JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

MARTIN EPKENHANS

An analogue of Pfister's local-global principle in the burnside ring

Journal de Théorie des Nombres de Bordeaux, tome 11, n° 1 (1999), p. 31-44

http://www.numdam.org/item?id=JTNB 1999 11 1 31 0>

© Université Bordeaux 1, 1999, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

An Analogue of Pfister's Local-Global Principle in the Burnside Ring

par Martin EPKENHANS

RÉSUMÉ. Soit N/K une extension galoisienne de groupe de Galois \mathcal{G} . On étudie l'ensemble $\mathcal{T}(\mathcal{G})$ des combinaisons linéaires sur \mathbb{Z} de caractères de l'anneau de Burnside $\mathcal{B}(\mathcal{G})$, qui induisent des combinaisons \mathbb{Z} -linéaires des formes trace de sous-extensions de N/K qui sont triviales dans l'anneau de Witt W(K) de K. On montre que le sous-groupe de torsion de $\mathcal{B}(\mathcal{G})/\mathcal{T}(\mathcal{G})$ est le noyau de l'homomorphisme signature.

ABSTRACT. Let N/K be a Galois extension with Galois group \mathcal{G} . We study the set $\mathcal{T}(\mathcal{G})$ of \mathbb{Z} -linear combinations of characters in the Burnside ring $\mathcal{B}(\mathcal{G})$ which give rise to \mathbb{Z} -linear combinations of trace forms of subextensions of N/K which are trivial in the Witt ring W(K) of K. In particular, we prove that the torsion subgroup of $\mathcal{B}(\mathcal{G})/\mathcal{T}(\mathcal{G})$ coincides with the kernel of the total signature homomorphism.

1. Introduction

Let L/K be a finite, separable extension of fields of characteristic $\neq 2$. With it we associate the 'trace form' which is defined by $\operatorname{tr}_{L/K}: L \to K: x \mapsto \operatorname{tr}_{L/K} x^2$. P.E. Conner started to investigate the connection of the trace form of L/K and the trace form of a normal closure N/K of L/K. His work yields some polynomial vanishing theorems for trace forms (see [1]). These identities come from identities in the Burnside ring of the Galois group $\mathcal{G} = G(N/K)$ of N/K. We study the trace ideal $\mathcal{T}(\mathcal{G})$ in $\mathcal{B}(\mathcal{G})$, which is roughly speaking the set of \mathbb{Z} -linear combinations of trace forms of subextensions of N/K which are trivial in the Witt ring W(K) of K.

We first recall the definition of the Burnside ring $\mathcal{B}(\mathcal{G})$ of a finite group \mathcal{G} . A theorem of Springer [6] gives rise to a homomorphism $h_{N/K}: \mathcal{B}(\mathcal{G}) \to W(K)$. The trace ideal $\mathcal{T}(\mathcal{G})$ is a finitely generated subgroup of the free abelian group $\mathcal{B}(\mathcal{G})$. We introduce a signature homomorphism $\operatorname{sign}_{\sigma}: \mathcal{B}(\mathcal{G}) \to \mathbb{Z}$ for each element $\sigma \in \mathcal{G}$ of order ≤ 2 . These signature homomorphisms correspond to signatures of the Witt ring. We conclude that $\mathcal{T}(\mathcal{G})$ is contained in the intersection $L(\mathcal{G})$ of all kernels of signatures. The

main theorem states that $\mathcal{T}(\mathcal{G})$ and $L(\mathcal{G})$ are of equal rank. Hence the torsion subgroup of $\mathcal{B}(\mathcal{G})/\mathcal{T}(\mathcal{G})$ is given by the kernel of the total signature homomorphism. In section 7 we reduce our approach to 2-groups. The general case follows by induction via the Frattini subgroup of \mathcal{G} .

2. NOTATION

We first fix our notations. Let K be a field. Then K^* denotes the multiplicative group of K, K^{*2} is the group of squares in K^* . We write K_s for a separable closure of K.

Let N/K be a Galois extension, then G(N/K) denotes the Galois group of N/K. If $\mathcal{H} < G(N/K)$ then $N^{\mathcal{H}}$ is the fixed field of \mathcal{H} in N. Let $\mathrm{Aut}(K)$ be the group of field automorphisms of K.

Now let K be a field of characteristic $\neq 2$. Let ψ, φ be non-degenerate quadratic forms over K. Then $\det_K \psi$ is the determinant of ψ . If \mathfrak{p} is a real place of K then $\operatorname{sign}_{\mathfrak{p}} \psi$ is the signature of ψ with respect to \mathfrak{p} . $\psi \otimes \varphi$ is the product of ψ and φ . For $m \in \mathbb{Z}$, $m \times \psi$ is the m-fold sum of ψ . $\psi \simeq \varphi$ indicates the isometry of ψ and φ over K. Let L/K be a field extension. Then ψ_L is the lifting of ψ to a form over L by scalar extension. W(K) is the Witt ring of K. Let $a_1, \ldots, a_n \in K^*$. Then $\langle a_1, \ldots, a_n \rangle$ is the diagonal form $a_1 X_1^2 + \ldots + a_n X_n^2$ over K. $\langle \langle a_1, \ldots, a_n \rangle \rangle = \otimes_{i=1,\ldots,n} \langle 1, -a_i \rangle$ is the n-fold Pfister form defined by a_1, \ldots, a_n .

Let L/K be a finite and separable field extension. The trace form of L/K is the non-degenerate quadratic form ${\rm tr}_{L/K} <1>: L \to K: x \mapsto {\rm tr}_{L/K}(x^2)$. We denote the trace form also by < L/K>, resp < L> if no confusion can arise.

Let M be a set. Then $\sharp M$ is the cardinality of M. $\operatorname{ord}(\mathcal{G})$, $\operatorname{ord}(\sigma)$ is the order of the finite group \mathcal{G} , resp. of the element $\sigma \in \mathcal{G}$.

3. The Burnside ring $\mathcal{B}(\mathcal{G})$

Let \mathcal{G} be a finite group and let $\mathcal{H} < \mathcal{G}$ be a subgroup of \mathcal{G} . We denote the transitive action of \mathcal{G} on the set of left cosets $\mathcal{G}/\mathcal{H} = \{a\mathcal{H}, a \in \mathcal{G}\}$ by $(\mathcal{G}, \mathcal{G}/\mathcal{H})$. The transitive and faithful actions of \mathcal{G} on finite sets are in one-to-one correspondence with the set of conjugacy classes of subgroups of \mathcal{G} . A subgroup \mathcal{H} of \mathcal{G} induces a transitive action of degree $[\mathcal{G}:\mathcal{H}]$, hence a representation of dimension $[\mathcal{G}:\mathcal{H}]$. Let $\chi_{\mathcal{H}}$ denote the corresponding character. We sometimes write $\chi_{\mathcal{H}}^{\mathcal{G}}$ to indicate that the character is defined on \mathcal{G} .

