv), is an isomorphism of M-spaces. The remaining asser-
tions are easily verified.

(viii) The injectivity of the map AL 0L BL --&#x3E; AM ~M BM follows from
Lemma 2.1 (iii) and part (iv). Moreover, (AL, BL) C L by Equation (2).
Using the bases ai,j of AL from Lemma 2.1 and of BL, 1 ~ i ~ r,
1 ~ j ~ ri, with their property from Lemma 2.1 (iii) and from (iv), we
see that (AL, BL) = L and that the restricted pairing AL 0~ L is

non-degenerate.
(ix) This follows from part (viii) and from the existence of bases ai,j

of AL and of BL with the properties from Lemma 2.1 (iii) and from
(iv). 

~ 

0

4. INDICES AND HOPF STRUCTURES

We assume the situation described in 1.1 and the notation from Section 1.
Let K C L C k be an intermediate field. We may take duals of OL-

lattices in AL and BL with respect to the non-degenerate pairing

More precisely, if 7Z C AL and s C BL are OL-lattices, then

are OL-lattices in BL and AL respectively. Note that ?Z is an OL-order
(resp. OL-subcoalgebra) of AL if and only if ~Z* is an OL-subcoalgebra
(resp. OL-order) in BL . A similar statement holds for S. Moreover, 7~ is
an O L-Hopf order in AL if and only if R* is an OL-Hopf order in BL, and
similarly for S.

Recall that for OL-lattices X C Y of equal C?L-rank the OL-order ideal
ly : is defined as the product pi .. pt of non-zero prime ideals
1, ... , pt of (L if R/pl, ... , R /pt are the OL-composition factors of Y/X .
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More generally, for OL-lattices X and Y in a finite dimensional L-vector
space, the order ideal [Y : X] OL is defined as the fractional ideal
[Y : X fl X For the following properties of order ideals
see for example [R, §4]. If L C L’ C k is a finite extension field of L then

If p is a non-zero prime ideal of OL then the following localization property
holds:

If Y and X are free OL-modules and M is the matrix of coefficients arising
from expressing an C7L-basis of X by an OL-basis of Y, then

Finally, if L C L’ C K is as above and X’ C Y’ are OL,-Iattices then

If G is abelian we denote by dAL the discriminant ideal of the maximal or-
der ,A.L over i.e. dAL - n~=1 in the notation of Lemma 2.2. Sim-

ilarly, for arbitrary G, we denote by dBL the discriminant ideal of the max-
imal order BL over OL, i.e. dL¡/L in the notation of Lemma 2.1
and Lemma 3.1. If L C L’ C K is as above then we write DL, /L for
the different of 0 L’ over 0 L.

4.1. Lemma. With the notation of Lemma 2.1 and Lemma 3.1 one has

Moreover, Bi, is an OL-order in AL if and onl y if dBL = OL.

Proof. Each element a E AL can be written in the form

with uniquely determined Ai E La, i = 1, .’.. , r, by Lemma 2.1 (i). Then
a E 81 if and only if (a, f ) E OL for all f E BL. By Lemma 3.1 (i), each f E
BL is a sum of elements of the form ~~ OL¡, i = 1, ... , r,
where the sum runs over coset representatives of OL/stabnL (g~ ) . Hence,
a E 13L if and only if
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for all i ~ {1,... r) and all Xi e OLp which is equivalent to Ài E 
for all i E ~ 1, ... , r ~ .

If dBL = OL then OL¡ for all i = 1, ... , r, and therefore 81 =
,A.L is an Suppose, conversely, that 81 is an OL-order and let
i E ~1, ... , ,r} be arbitrary. Let i’ E ~1, ... , r) and v E QL be such that

= Vgi’. Note that and that v : Li, - Lj is
an L-isomorphism. Let Aj E and az~ E be arbitrary. Then

are elements of 81. Hence, also their product lies in 81. In particular the
coeflicent at 1 e G of this product is an element of (’)L:

If az, runs through then runs through and (3) implies
that C Of,. But this is only possible OL. · Since

this holds for all i E ~1, ... , r} we obtain OL. 0

4.2. Corollary. One C 81 and [81 : dBL .

Proof. The inclusion AL C 81 is clear from Lemma 4.1. From the definition
of AL and from Lemma 4.1 we have

LJ

We remark that, for G abelian, B1 is not necessarily contained in 

For the following lemma we assume that G is abelian. Let L C L’ C K
be a finite extension field of L containing L1, ... , Lr and L1, ... , in the

notation of Lemma 2.1 and Lemma 2.2. Then AL~ = L’G, EL’ = Map(G, L’)
and L’ via PL’ as L’-algebras. Such a finite extension L’ will
be called a splitting field for AL and BL.
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4.3. Lemma. Let G be abelian. Then

for each intermediate field K C L C K.