Definition 1. Let \mathcal{G} be a finite group. The Burnside ring $\mathcal{B}(\mathcal{G})$ of \mathcal{G} is the free abelian group freely generated by the set $\{\chi_{\mathcal{H}} \mid \mathcal{H} \text{ runs over representatives of conjugacy classes of subgroups of } \mathcal{G}\}$

and with multiplication given by

$$\chi_{\mathcal{U}_1} \cdot \chi_{\mathcal{U}_2} = \bigoplus_{\sigma \in \mathcal{U}_1 \setminus \mathcal{G}/\mathcal{U}_2} \chi_{\mathcal{U}_1 \cap \sigma \mathcal{U}_2 \sigma^{-1}},$$

where the sum runs over a set of representatives of the double cosets in $\mathcal{U}_1 \setminus \mathcal{G}/\mathcal{U}_2$.

Remark 2. $\chi_{\mathcal{G}}$ is the multiplicative identity, $\chi_{\{e\}} =: \chi_1$ is the regular character.

Another way of defining the multiplication is as follows. Let $\rho_i: \mathcal{G} \to \operatorname{GL}(V_i), i=1,2$ be representations of \mathcal{G} . Then $\rho_1 \otimes \rho_2: \mathcal{G} \times \mathcal{G} \to \operatorname{GL}(V_1 \otimes V_2)$ is a representation of $\mathcal{G} \times \mathcal{G}$ on $V_1 \otimes V_2$. According to the diagonal embedding $\mathcal{G} \to \mathcal{G} \times \mathcal{G}$ the representation $\rho_1 \otimes \rho_2$ restricts to a representation of \mathcal{G} on $V_1 \otimes V_2$. For $\rho_i = (\mathcal{G}, \mathcal{G}/\mathcal{U}_i)$ we get $\rho_1 \otimes \rho_2|_{\mathcal{G}} = \bigoplus_{\sigma \in \mathcal{U}_1 \setminus \mathcal{G}/\mathcal{U}_2} (\mathcal{G}, \mathcal{G}/(\mathcal{U}_1 \cap \sigma \mathcal{U}_2 \sigma^{-1}))$.

4. The homomorphism
$$h_{N/K}: \mathcal{B}(G(N/K)) \to W(K)$$

Proposition 3 (T.A. Springer). Let N/K be a finite Galois extension with Galois group $G(N/K) = \mathcal{G}$. Then there is a well-defined ring homomorphism

$$h_{N/K}: \mathcal{B}(\mathcal{G}) \to W(K)$$

with

$$h_{N/K}(\chi_{\mathcal{H}}) = < N^{\mathcal{H}} >$$

for all subgroups \mathcal{H} of \mathcal{G} .

Proof. Let $\mathcal{H} < \mathcal{G}$ be a subgroup of \mathcal{G} . Then $h_{N/K}$ is well-defined as a group homomorphism since $< N^{\sigma \mathcal{H} \sigma^{-1}} > = < \sigma(N^{\mathcal{H}}) > = < N^{\mathcal{H}} >$. Now the assertion follows from the next lemma.

Lemma 4. Let N/K be a finite Galois extension with Galois group $\mathcal{G} = G(N/K)$. Let $\mathcal{U}_1, \mathcal{U}_2$ be subgroups of G(N/K). Then

$$< N^{\mathcal{U}_1} > \otimes < N^{\mathcal{U}_2} > = \perp_{\sigma \in \mathcal{U}_1 \setminus \mathcal{G}/\mathcal{U}_2} < N^{\mathcal{U}_1 \cap \sigma \mathcal{U}_2 \sigma^{-1}} >,$$

where the sum runs over a set of representatives of the double cosets $\mathcal{U}_1 \setminus \mathcal{G}/\mathcal{U}_2$.

Proof. (see [2], I.6.2) Let $\alpha \in N$ with $N^{\mathcal{U}_1} = K(\alpha)$ and let $f \in K[X]$ be the minimal polynomial of α over K. Set $L := N^{\mathcal{U}_2}$. From Frobenius reciprocity [5], 2.5.6 we get

$$< N^{\mathcal{U}_1} > \otimes < N^{\mathcal{U}_2} > = < K(\alpha) > \otimes < L > = \operatorname{tr}_{L/K}((\operatorname{tr}_{K(\alpha)/K} < 1 >)_L)$$

 $= \operatorname{tr}_{L/K} < (L[X]/(f))/L >$
 $= \perp_{i=1,\dots,r} \operatorname{tr}_{L/K} < (L[X]/(f_i))/L >,$

where $f = f_1 \cdots f_r$ is the decomposition of f into monic irreducible polynomials in L[X]. Now consider $\operatorname{tr}_{L/K} < (L[X]/(g))/L >$ for some monic prime

divisor $g \in L[X]$ of f. Then g is the minimal polynomial of some conjugate $\sigma(\alpha)$ of α over L. Hence

$$\operatorname{tr}_{L/K} < (L[X]/(g))/L > = \operatorname{tr}_{L/K} (\operatorname{tr}_{L(\sigma(\alpha))/L} < 1 >) = < L(\sigma(\alpha)) > .$$

Now

$$L(\sigma(\alpha)) = L \cdot K(\sigma(\alpha)) = L \cdot \sigma(K(\alpha)) = N^{\mathcal{U}_2} \cdot \sigma(N^{\mathcal{U}_1}) = N^{\mathcal{U}_1 \cap \sigma \mathcal{U}_2 \sigma^{-1}}.$$

The action of \mathcal{G} on the roots of f induces an action of \mathcal{U}_2 on the roots of f, which is equivalent to the action of \mathcal{U}_2 on $\mathcal{G}/\mathcal{U}_1$. Each orbit of this action corresponds to a monic irreducible factor $g \in L[X]$ of f.

5. The trace ideal in $\mathcal{B}(\mathcal{G})$

Definition 5. Let \mathcal{G} be a finite group. Set

$$\mathcal{T}(\mathcal{G}) := \cap \ker(h_{N/K}),$$

where the intersection is taken over all Galois extensions N/K over all fields K of characteristic $\neq 2$ with Galois group $G(N/K) \simeq \mathcal{G}$. We call $\mathcal{T}(\mathcal{G})$ the trace ideal of $\mathcal{B}(\mathcal{G})$.

6. The Main Results

Theorem 6. Let \mathcal{G} be a finite group. Then the trace ideal $\mathcal{T}(\mathcal{G})$ of $\mathcal{B}(\mathcal{G})$ is a free abelian group of rank

$$\operatorname{rank}(\mathcal{T}(\mathcal{G})) = \operatorname{rank}(\mathcal{B}(\mathcal{G})) -$$

$$\sharp \{ \operatorname{conjugacy \ classes \ of \ elements \ } \sigma \in \mathcal{G} \text{ of order } \leq 2 \}.$$

The proof of theorem 6 will be organized as follows. We start by defining in a rather canonical way signatures for elements in the Burnside ring. By lemma 8, the trace ideal is contained in the kernel $L(\mathcal{G})$ of the total signature homomorphism. We compute the rank $L(\mathcal{G})$ in lemma 14. Now the assertion follows from the equality of the ranks of $\mathcal{T}(\mathcal{G})$ and $L(\mathcal{G})$, whose proof will be the subject of sections 7 and 8. In section 7 we reduce the proof of theorem 6 to 2-groups. Section 8 contains the proof of theorem 6 for 2-groups. It runs via induction over the Frattini subgroup of \mathcal{G} .

If \mathcal{G} is a finite group then $RC(\mathcal{G})$ denotes a set of representatives of the conjugacy classes of subgroups of \mathcal{G} . Further, $RC_2(\mathcal{G})$ denotes a set of representatives of the conjugacy classes of elements of order 1 or 2 in \mathcal{G} . Let \mathcal{G}_2 be a 2-Sylow subgroup of \mathcal{G} . Then we can choose $RC_2(\mathcal{G}) \subset \mathcal{G}_2$.

In the sequel we will use the following proposition of Sylvester.

Proposition 7. Let K be field, \mathfrak{p} be an ordering of K. Then for any separable polynomial $f(X) \in K[X]$ the signature of the trace form of K[X]/(f(X)) over K equals the number of real roots of f(X) with respect to the ordering \mathfrak{p} .

For a proof see [7].

Lemma 8. Let \mathcal{G} be a finite group and let $\sigma \in \mathcal{G}$ be an element of order ≤ 2 . Then there is a Galois extension N/K of algebraic number fields and an isomorphism $\iota : \mathcal{G} \xrightarrow{\sim} G(N/K)$ such that

- 1. $K \subset \mathbb{R}$ and $N \subset \mathbb{C}$.
- 2. $\iota(\sigma)$ is induced by the complex conjugation.

denotes the symmetric group on n elements.

Proof. Set $n := \operatorname{ord}(\mathcal{G})$.

1. $\operatorname{ord}(\sigma) = 2$. If n = 2, set $K = \mathbb{Q}$, $N = \mathbb{Q}(\sqrt{-1})$. Now let $n = 2m \geq 4$. Consider the quadratic form $\psi = (m-1) \times < 1, -1 > \bot < 1, -2 >$ as a form over \mathbb{Q} . Then $\det_{\mathbb{Q}} \psi \notin \mathbb{Q}^{*2}$ and $\operatorname{sign}_{\mathbb{Q}} \psi = 0$. By theorems 1 and 3 of [4] there is a field extension L/\mathbb{Q} with normal closure N/\mathbb{Q} such that $N \subset \mathbb{C}$, $G(N/\mathbb{Q}) \simeq \mathfrak{S}_n$ and L/\mathbb{Q} has trace form ψ . Here \mathfrak{S}_n

Let $\alpha \in L$ be a primitive element of L/\mathbb{Q} . Since $\operatorname{sign}_{\mathbb{Q}} < L >= 0$ no conjugate of α is real (see proposition 7). Let $M := \{\alpha_1, \bar{\alpha}_1, \dots, \alpha_m, \bar{\alpha}_m\}$ be the set of conjugates of α . $\bar{\alpha}$ is the complex conjugate of $\alpha \in \mathbb{C}$. Let $\varphi : \mathcal{G} \to M$ be a bijection such that for each $a \in \mathcal{G}$ the set $\varphi(\{a, \sigma(a)\})$ consists of a pair of complex conjugate elements of M. Now according to the identification given by φ we get a monomorphism $\iota : \mathcal{G} \hookrightarrow S(\mathcal{G}) \xrightarrow{\sim} S(M) \xrightarrow{\sim} G(N/\mathbb{Q})$. Then $\iota(\sigma)$ is given by the complex conjugation on N. Set $K := N^{\iota(\mathcal{G})}$. Since $\iota(\sigma) \in \iota(\mathcal{G})$ the field K is real.

2. $\sigma = \mathrm{i}d$. Set $\psi = (n-1) \times \langle 1 \rangle \perp \langle 2 \rangle$. Then $\det_{\mathbb{Q}} \psi \notin \mathbb{Q}^{*2}$ and $\mathrm{sign}_{\mathbb{Q}} \psi = n$. Now choose L, N and $\alpha \in L$ as above. Since $\mathrm{sign}_{\mathbb{Q}} \psi = \mathrm{sign}_{\mathbb{Q}} \langle L \rangle = n$ all conjugates of α are real. Hence $L \subset N \subset \mathbb{R}$. Choose any injection $\iota : \mathcal{G} \hookrightarrow G(N/\mathbb{Q})$ and set $K := N^{\iota(\mathcal{G})} \subset \mathbb{R}$. \square

Set

$$X = \sum_{\mathcal{H} \in \mathrm{RC}(\mathcal{G})} m_{\mathcal{H}} \cdot \chi_{\mathcal{H}}, \quad m_{\mathcal{H}} \in \mathbb{Z}.$$

Let N/K be a Galois extension with Galois group $G(N/K) = \mathcal{G}$. Let \mathfrak{p} be a real place of K. Then

$$h_{N/K}(X) = \sum_{\mathcal{H} \in \mathrm{RC}(\mathcal{G})} m_{\mathcal{H}} \times \langle N^{\mathcal{H}} \rangle = 0$$

gives

(I)
$$\operatorname{sign}_{\mathfrak{p}} h_{N/K}(X) = 0 = \sum_{\mathcal{H} \in \operatorname{RC}(\mathcal{G})} m_{\mathcal{H}} \cdot \operatorname{sign}_{\mathfrak{p}} < N^{\mathcal{H}} >$$

Let $\mathcal{H} < \mathcal{G}$ and $N^{\mathcal{H}} = K(\alpha)$. By proposition 7, $\operatorname{sign}_{\mathfrak{p}} < N^{\mathcal{H}} > \operatorname{equals}$ the number of real conjugates of α with respect to the ordering \mathfrak{p} . Let $\sigma \in G(N/K)$ be the automorphism which is induced by the complex conjugation. Then $\operatorname{sign}_{\mathfrak{p}} < N^{\mathcal{H}} > \operatorname{is}$ the number of fixed points of the action of $<\sigma>$ on the set of conjugates of α , which equals the number of fixed points of the action of $<\sigma>$ on \mathcal{G}/\mathcal{H} . Therefore the equation (I) is already determined by \mathcal{G} and the conjugacy class of the complex conjugation in \mathcal{G} . This leads to the following definition.