Proof. Let p be a non-zero prime ideal of OLe Since (,AL)p is the maximal
(OL)p-order in AL and (Al)p is the set of elements in AL whose coefficient
with respect to G are integral over we may as well assume that OL
is local with maximal ideal p. Let L’ be a splitting field for Ay and BL.
We determine

using the isomorphism øf’ : L’ fi9L AL, , the maximal OLI-order AL,
of and the isomorphism IIxEG L’. More precisely, [AL :

is the quotient of the squared order ideals

and

For the computation of the squared order ideal (5) let Xk, yk,t, and 

1 ~ k  s, 1  1 fi Sk, be given as in Lemma 2.2 such that yk,l, ... , is

an OL-basis of Or for each k = 1, ... , s. Then the elements

form an OL-basis of AL and (PLI o AL) has as OLI-basis the
elements

Expressing this basis by the OL,-basis ex, x E G, fIXEd 7

we obtain a block diagonal transition matrix with blocks indexed by G/SZL .
The block belonging to xk is given by

The square of the determinant of this block generates the C7L-ideal 
Thus, the squared order ideal in (5) is given by
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For the computation of the squared order ideal (4) let 9i, Li, xi,j, and 
1 ~ i  r, 1  j  rz, be given as in Lemma 2.1 such that xZ,l, ... , is
an C7L-basis of for each i E 1, ... , r. Then, the elements

form an O L-basis Thus, the elements

form an OLI-basis of ( pL’ o Expressing this basis by the
basis E G, of = we obtain the transition matrix

which is the product M = Ml M2 of the block diagonal matrix Ml with
blocks indexed by i = 1, ... , r, the i-th block given by

and the matrix

Now, det(M1,i)2 generates the OL-ideal dL¡/L; thus dBL .
Moreover, since

for Xl, X2 E G, we have

Altogether this yields

which expresses the squared order ideal in (4). Now, dividing the ideal
in (8) by the ideal in (6), the result follows, since extending OL-ideals to
OLI-ideals is injective. 0
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4.4. Next we investigate under which circumstances AL and (in the abelian
case) AL are Hopf orders over OL in AL. The crucial point is to get hold
of the image of the diagonal.

Since the following might be of general interest we place ourselves for
the moment in a more general setting. Let H be a finite group, E/F a field
extension in characteristic zero, and R C F a subring such that F is the field
of fractions of R. Suppose that ,A C EH is an R-subalgebra of EH with
R-basis at, ... , which is also an E-basis of EH. Then the multiplication
map E 0~ ,A. --~ EH, A 0R Aa, is an E-algebra isomorphism and the
map is injective, so that 
can be regarded as an R-subalgebra in EH0EEH. We would like to decide
whether A(A) g ,,4 OR or not. We write

for i = 1, ... , n with E E, and we consider the matrix

together with its inverse

Then we have the following criterion:

4.5. Lemma. Keeping the notation of 4.4, the following assertions are
equivalent:

Proof. We write

with uniquely determined coefficients E E. Then, for i E ~1, ... , n ,
we have E A 0p .~4 if and only if ’Yj3, E R for all j, j’ ~{!,... ,~}.
Using the expansion 0(as) - h, we obtain the equivalent
equation
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Hence, the coefficients are uniquely determined by the system of linear
equations 

’

one equation for each i E {1, ... , n} and each pair (hl, h2) E H x H.
Now it is easy to verify that these equations are satisfied for

and the result follows. 0

In the following proposition we apply Lemma 4.5 to the OL-order ,A.L in
AL .

4.6. Proposition. The OL -order Al is a Hopf order in AL if and only if
dBL - OL .

Proof. Clearly, is stable under the antipode of AL. The inclusion

C AI, can be tested by localization. Thus we may
assume that C~L is a local ring. In this case we choose gi, Lz, and aij as
in Lemma 2.1 such that, for each i E ~1, ... , r}, the elements a?tj,.... 7 xi,ri 7
form an OL-basis of Then the elements 
form an OL-basis of Al, and, in the notation of 4.4, the coefficient matrix
,S’ is a block diagonal matrix, the blocks indexed by i = 1,... , r, and the
i-th block given by

If xz~l, ... , E Li is a dual basis of Xi 1, ... , Xi r. with respect to the
trace form TrLi/L’ then the inverse T of S is given by the block diagonal
matrix with i-th block

Jet.1,... 