Definition 9. Let $\sigma \in \mathcal{G}$ be an element of order ≤ 2 . Let \mathcal{H} be a subgroup of \mathcal{G} and let $\chi_{\mathcal{H}} \in \mathcal{B}(\mathcal{G})$ be the corresponding character. Set

$$\operatorname{sign}_{\sigma} \chi_{\mathcal{H}} = \sharp \{ \text{fixed points of } (\langle \sigma \rangle, \mathcal{G}/\mathcal{H}) \}.$$

Of course, $\operatorname{sign}_{\sigma} \chi_{\mathcal{H}} = \chi_{\mathcal{H}}(\sigma)$. Since our approach is motivated by quadratic form considerations we feel it is more convenient to talk about signatures.

As usual $C_{\mathcal{G}}(\sigma)$ denotes the centralizer of σ in \mathcal{G} . Let $\mathcal{G}\sigma = \{\rho^{-1}\sigma\rho \mid \rho \in \mathcal{G}\}$ be the set of conjugates of σ in \mathcal{G} .

Proposition 10. Let \mathcal{G} be a finite group, $\mathcal{H} < \mathcal{G}$ a subgroup of \mathcal{G} . Let $\sigma \in \mathcal{G}$ be an element of order ≤ 2 . Then

$$\operatorname{sign}_{\sigma} \chi_{\mathcal{H}} = \frac{\operatorname{ord}(C_{\mathcal{G}}(\sigma))\sharp(\mathcal{G}\sigma \cap \mathcal{H})}{\operatorname{ord}(\mathcal{H})} = \frac{[\mathcal{G}:\mathcal{H}]\sharp(\mathcal{G}\sigma \cap \mathcal{H})}{\sharp\mathcal{G}\sigma}$$

Proof. Consider the action of $\langle \sigma \rangle$ on \mathcal{G}/\mathcal{H} . Let $\rho \in \mathcal{G}$. Then $\rho \mathcal{H}$ is a fixed point if and only if $\rho^{-1} \sigma \rho \in \mathcal{H}$. Hence we can assume that

$$\mathcal{G}\sigma\cap\mathcal{H}=\{\sigma_1,\ldots,\sigma_r\}$$

is a set of r > 0 elements. Let

$$M = \{(\rho, \sigma_i) \mid \rho^{-1} \sigma \rho = \sigma_i\} \subset \mathcal{G} \times \{\sigma_1, \dots, \sigma_r\}.$$

Obviously the cardinality of M is the product of $\operatorname{ord}(\mathcal{H})$ and the number of fixed points. Further, for $i = 1, \ldots, r$ we get

$$\sharp \{ \rho \in \mathcal{G} \mid (\rho, \sigma_i) \in M \} = \operatorname{ord}(C_{\mathcal{G}}(\sigma)).$$

Hence $\sharp M = \operatorname{ord}(C_{\mathcal{G}}(\sigma)) \cdot \sharp \mathcal{G}\sigma \cap \mathcal{H}$.

We abbreviate $\chi_{<\tau>}$ to χ_{τ} .

Corollary 11. In the situation of proposition 10 we get

- 1. $\operatorname{sign}_{\sigma} \chi_{\mathcal{H}} \equiv [\mathcal{G} : \mathcal{H}] \mod 2$.
- 2. $\operatorname{sign}_{id}\chi_{\mathcal{H}} = [\mathcal{G}:\mathcal{H}].$

- 3. $\operatorname{sign}_{\sigma} \chi_{\mathcal{H}} \neq 0$ if and only if \mathcal{H} contains some conjugate of σ .
- 4. Let $\tau \in \mathcal{G}$ be an element of order ≤ 2 . Then $\operatorname{sign}_{\sigma} \chi_{\tau} \neq 0$ if and only if σ and τ are conjugate or $\sigma = \operatorname{id}$.
- 5. Let τ and σ be two conjugate involutions. Then

$$2 \cdot \sharp \mathcal{G} \sigma \cdot \operatorname{sign}_{\sigma} \chi_{\tau} = \operatorname{ord}(\mathcal{G}).$$

6. If \mathcal{H} is a normal subgroup of \mathcal{G} , then $\operatorname{sign}_{\sigma} \chi_{\mathcal{H}} = 0$ or $= [\mathcal{G} : \mathcal{H}]$.

 $\operatorname{sign}_{\sigma}$ extends to a homomorphism on $\mathcal{B}(\mathcal{G})$.

Proposition 12. Let \mathcal{G} be a finite group and let $\sigma \in \mathcal{G}$ be an element of order ≤ 2 . Then there is a unique homomorphism

$$\operatorname{sign}_{\sigma}:\mathcal{B}(\mathcal{G})\to\mathbb{Z}$$

with $\operatorname{sign}_{\sigma} \chi_{\mathcal{U}} = \sharp \{ \text{fixed points of } (<\sigma>, \mathcal{G}/\mathcal{U}) \} \text{ for all subgroups } \mathcal{U} \text{ of } \mathcal{G}.$

Proof. We consider the representations and characters over fields of characteristic 0. Let $\rho: \mathcal{G} \to GL(V)$ be the underlying representation of $\chi_{\mathcal{U}}$. Hence we get $\operatorname{sign}_{\sigma}\chi_{\mathcal{U}} = \operatorname{trace}(\rho(\sigma)) = \chi_{\mathcal{U}}(\sigma)$. Since $\operatorname{trace}(A \otimes B) = \operatorname{trace}(A) \cdot \operatorname{trace}(B)$, $\operatorname{sign}_{\sigma}$ is a ring homomorphism.

We conclude that $\mathcal{T}(\mathcal{G})$ is contained in the intersection of all kernels of signature homomorphisms.

Definition 13. Let \mathcal{G} be a finite group. Set

$$\begin{split} L(\mathcal{G}) := \Big\{ \sum_{\mathcal{H} \in \mathrm{RC}(\mathcal{G})} m_{\mathcal{H}} \chi_{\mathcal{H}} \mid \sum_{\mathcal{H} \in \mathrm{RC}(\mathcal{G})} m_{\mathcal{H}} \cdot \mathrm{sign}_{\sigma} \chi_{\mathcal{H}} = 0 \\ & \text{for all } \sigma \in \mathrm{RC}_2(\mathcal{G}) \Big\} \subset \mathcal{B}(\mathcal{G}). \end{split}$$

Lemma 14. Let G be a finite group of order n. The system of linear equations given by

$$\sum_{\mathcal{H} \in \mathrm{RC}(\mathcal{G})} \mathrm{sign}_{\sigma} \chi_{\mathcal{H}} \cdot x_{\mathcal{H}} = 0, \ \sigma \in \mathrm{RC}_{2}(\mathcal{G})$$

has rank $\sharp RC_2(\mathcal{G})$.

Proof. Let $\sigma_1 = \mathrm{i} d, \sigma_2 \ldots, \sigma_r$ be the r distinct elements of $\mathrm{RC}_2(\mathcal{G})$. Consider the coefficients $\mathrm{sign}_{\sigma_j} \chi_{<\sigma_i>}$ for $i,j=1,\ldots,r$. We get $\mathrm{sign}_{\mathrm{i}d} \chi_{<\sigma_i>} = \mathrm{ord}(\mathcal{G})/\mathrm{ord}(\sigma_i) \in \{n,n/2\}$ for $i=1,\ldots,r$. For $j=2,\ldots,r$ we have $\mathrm{sign}_{\sigma_i} \chi_{<\sigma_i>} \neq 0$ if and only if i=j.

Remark 15. By lemma 14, $L(\mathcal{G})$ is a free abelian group of rank

$$\operatorname{rank}(\mathcal{B}(\mathcal{G})) - \sharp \operatorname{RC}_2(\mathcal{G}).$$

Further, $\mathcal{T}(\mathcal{G}) \subset L(\mathcal{G})$ by lemma 8 and the remarks following it. We get $\operatorname{rank}(\mathcal{T}(\mathcal{G})) = \operatorname{rank}(L(\mathcal{G}))$ if and only if there exists a positive integer $a \in \mathbb{Z}$ with $a \cdot L(\mathcal{G}) \subset \mathcal{T}(\mathcal{G})$.

By Pfisters local-global principle, $L(\mathcal{G})$ is the set of all $X \in \mathcal{B}(\mathcal{G})$ such that $h_{N/K}(X)$ is a torsion form for any Galois extension N/K with $G(N/K) \simeq \mathcal{G}$. Hence the rank formula of theorem 6 is equivalent to the existence of an integer $l \in \mathbb{Z}, l \geq 0$ depending only on \mathcal{G} such that 2^l annihilates $h_{N/K}(L(\mathcal{G}))$ for any Galois extension N/K with Galois group \mathcal{G} .

Since $\mathcal{T}(\mathcal{G}) \subset L(\mathcal{G})$ each signature homomorphism $\operatorname{sign}_{\sigma}$ induces a unique signature homomorphism $\operatorname{sign} : \mathcal{B}(\mathcal{G})/\mathcal{T}(\mathcal{G}) \to \mathbb{Z}$. Hence we easily get from Theorem 6:

Theorem 16 (Local-Global Principle). An element $X \in \mathcal{B}(\mathcal{G})$ is a torsion element in $\mathcal{B}(\mathcal{G})/\mathcal{T}(\mathcal{G})$ if and only if $\operatorname{sign}_{\sigma}(X) = 0$ for every $\sigma \in \mathcal{G}$ of order ≤ 2 . Every torsion element of $\mathcal{B}(\mathcal{G})/\mathcal{T}(\mathcal{G})$ has 2-power order.

7. REDUCTION TO 2-GROUPS

Proposition 17. Let G be a group of odd order. Then

$$\mathcal{T}(\mathcal{G}) = L(\mathcal{G}).$$

Hence $\operatorname{rank}(\mathcal{T}(\mathcal{G})) = \operatorname{rank}(\mathcal{B}(\mathcal{G})) - 1$.

Proof. Let N/K be a Galois extension with Galois group $G(N/K) \simeq \mathcal{G}$. Let L be an intermediate field of N/K. Then $< L>= [L:K] \times <1>$ (see [2], cor. I.6.5). Let $X = \sum_{\mathcal{H} \in \mathrm{RC}(\mathcal{G})} m_{\mathcal{H}} \cdot \chi_{\mathcal{H}}$. Then $h_{N/K}(X) = \sum_{\mathcal{H} \in \mathrm{RC}(\mathcal{G})} m_{\mathcal{H}} \cdot [\mathcal{G}:\mathcal{H}] \times <1>$. Since $\mathrm{ord}(\mathcal{G})$ is odd, $L(\mathcal{G})$ is defined by the equation $\sum_{\mathcal{H} \in \mathrm{RC}(\mathcal{G})} m_{\mathcal{H}} \cdot [\mathcal{G}:\mathcal{H}] = 0$ (see corollary 11). Now the statement about the ranks follows from remark 15.

Let \mathcal{H}, \mathcal{U} be subgroups of \mathcal{G} . Then the representation defined by the action of \mathcal{G} on \mathcal{G}/\mathcal{U} restricts to a representation of \mathcal{H} on \mathcal{G}/\mathcal{U} . This defines a ring homomorphism

$$\operatorname{res}_{\mathcal{H}}^{\mathcal{G}}:\mathcal{B}(\mathcal{G})\to\mathcal{B}(\mathcal{H}),$$

the 'restriction map'. We get

$$\operatorname{res}_{\mathcal{H}}^{\mathcal{G}}\chi_{\mathcal{U}}^{\mathcal{G}} = \oplus_{\sigma \in \mathcal{H} \setminus \mathcal{G}/\mathcal{U}} \ \chi_{\mathcal{H} \cap \sigma \mathcal{U} \sigma^{-1}}^{\mathcal{H}} \in \mathcal{B}(\mathcal{H}),$$

where $\chi^{\mathcal{H}}_{\mathcal{H}\cap\sigma\mathcal{U}\sigma^{-1}}\in\mathcal{B}(\mathcal{H})$ is a character of \mathcal{H} .

Proposition 18. Let \mathcal{G} be a finite group and let $\mathcal{H} < \mathcal{G}$. Let $\sigma \in \mathcal{H}$ be an element of order ≤ 2 . Then

commutes.

Proof. Let $\mathcal{U} < \mathcal{G}$. We compute the signature of $\operatorname{res}_{\mathcal{H}}^{\mathcal{G}}\chi_{\mathcal{U}}^{\mathcal{G}}$ as follows: Restrict the action of \mathcal{G} on \mathcal{G}/\mathcal{U} to \mathcal{H} . Then count the number of fixed points of $<\sigma>$ according to this action. Of course, this number equals $\operatorname{sign}_{\sigma}\chi_{\mathcal{U}}^{\mathcal{G}}$. \square

There is an additive but not multiplicative corestriction map $\operatorname{cor}_{\mathcal{H}}^{\mathcal{G}}: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{G})$ defined by $\operatorname{cor}_{\mathcal{H}}^{\mathcal{G}} \chi_{\mathcal{U}}^{\mathcal{H}} = \chi_{\mathcal{U}}^{\mathcal{G}}$.