Now, taking into account the block diagonal structure of ,S’ and T,
Lemma 4.5 states that if and only if

for all i e ~1, ... , r~ and all j’, j" E ~1, ... , But since 

1,... rZ, form an of the condition in (9) holds for given
i E ~1, ... , ,r} and all j’, j" E ~1, ... , if and only C OL.
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But this is equivalent to ÐLi/L = OLi and to = OL. Now the result
follows. 0

4.7. Corollary. The following statements are equivalent:
(i) The order AL is a Hopf order in Ay.
(ii) The discriminant ideal dBL is trivial.

(iii) One has .AL = 81-
(iv) One has (,.4L)* = BL . 
(v) The maximal order BL of BL is an OL-Hopf order.
If (i)-(v) hold then AL is the smallest OL-Hopf order of AL-

Proof. The equivalence of (i) and (ii) is the content of Proposition 4.6. The
statements (ii) and (iii) are equivalent by Corollary 4.2 which asserts that

v A’ I = dBL . Obviously, (iii) and (iv) are equivalent, since OL is a
Dedekind domain. Moreover, (i) and (iv) imply (v). Finally, (v) implies
that B~ is an order in AL, and then Lemma 4.1 implies (ii).

If (i)-(v) hold then BL is certainly the largest OL-Hopf order in BL.
Therefore its dual AL is the smallest OL-Hopf order in AL. 0

4.8. Proposition. Let G be abelian. Then the maximal C7L-order AL of
AL is a Hopf order if and only if dAL = OL.

Proof. Since the antipode S is an L-algebra automorphism of AL, the max-
imal OL-order of AL is stable under S. As in the proof of Proposition 4.6
we may assume that OL is local. Now let Xk, Lk, 7 yk,,, and âk,l be given as in
Lemma 2.2 such that, for each k E {1, ... , the elements t/~,1? -" ~ 
form an OL-basis of Then the elements 1 ~ k fi s7 Sk7
form an OL-basis of ,AL. The matrix S in the notation of 4.4 is given by

We can write S = Si S2 , where Sl is the block diagonal matrix with blocks
indexed by k = 1, ... , s and whose k-th block is given by
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If, for each k e ~1, ... , ~}, we denote by yk~l, ... , E Lk the dual basis
of yk,l, ... , yk,sk with respect to then 

is the inverse of Moreover, by the orthogonality relations for irre-
ducible characters, the inverse of S’2 is given by

Thus, the inverse of S is given by

Now, Lemma 4.5 states that A(AL) 9 AL AL if and only if

for all ( 1 ~, t ) , ( J~’ , l’ ) , (k" , I") , where the triple sum runs independently over
all w E and w" E 

By the orthogonality relations of irreducible characters the last sum over
g E G reduces to IGI if = 1 and vanishes otherwise.

If OL then for all pairs (k, l ), and the above condi-
tion is certainly satisfied. Conversely, if the above condition is satisfied,
then we choose k’ E (1, ... , s~ arbitrarily and remark that =

Let k" E ~1, ... , sl and K E OL be such that XWl = ’~~~~ .
Moreover let k E ~1, ... , s) be such that xk = 1. Then Lk - L and the
above sum reduces further to

Since cu’ Xk’ cu" Xk" = 1 if and only if = The elements (t/ji),
an OL-basis of = D. . Since the last term inform an °L-basis of Lk" IL) = I)Lk,IL’ Since the last term in

the above equation lies in OL for all I’ and , we have 

eh. But this implies d -Lk’IL = elL. This holds for all ~ E {1,... sl. Thus,
~ = OL- 

~ 
D
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5. SOME A-MODULES AND RESOLVENTS

We still assume the situation described in 1.1 and the notation from
Section 1.

Let C := be the K-algebra with pointwise multiplication.
Then, SZ acts on C via K-algebra automorphisms by

for úJ E 0, For an intermediate field K C L C .K let

be th L-algebra of OL-fixed points of C. Moreover, let CL be the maximal
O L-order of CL . Thus,

Note that C is a right A-module via the G-action on r:

for Ag E K, f E C, cv E O. This action of A on C satisfies

for all a E A, f E C, w ~ fl. Thus, the A-module structure on C restricts
to an AL-module structure on CL for any intermediate field K C L C jK~.
Moreover, as apparent from (10), CL is an AL-module by restriction.

Similar to Lemma 3.1 for the algebra B we have the following lemma for
C.

5.1. Lemma. Let K C L ç K be an intermediate field, and E

r be a set of representatives for the o/r. For each m E (1, ... , 1 tj
let im denote the fixed field OL, and let ~m,l)" ’ ? zm,tn be
an L-basis of im. For 1 ~ ?7t ~ t and tm, let E C be defined
by

for y E r. Assume that L C M C N C K are further intermediate fields.
Then the following assertions hold:

(i) The map
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is an L-algebra isomorphism. In particular, T restrict to an isomorphism

o f OL -algebras.
(ii) The elements cm,n, 1  m  t, 1 ~ n  tm, form an L-basis of CL.

If, for each m E {I, ... , tl, the elements z.,,,, 1, ... , Zm,tm form an OL - basis
of ClLm , then the el ements 1  t, 1  n  t,.,.t, , form an OL-basis
o f CL 7

(iii) One has 
(iv) The elements Cm,n, 1  m , t, 1  n  tm, form an M-basis of

CM.
(v) The map

is an isomorphism of M-algebras such that the diagrams

commute for all w E fl.

Proof. All assertions are proved in a similar way as the analogous assertions
of Lemma 3.1. 0

Next we show that the L-algebra CL is an AL-Galois extension in the
sense of [CS]. Let us shortly recall the relevant notions in a general setting.

Let R be a commutative ring, let H be an R-Hopf algebra which is finitely
generated and projective as R-module. Furthermore, let S be a commu-
tative R-algebra, finitely generated and projective as R-module, which is
also a right H-module. Then S is called an H-Galois extension of R if and
only if the following conditions are satisfied:
(G1) (i) (S) ° l _ ~~h~(S ~ ~~1~)(t ~ h(2»)’
ii
for all h E H, s, t E S, where A(h) = r,(h) h(l) (9 It~2~ is the Sweedler
notation and the module structure of S over H is denoted by a dot.

(G2) The map

is an isomorphism.
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In fact, it is well-known that (Gl) is equivalent to S being an H*-object,
and that (G2) is equivalent to the condition that the H*-object S is a
Galois H*-object in the terminology of [CS, §7].

5.2. Proposition. Let K C L C K be an intermediate field. Then the

L-algebra CL is an AL-Galois extension of L. Moreover, if G is abelian,
then CL is a free AL -module of rank 1.

Proof. It suffices to verify (G1) in the case L = K. So let 9 E G, f, f’ E C,
and 7 E r. Then

thus, ( f f’) ~ g = ( f - g) ( f’ ~ g) which is the statement in (G1) (i). Moreover,
g)(,) = =1= 1 c (-y), for all ’Y E r. Hence, also (G 1) (ii) holds.

In order to prove (G2), we use Lemma 2.1 (vi) and Lemma 5.1 (v) to
reduce the assertion to the case L = K. Moreover, by Lemma 2.1 (ii) and
Lemma 5.1 (iii), it suffices to show that the map in (G2) is injective. So
let ~9EG 9 ~ fs E A C with arbitrarily chosen fg E C for g E G such
that it vanishes under the map in (G2). Then

Let go E G and 7 E r. Then, choosing f E C in such a way that f( 9°y) = 1
and f (y’) = 0 for V # 9°y, the equation in (11) implies = 0. Thus

fgo = 0 for all go E G. This shows that CL is an AL-Galois extension of L.
If G is abelian, AL is commutative and B L is cocommutative. By [CH,

Prop. 2.3, Thm. 3.1], CL and BL are isomorphic as AL-modules, where the
AL-module structure of BL is given by (b~ LgEG := ¿9EG Agb(gg’)
for all b E BL, g’ E G. Moreover, AL and BL are isomorphic as AL-modules
by sending to the element 11 E BL with = 8s,1 ~ 0