Proposition 19. Let \mathcal{G} be a finite group, $\mathcal{H} < \mathcal{G}$. Let N/K be a Galois extension with $G(N/K) = \mathcal{G}$. Let $s^* : W(K) \to W(N^{\mathcal{H}})$ be the lifting homomorphism. Then

$$\mathcal{B}(\mathcal{G}) \xrightarrow{h_{N/K}} W(K)$$

$$\operatorname{res}_{\mathcal{H}}^{\mathcal{G}} \downarrow s^{*}$$

$$\mathcal{B}(\mathcal{H}) \xrightarrow{h_{N/N^{\mathcal{H}}}} W(N^{\mathcal{H}})$$

and

$$\mathcal{B}(\mathcal{H}) \xrightarrow{h_{N/N^{\mathcal{H}}}} W(N^{\mathcal{H}})$$

$$\operatorname{cor}_{\mathcal{H}}^{\mathcal{G}} \downarrow \underset{h_{N/K}}{\downarrow} tr_{N^{\mathcal{H}}/K}$$

$$\mathcal{B}(\mathcal{G}) \xrightarrow{h_{N/K}} W(K)$$

commute.

Proof. We use the notation of lemma 4 and its proof. Set $L := N^{\mathcal{H}}$. Then

$$h_{N/L}(\operatorname{res}_{\mathcal{H}}^{\mathcal{G}}(\chi_{\mathcal{U}}^{\mathcal{G}})) = \perp_{\sigma \in \mathcal{U} \setminus \mathcal{G}/\mathcal{H}} h_{N/L}(\chi_{\mathcal{H} \cap \sigma \mathcal{U} \sigma^{-1}}^{\mathcal{H}})$$

$$= \perp_{\sigma \in \mathcal{U} \setminus \mathcal{G}/\mathcal{H}} < N^{\mathcal{H} \cap \sigma \mathcal{U} \sigma^{-1}}/L > = \perp_{i=1,\dots,r} < (L[X]/(f_i))/L >$$

$$= < (L[X]/(f_1 \cdots f_r))/L > = < (K[X]/(f)) \otimes L >$$

$$= s^*(< N^{\mathcal{U}}/K >) = s^* \circ h_{N/K}(\chi_{\mathcal{U}}^{\mathcal{G}}).$$

Let $\mathcal{U} < \mathcal{H} < \mathcal{G}$. Then

$$h_{N/K} \circ \operatorname{cor}_{\mathcal{H}}^{\mathcal{G}}(\chi_{\mathcal{U}}^{\mathcal{H}}) = h_{N/K}(\chi_{\mathcal{U}}^{\mathcal{G}}) = \langle N^{\mathcal{U}} \rangle = tr_{N^{\mathcal{H}}/K}(h_{N/N^{\mathcal{H}}}(\chi_{\mathcal{U}}^{\mathcal{H}})).$$

Lemma 20. Let $\mathcal{H} < \mathcal{G}$ be finite groups.

- 1. Then $\operatorname{res}_{\mathcal{H}}^{\mathcal{G}}(L(\mathcal{G})) \subset L(\mathcal{H})$.
- 2. Let $[\mathcal{G}:\mathcal{H}]$ be odd.
 - (a) Then $\operatorname{res}_{\mathcal{H}}^{\mathcal{G}}(X) \in L(\mathcal{H})$ if and only if $X \in L(\mathcal{G})$.
 - (b) $\operatorname{res}_{\mathcal{H}}^{\mathcal{G}}(X) \in \mathcal{T}(\mathcal{H}) \text{ implies } X \in \mathcal{T}(\mathcal{G}).$

Proof. 1. follows from proposition 18.

- 2. Choose $RC_2(\mathcal{G}) \subset RC_2(\mathcal{H})$ and apply proposition 18.
- (b) Let N/K be a Galois extension with $G(N/K) = \mathcal{G}$ and let $X \in \mathcal{B}(\mathcal{G})$ with $\operatorname{res}_{\mathcal{H}}^{\mathcal{G}}(X) \in \mathcal{T}(\mathcal{H})$. Now $h_{N/N^{\mathcal{H}}} \circ \operatorname{res}_{\mathcal{H}}^{\mathcal{G}}(X) = 0 = s^* \circ h_{N/K}(X)$ by proposition 19. By a theorem of Springer s^* is injective (see [5], 2.5.3). Thus $h_{N/K}(X) = 0$.

From $X \in \mathcal{T}(\mathcal{G})$ we get $X \in \ker(h_{N/K})$, hence $\operatorname{res}_{\mathcal{H}}^{\mathcal{G}}(X) \in \ker(h_{N/N^{\mathcal{H}}})$. But we do not get $\operatorname{res}_{\mathcal{H}}^{\mathcal{G}}(X) \in \mathcal{T}(\mathcal{H})$. We only get $\operatorname{res}_{\mathcal{H}}^{\mathcal{G}}(X) \in \bigcap \ker(h_{N/K})$, where the intersection runs over all Galois extensions N/K with Galois group \mathcal{G} and such that $\mathcal{G} < \operatorname{Aut}(N)$.

Let $\exp(\mathcal{G})$ denote the exponent of \mathcal{G} .

Proposition 21. Let \mathcal{G} be a finite group and let \mathcal{G}_2 be a 2-Sylow subgroup of \mathcal{G} .

- 1. Then the rank formula of theorem 6 holds for \mathcal{G} if it holds for any 2-Sylow subgroup of \mathcal{G} , in which case $\exp(L(\mathcal{G})/\mathcal{T}(\mathcal{G}))$ divides the exponent of $L(\mathcal{G}_2)/\mathcal{T}(\mathcal{G}_2)$.
- 2. Suppose there is a set \mathcal{X} of fields such that $\mathcal{G} < \operatorname{Aut}(N)$ for any $N \in \mathcal{X}$ and such that

$$\mathcal{T}(\mathcal{G}_2) = \bigcap_{N \in \mathcal{X}} \bigcap_{\mathcal{U} < \mathrm{Aut}(N), \mathcal{U} \simeq \mathcal{G}_2} \ker(h_{N/N}u).$$

Then $X \in \mathcal{T}(\mathcal{G})$ if and only if $\operatorname{res}_{\mathcal{G}_2}^{\mathcal{G}}(X) \in \mathcal{T}(\mathcal{G}_2)$. Hence $L(\mathcal{G})/\mathcal{T}(\mathcal{G})$ is isomorphic to a subgroup of $L(\mathcal{G}_2)/\mathcal{T}(\mathcal{G}_2)$.

Proof. 1. If the rank formula holds for \mathcal{G}_2 , then by remark 15 there is a positive integer a with $a \cdot L(\mathcal{G}_2) \subset \mathcal{T}(\mathcal{G}_2)$. Let $X \in L(\mathcal{G})$. Then $\operatorname{res}_{\mathcal{G}_2}^{\mathcal{G}}(X) \in L(\mathcal{G}_2)$ and $\operatorname{res}_{\mathcal{G}_2}^{\mathcal{G}}(aX) = a \cdot \operatorname{res}_{\mathcal{G}_2}^{\mathcal{G}}(X) \in a \cdot L(\mathcal{G}_2) \subset \mathcal{T}(\mathcal{G}_2)$. Hence $aX \in \mathcal{T}(\mathcal{G})$ by

lemma 20(2)(b). The proof of (2) is left to the reader.