Let G be abelian. Since CL is free over AL for any intermediate field
K C L c K, the following question arises naturally: Is CL free over some
OL-order in AL. It is well-known that, if this is the case, it is only possible
for the associated order

of CL in AL. Obviously, Al C C .A.L. We will prove that, in the
situation we consider in Section 6, CL is free over ALs. In the proof we
make use of the resolvent
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attached to f E C and X E â for fixed qo e r.
For an intermediate field K C L C K, let L’ C k now denote a finite

extension of L such that Q L, acts trivially on â and r. We call such a field
a spli t ting field for AL and CL . Note that, since

for all cv E 0, f E C, X E å, and 1’0 E r, we then have (f,x),,/o E L’
for all , f E CL, X E å, and yo E r. We denote by dcL the discriminant
ideal of CL over OL. Thus, in the notation of Proposition 5.1 we have
dCL = 111ri=1 
5.3. Proposition. Assume that G is abelian and fix ~o E r. Let K C L C
K be an intermediate field, let L C L’ C K be a splitting field for AL, BL,
and CL, and let f E CL. Then f - AL = C~ if and only if =1= 0 for
all X E 6. Moreover, AL = CL then

Proof. (a) Let Xk, Lk, yk,,, and the L-basis

of AL be given as in Lemma 2.2. Then the elements

generate (rL, o 7rf’)(L’ OL f - AL) 9 TI7Er L’ over L’. We express these
generators by the primitive idempotents E r, of ll7Er L’ and obtain
a transition matrix

so that f - AL = CL if and only if det(M) # 0. We determine det(M). For
the entries of M we have
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We can write M as M = MlM2, where M¡ is a block diagonal matrix, the
blocks M¡,1c indexed by k = 1, ... , s, with

and where

by (7). Thus,

This shows that f - AL = CL if and only if (, f , 7~ 0 for all X E G.
(b) Next we show the assertion about [CL f - Since both sides

of the equation behave well under localization, we may assume that C~~ is
local. We transport the two OLI-lattices ®oL CL and OL’ AI,
by the isomorphism TL’ o 7rt’ into II7Er L’.

Retracing the calculations in (a) one observes that, is

an (7L-baSlS of 01 , for each k = 1,... , s, then the elements (12) form
an C7L-basis of and the elements in (13) form an OLI-basis of (TL’ o

Thus, the calculation in (a) shows that

Moreover, we already know from Proposition 4.3 that

Now, it suff ces to show that

since then, dividing the product of (15) and (16) by (17) yields the result.
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Let 1m, zm,n, and Cm,n be given as in Lemma 5.1 such that, for
each m E ~ 1, ... , t~, the elements zm,i , ... , Zm,tm form an OL-basis of
0~ . Then, the elements form an OL-
basis of CL. Thus, the elements o form an OL,-basis of

o ®nL CL ) . We express this by the canonical 
basis of primitive idempotents E r, of = and
obtain a transition matrix M. This is a block diagonal matrix with blocks
M1,... , Mt, where

for m E {1,... t~. Since we obtain (17), and the
proof is complete. 

~ 

D

As an immediate consequence of Proposition 5.3 we obtain:

5.4. Corollary. In the situation of Proposition 5.3 with / E CL such that
(I, X)70 ~ 0 for all x E G one has

for each OL -order of AL . contained in In particular, if 
and i, f . f E CL is such that

then CL = f - AL is a free -AL -module of rank one with basis { f ~, and
consequently, 

6. RELATIVE LUBIN-TATE FORMAL GROUPS

Our main reference for the general theory of relative Lubin-Tate formal
groups is [dS].

Throughout this section p denotes a rational prime number. For any
extension field Q C L 9 % we write OL for the integral closure of Zp in
L and pL for its maximal ideal. We fix a finite extension field F of ~ and
we set q = 

Let d &#x3E; 0 be a fixed integer. We denote by F’/F the unramified extension
of degree d &#x3E; 0 and write 0 for the Frobenius automorphism of F’/F. We
fix an element ~ E F such that v p (g) = d, where vF denotes the normalized
valuation (i.e. vF(F*) = Z) of F.
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As in [dS, Ch. I] we set

~={/CC~M ! I mod X2,
NF’/F(7r’) = ~ and f - X~ mod p p’ [[X]]).

For any power series g in one or more indeterminates over C?~~ [[~]] let g~
arise from applying § to the coefficients of g. From [dS, Ch.I, Th.1.3] we
know that for every f there exists a unique one-dimensional commu-
tative formal group 7j defined over Op, such that f E Note

that f ~ E F~ and ~- = .~’fm. Of course, classical Lubin-Tate formal groups
correspond to the case d = 1.

In order to introduce all the necessary notation we recall

6.1. Proposition. ([dS, Ch.I, (1.5)]) Let f(X) = 7rlX + ... , g(X) =
+... be in Let a E OF’ satisfy = Then there exists a

unique power series E dF~ (~X~~ such that

Moreover, E Hom(F/,Fg). The map

is a group isomorphism and in the ccrse f = g a ring isomorphism 
Furtherntore, if h(X) _ ir3X + ... and b46-1 = ~3/~2, then
ab

In the sequel we shall always write [all for [a]/,/. For f (X ) _ 7r’ X +... E
F~ and i &#x3E; 0, we put I(i) = o o f . Then I(i) E 
and if ~(~) = d, then f~d~ _ (~~f E Moreover, for a E we

write a~i~ = a. It follows that f ~z~(X) _ (X).
As usual we endow the set pF with the structure of an OF-module,

denoted by by setting

for x, y E pF and a E OF.
We now fix ~ E C~F with vF (~) = d and a power series f (X ) _ ~r’X +... E
Let 7r E C~F be any prime element. For n E No we define the group of

pF-torsion points of :1=1 by

(see [dS, Ch. I, 1.7]).
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In fact, is an abelian group under -E- f of order qn. The field Fi n =
does not depend on the choice of f E F~ . is abelian and

is totally ramified of degree qn-’(q - 1). Every a E 
generates over F’ and, in addition, a is a uniformizer for This

implies that ~a~. See [dS, Ch. I, Prop. 1.8] for more details.
We are now ready to describe a set-up that fits into the general framework

of Sections 1-5. We fix integers r, m &#x3E; 1 and set G = G/,m’ We choose a
primitive pp-torsion point ~C3 (i.e. 13 E G f,r-l) and set

We consider as our base field and in order to simplify notation we set

The data OK, K, G and r now satisfy the axioms postulated in 1.1, where
o := OK acts on G and r through Galois automorphisms (thus we also
write w(g) and instead of CUg and ’-y), and where G acts on r by
translation:

for g E G and 7 E r. In particular, irl = 

As in Sections 1-5 we set

omitting the index K.
The following lemma reveals the connection to results of Cassou-Nogu6s

and Taylor (see [CT, Ch. X, Thm. 3.3]).
For the rest of this section we fix an element yo E r. Then L = 

6.2. Lemma. Suppose that r ~ m ~ 1. Then the following assertions
hold:

(a) The map

is an isomorphism of K-algebras.
(b) One has A = KG.
(c) The map

where c~9 is uniquely determined by = gyo (= 9 +f 10), is a group

isomorphism.
(d) Identifying G and Gal(L/K) as in (c), the map T is also an isomor-

phism of A-modules, where we consider L endowed with the right A-module
structure x - a := ax for a E A and x E L.
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Proof. (a) First we show that f2 acts transitively on r. In fact, applying the
Weierstrass Preparation Theorem we can write f ~"‘&#x3E; (X ) - /3 = h(X)u(X)
with a distinguished polynomial h(X) E of degree qm and a unit
u(X) E Since {3 is a uniformizer in K, h(X) is an Eisenstein
polynomial and therefore irreducible. Hence the Galois group 0 acts tran-
sitively on r = {x E F ~ = 01. Now the result follows from K(qo) = L.

(b) This is immediate from G C K.
(c) Let g, h E G. Then

since 9 E K and fl/fIL is an abelian group. This implies that the map
wg is a group homomorphism, which is bijective, since G and St act

transitively on r.
(d) This follows from

L7

Of course, the map r of Lemma 6.2 is an isomorphism of K-algebras for
arbitrary m &#x3E; 1. The map in (c), however, is then no longer a homomor-
phism, but still a bijection. Via T we can endow L with the structure of
an A-module. But for m &#x3E; r, this does not coincide with the usual Galois
module structure, since A is no longer the group ring KG. At least in
the context of this paper, this new module structure seems to be the more
natural one. In the following we shall always identify C and L via T; in
particular we write cx = T-1 (x) for x E L.
We recall the following trace relation which is basic for the rest of this

section.

6.3. P rop osit ion. ( ~Ch, Lemma 3.2~ ) For i 6 No one has

Moreover, has exact F’-valuation m and ,for i &#x3E; 1 the F’-
valuation o, f Si is strictdy bigger than m.

Although obvious at this point, we remark that for i = 0 the summand
0° has to be interpreted as 1. We also remark that 7r’(m) is associated to
7T.