8. Proof of theorem 6

Let $\mathcal{J}_2(\mathcal{G})$ be the set of involutions of the 2-group \mathcal{G} . For a subgroup \mathcal{H} of \mathcal{G} define

$$X_{\mathcal{H}}^{\mathcal{G}} := X_{\mathcal{H}} := \operatorname{ord}(\mathcal{H}) \cdot \chi_{\mathcal{H}}^{\mathcal{G}} - \chi_{1}^{\mathcal{G}} + \sum_{\tau \in \operatorname{RC}_{2}(\mathcal{G}), \tau \neq 1} \sharp (\mathcal{G}\tau \cap \mathcal{H}) \cdot (\chi_{1}^{\mathcal{G}} - 2 \cdot \chi_{\tau}^{\mathcal{G}})$$

and let

$$M_{\mathcal{G}} := \{ X_{\mathcal{H}} \mid \mathcal{H} \in RC(\mathcal{G}) - RC_2(\mathcal{G}) \}.$$

By proposition 10 and corollary 11, M is a free subset of $L(\mathcal{G})$ which consists of rank $(L(\mathcal{G}))$ elements. We will prove by induction that $M_{\mathcal{G}}$ is contained in $\mathcal{T}(\mathcal{G})$.

Lemma 22. Let \mathcal{G} be a 2-group. Then $M_{\mathcal{G}}$ is a free subset of $\mathcal{T}(\mathcal{G})$ consisting of rank $(L(\mathcal{G}))$ elements.

Proof. Observe that $\mathcal{T}(\mathbb{Z}_2) = 0$. Let \mathcal{G} be a group of order $2^l \geq 4$ and let N/K be a Galois extension with Galois group \mathcal{G} . Now we proceed by induction.

1. Let \mathcal{H} be a subgroup with $\mathcal{H} \neq \mathcal{G}$. Let $\tau, \tau' \in \mathcal{G}$ be involutions. Then $\chi_{\tau} = \chi_{\tau'}$ if and only if $\tau' \in \mathcal{G}\tau$. Since $\mathcal{J}_2(\mathcal{G})$ is the disjoint union of the conjugacy classes of the involutions of \mathcal{G} we get

$$\mathcal{J}_2(\mathcal{H}) = \mathcal{J}_2(\mathcal{G}) \cap \mathcal{H} = \bigcup_{\tau \in \mathrm{RC}_2(\mathcal{G}), \tau \neq 1} \mathcal{G}\tau \cap \mathcal{H}.$$

Let $\mathcal{U} < \mathcal{G}$ be a maximal subgroup of \mathcal{G} which contains \mathcal{H} . Then

$$X_{\mathcal{H}}^{\mathcal{U}} = \operatorname{ord}(\mathcal{H}) \cdot \chi_{\mathcal{H}}^{\mathcal{U}} - \chi_{1}^{\mathcal{U}} + \sum_{\tau \in \operatorname{RC}_{2}(\mathcal{U}), \tau \neq 1} \sharp (\mathcal{U}\tau \cap \mathcal{H})(\chi_{1}^{\mathcal{U}} - 2 \cdot \chi_{\tau}^{\mathcal{U}})$$
$$= \operatorname{ord}(\mathcal{H}) \cdot \chi_{\mathcal{H}}^{\mathcal{U}} - \chi_{1}^{\mathcal{U}} + \sum_{\tau \in \mathcal{J}_{2}(\mathcal{H})} (\chi_{1}^{\mathcal{U}} - 2 \cdot \chi_{\tau}^{\mathcal{U}}).$$

Now $X_{\mathcal{H}}^{\mathcal{U}} \in \mathcal{T}(\mathcal{U})$ by induction hypothesis. Hence $h_{N/N}u(X_{\mathcal{H}}^{\mathcal{U}}) = 0$, which gives $h_{N/K}(X_{\mathcal{H}}^{\mathcal{G}}) = \operatorname{tr}_{N}u_{/K}(h_{N/N}u(X_{\mathcal{H}}^{\mathcal{U}})) = 0$ (see proposition 19). Hence $X_{\mathcal{H}}^{\mathcal{G}} \in \mathcal{T}(\mathcal{G})$ if $\mathcal{H} \neq \mathcal{G}$.

2. Next we have to prove $X_{\mathcal{G}}^{\mathcal{G}} \in \mathcal{T}(\mathcal{G})$. First we consider an elementary abelian group. Then

$$X_{\mathcal{G}}^{\mathcal{G}} = 2^{l} \cdot \chi_{\mathcal{G}}^{\mathcal{G}} + (2^{l} - 2) \cdot \chi_{1}^{\mathcal{G}} - 2 \cdot \sum_{\tau \in \mathcal{G}, \tau \neq 1} \chi_{\tau}^{\mathcal{G}}.$$

Let $N = K(\sqrt{a_1}, \ldots, \sqrt{a_l})$. We know that $\langle N \rangle = \langle 2^l \rangle \otimes \langle -a_1, \ldots, -a_l \rangle \rangle$ (see [3], prop. 1).

Now expand the Pfister form $<<-a_1,\ldots,-a_l>>=<1,b_2,\ldots,b_{2^l}>$. Then the entries b_2,\ldots,b_{2^l} are in one-to-one correspondence with the quadratic subextensions of N/K. There are exactly $2^{l-1}-1$ elements $\tau \in \mathcal{G}, \tau \neq \mathrm{i} d$ such that $K(\sqrt{b_i}) \subset N^{\tau}$. Hence

$$\begin{array}{lcl} h_{N/K}(X_{\mathcal{G}}^{\mathcal{G}}) & = & 2^{l} \times <1> \perp (2^{l}-2) \times < N> -2 \sum_{\tau \in \mathcal{G}, \tau \neq \mathrm{i}d} < N^{\tau}> \\ & = & 0. \end{array}$$