We recall that the associated order of C in A is defined by
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Motivated by [Tl, Theorem 3] we will prove that coincides with the
Cartier dual of the C7K-Hopf order which represents the OK-group scheme
of pp-torsion This affine group scheme is represented by the OK-
Hopf order

We view as an order in B via the rule b(X)(g) = b(g) for b(X) E ]
and g E G. Let .Ags C A be the Cartier dual of Bgs. Then Ags is an OK-
Hopf order. For a thorough discussion of these facts the reader is referred
to [BT, II, §7].

Let B -&#x3E; K denote the trace map TrB/K (b) = EGEG b(g) and
write D-1(BgS) for the inverse different of Bgs:

6.4. Lemma. The inverse different of Bgs is given by

Proof. The set 1, X, ... , constitutes an OK-basis of xigs and also
an K-basis of B. Let b = E B, ai E K. Then:

From Propostion 6.3 it follows immediately that 1 69s C n-1(BgS).
For the converse inclusion we set vo = = 0, ... , and

io = min{i = vo}, where vp is the extension to F of the normalized
valuation vp. Then (18) implies for j = q"‘ - 1 - io:

Again from Proposition 6.3 we conclude that the vp-valuation of the middle
summand is equal to vo + m, whereas the other summands have valuation
strictly bigger than vo + m. Thus vo + m &#x3E; 0, which proves C

1 Bgs. . 0.

In what follows, the elements of G play two different roles in the group
algebra FG: on the one hand they occur as group elements, on the other
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hand they are field elements of F and occur as coefficients in FG. To dis-
tinguish these different roles we henceforth write x9 instead of g whenever
g is considered as a field element. Moreover we write go for the unit ele-
ment in G. Following [CT, Ch. X, Def. 3.2] we introduce certain special
elements of the algebra A. For i &#x3E; 0 we set

It is immediate that these elements are Q-invariant.

6.5. Proposition. The Cartier dual ,Ags of is given by

Proof. For the proof of the first equality we follow very closely the proof of
[T2, Prop. 1]. Since the trace pairing

is non-degenerate we have a natural isomorphism

By the definition of the Cartier dual we get a natural identification

if agb(g), Vb E Ligs. Thus for d E we obtain

and the first equality in the proposition follows from Lemma 6.4. In order
to prove the second one we first define I E Bgs by

Note that I = Writing f ~"‘&#x3E; (X ) = with a dis-

tinguished polynomial h(X) E of degree q"’~ and a unit u(X) =
uo + ... E OK[[X]]* we see that
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It immediately follows that the X, ... , gqm-2, l also forms an OK-
basis of Bg’. Now the second equality is an immediate consequence of the
first one and Lemma 6.3. 0

Our aim is to show that Ags is equal to the associated order The

following lemma is a first step in this direction.

6.6. Lemma. ([CT, Ch. X, Lemma 3.5] The elements 0, are con-
tained in In particular, Ags C 

Proof. The proof is simply an adaptation of the proof of [CT, Ch. X,
Lemma 3.5] to our situation. For the reader’s convenience we give a short
translation into our setting and notation. The maximal OK-order C of C
identifies via T with the ring of integers C~L in L. Since OK[qo], it
suffices to show that

for 0  i and 0  k  1. To achieve this we compute uj) :

where we have set = Xk + YF1(X, Y). Recall that g = ~9 and
write with as(Y) E OF’ [[Y]]. Then

Since the right-hand term is integral by Proposition 6.3, this establishes
(20). D

From Lemma 6.6 we deduce the following corollary which may be viewed
as a generalization of the trace relations of Proposition 6.3.
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6.7. Corollary. Let x E G and i &#x3E; 0. Then

Proof. Each X E 6 induces a homomorphism A ~ F of F-algebras, which
we again denote by x. Together with Lemma 6.6, this implies that

is integral over OF. Now we easily deduce the integrality of 
iri(-) 9EG 

9 x(g)

from Proposition 6.3. D

Now that we know that the Hopf order Ags acts on C we can apply the
results of [CH] to show that C is a free Ag’-module (necessarily of rank
one). In this context recall the definition of tameness of [CH, Def. (2.2)].
The module of integrals I is defined by

’- . , , ..."

Recall the definition of o-i in (19). 

6.8. Lemma. With the above notation one has I ¿9EG g.

Proof. The inclusion "D" is i.minediate. For the converse let a = ¿9EG A997
Ag E F, be an element in I. Since is generated by ~o?~0) -" ~ we

obtain the condition

On multiplying and comparing coefficients we derive

for all i = 0, ... , 2 and h E G. The Vandermonde matrix

C~’g~i=0,...,q’n-2, obviously invertible. Therefore, = Ah, for
all g, h e G, which in turn implies a = A . with A E K. Now the
result follows, since is the highest possible denominator for elements in
Ags. 0
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6.9. Corollary. The associated order is equal to and C is free of
rank one over 

Proof. From [Ch, Lemma 3.1 (b)] we deduce that C ~ I = OK, which shows
that C is a tame ,A,gs-ob j ect . Now [CH, Thm. (5.4)] J implies that C is free
over of rank one. Hence A" = Cl

The disadvantage of the approach we have taken so far is that we do
not get an explicit generator. These local results are certainly of interest
for themselves, but they also play an important role if we want to derive
analogous results in the global situation of Example 1.2(d). To obtain a
link between global and local we will need an explicit generator or, and
this will lead to even stronger results, a relation between local and global
resolvents.

For X E â, we define the resolvent function
-1-1 I --"

6.10. Theorem. For each X E G one has

with a unit ux (X ) E C?p[[X]] X .

Proof. First we note that

Note that for g E G one has f ~’m~ (g + f X) = f (m) (X) - Since has
no constant term, it follows from

that RX(X) E (~F~(X~~. Hence it suffices to show that each coefficient of

is divisible by 7r,(m). However, it is easily seen that we may write
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where qi E E No, are power series depending only on the formal
group Hence we may deduce

- - 

..,--

This completes the proof, since by Corollary 6.7 the terms in brackets are
divisible by 7r,(m). C7

Consider the map

Since E (7Fr [[X]], it is 0-invariant. Thus, c E C, and c = ce with
0 . Moreover, recalling the definition of the resolvent c for70 g x)7o
x E 6 from Section 5, we have the following relation:

We are now ready to state and prove the main result of this section.

6.11. Theorem. (a) The C is free of rank one on any map
c E C with the property that

for all X E 6.
(b) Any function cx E C with x E L’ having q"z - 1 is an

A"’-basis of C. In particular,

with c = co from (21).

Proof. (a) Let L’ be a splitting field for A, B and C. Then, by Corollary
5.4 it suffices to show that
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for each X E G. On the other hand [Ch, Lemma 3.1] implies that dc N
It therefore suffices to show

In order to prove this equality we split the above index and show

Equation (27) follows immediately if we recall from Lemma 2.1 that the
elements

constitute an OK -basis of A° , where {~i,... G is a set of represen-
tatives for the SZ-orbits of G and Xi,l,... is an 0 K-basis of with

Ki being the fixed field of 
The proof of (26) follows very closely the proof of [CT, Ch. X, Thm. 4.1].

The 0 L’- basis Igo I U go 9 E G B of 0 L’ G is transformed to the
C?L·-basis {1 OOK 901 U {1 = 0, ... , q"z - 2} of OLI 00K ’4"S by
means of the matrix

where we have set G = {go, gi, - . ~ , 9N I with N = 1. Recall that

~r’~"‘~ ~ 7rm. By the Weierstrass Preparation Theorem we may write
= hm(X)u(X) with a distinguished polynomial hm(X) and a unit

u(X) E Since

we conclude by Vandermonde that
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Adapting the proof of [CT, Ch. X, Lemma 2.5] we can show that 
r’’’ for j = 1, ... , N. Furthermore is associated to the leading
coefficient of f(m)(x), which is 1r,(m). Summing up we obtain

which proves (26).
(b) It follows from Theorem 6.10 together with (22) that for c = ce we

have for all X E 6. By (a) we conclude that C = c - 
Note that = q"’~ -1 since yo (resp. ~i) is a uniformizing element in L
(resp. K).

Let x E Lx have pL-valuation 1. Since L/K is totally ramified of
degree q"‘, there exists a unit u E C~K such that

Together with (23) this implies

Now the full statement in (b) is a consequence of Nakayama’s Lemma. 0

To conclude we have a closer look at the associated order when F = Qp.

6.12. Theorem. Let F = Qp. Then Aass is the maximal order A in A,
and dA = C~K.

Proof. From Lemma 4.3 we know that

whereas from (25) we obtain

Therefore ,A4. : which forces A = Aassand dA = D
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