Now we can assume that \mathcal{G} is not an elementary abelian group. Let $\mathcal{U}_1, \ldots, \mathcal{U}_m$ be the maximal subgroups of \mathcal{G} . Since \mathcal{G} is not a group of order 2, we get $\mathcal{J}_2(\mathcal{G}) \subset \bigcup_{i=1}^m \mathcal{U}_i$. This gives

$$\sum_{\tau \in \mathcal{J}_2(\mathcal{G})} (\chi_1 - 2 \cdot \chi_\tau) = \sum_{\mathcal{U} = \mathcal{U}_{i_1} \cap \ldots \cap \mathcal{U}_{i_r}} (-1)^{r+1} \sum_{\tau \in \mathcal{J}_2(\mathcal{U})} (\chi_1 - 2 \cdot \chi_\tau),$$

where the sum runs over the set of all non-empty subsets of $\{1,\ldots,m\}$. Let $\Phi(\mathcal{G})$ denote the Frattini subgroup of \mathcal{G} . Let 2^k be its order and set $\mathcal{V} = \mathcal{G}/\Phi(\mathcal{G})$. Let F be the fixed field of $\Phi(\mathcal{G})$. Then F/K is an elementary abelian extension. Let $\{i_1,\ldots,i_r\}\subset\{1,\ldots,m\}$ be a set of r different indices. Set $\mathcal{H}=\mathcal{U}_{i_1}\cap\ldots\cap\mathcal{U}_{i_r}$. Then $X^{\mathcal{H}}_{\mathcal{H}}\in\mathcal{T}(\mathcal{H})$ by induction hypothesis. We get $h_{N/N^{\mathcal{H}}}(X^{\mathcal{H}}_{\mathcal{H}})=0$, which implies

$$\sum_{\tau \in \mathcal{J}_2(\mathcal{H})} (\langle N/N^{\mathcal{H}} \rangle - 2 \times \langle N^{\tau}/N^{\mathcal{H}} \rangle) = \langle N/N^{\mathcal{H}} \rangle - \operatorname{ord}(\mathcal{H}) \times \langle 1 \rangle.$$

Set $\mathcal{V}' = \mathcal{H}/\Phi(\mathcal{G})$ and suppose $\mathcal{H} \neq \Phi(\mathcal{G})$. By (1) we know that $X_{\mathcal{V}'}^{\mathcal{V}} \in \mathcal{T}(\mathcal{V})$ for all subgroups \mathcal{V}' of \mathcal{V} with $\mathcal{V}' \neq 1$. This gives

$$\operatorname{ord}(\mathcal{H}/\Phi(\mathcal{G})) \times <1> = < F/N^{\mathcal{H}}> - \sum_{\tau \in \mathcal{J}_2(\mathcal{V}')} (< F/N^{\mathcal{H}}> -2 \cdot < F^{\tau}/N^{\mathcal{H}}>).$$

We further get

$$h_{N/K}\left(\sum_{\tau \in \mathcal{J}_{2}(\mathcal{H})} (\chi_{1}^{\mathcal{G}} - 2 \cdot \chi_{\tau}^{\mathcal{G}})\right) = \sum_{\tau \in \mathcal{J}_{2}(\mathcal{H})} (\langle N \rangle - 2 \times \langle N^{\tau} \rangle)$$

$$= \operatorname{tr}_{N^{\mathcal{H}}/K} \left[\sum_{\tau \in \mathcal{J}_{2}(\mathcal{H})} (\langle N / N^{\mathcal{H}} \rangle - 2 \times \langle N^{\tau} / N^{\mathcal{H}} \rangle)\right]$$

$$= \operatorname{tr}_{N^{\mathcal{H}}/K} (\langle N / N^{\mathcal{H}} \rangle - \operatorname{ord}(\mathcal{H}) \times \langle 1 \rangle)$$

$$= (\langle N \rangle - \operatorname{ord}(\mathcal{H}) \times \langle N^{\mathcal{H}} \rangle)$$

$$= \langle N \rangle - 2^{k} \times \operatorname{tr}_{N^{\mathcal{H}}/K} (\operatorname{ord}(\mathcal{H}/\Phi(\mathcal{G})) \times \langle 1 \rangle)$$

$$= \langle N \rangle - 2^{k} \times \operatorname{tr}_{N^{\mathcal{H}}/K} (\langle F / N^{\mathcal{H}} \rangle)$$

$$- \sum_{\tau \in \mathcal{J}_{2}(\mathcal{H}/\Phi(\mathcal{G}))} (\langle F / N^{\mathcal{H}} \rangle - 2 \times \langle F^{\tau} / N^{\mathcal{H}} \rangle))$$

$$= \langle N \rangle - 2^{k} \times \langle F \rangle$$

$$+ 2^{k} \times \sum_{\tau \in \mathcal{J}_{2}(\mathcal{H}/\Phi(\mathcal{G}))} (\langle F \rangle - 2 \times \langle F^{\tau} \rangle)$$

If $\mathcal{H} = \Phi(\mathcal{G})$, then $\mathcal{J}_2(\mathcal{H}/\Phi(\mathcal{G}))$ is empty and $N^{\mathcal{H}} = F$. Hence the formula also holds in this situation.

Now
$$\sum_{r=0}^{n} (-1)^r \binom{n}{r} = 0$$
 implies

$$\begin{array}{lll} h_{N/K}(X_{\mathcal{G}}^{\mathcal{G}}) & = & 2^{l} \times <1> - < N> + \sum_{\mathcal{H}} (-1)^{r+1} \sum_{\tau \in \mathcal{J}_{2}(\mathcal{H})} (< N> -2\times < N^{\tau}>) \\ & = & 2^{l} \times <1> -2^{k} \times < F> \\ & & +2^{k} \times \sum_{\mathcal{H}} (-1)^{r+1} \sum_{\tau \in \mathcal{J}_{2}(\mathcal{H}/\Phi(\mathcal{G}))} (< F> -2\times < F^{\tau}>) \\ & = & 2^{k} \times \left[\operatorname{ord}(\mathcal{V}) \times <1> - < F> + h_{F/K} \left(\sum_{\tau \in \mathcal{J}_{2}(\mathcal{V})} (\chi_{1}^{\mathcal{V}} - 2 \cdot \chi_{\tau}^{\mathcal{V}}) \right] \\ & = & 2^{k} h_{F/K}(X_{\mathcal{V}}^{\mathcal{V}}) = 0 \end{array}$$

by the above.

9. OPEN QUESTIONS

We conclude with some open questions. How does the exponent of $\mathcal{B}(\mathcal{G})/\mathcal{T}(\mathcal{G})$ depend on \mathcal{G} ?

Proposition 23. Let \mathcal{G} be a finite group. If a 2-Sylow subgroup \mathcal{G}_2 of \mathcal{G} is a normal subgroup of \mathcal{G} , then the restriction homomorphism induces an epimorphism

res :
$$L(\mathcal{G}) \to L(\mathcal{G}_2)/\mathcal{T}(\mathcal{G}_2)$$

Proof. Let $\operatorname{cor}: \mathcal{B}(\mathcal{G}_2) \to \mathcal{B}(\mathcal{G})$ be the corestriction. This is an additive homomorphism. Since \mathcal{G}_2 is normal in \mathcal{G} we get $\operatorname{res} \circ \operatorname{cor} = [\mathcal{G}: \mathcal{G}_2] \cdot \operatorname{id}$. By Theorem 6 there is an integer $l \in \mathbb{N}$ such that $2^l \cdot L(\mathcal{G}_2) \subset \mathcal{T}(\mathcal{G}_2)$. Let $k, t \in \mathbb{Z}, k > 0$ with $k \cdot [\mathcal{G}: \mathcal{G}_2] = 1 + t \cdot 2^l$. Then $\operatorname{res} \circ \operatorname{cor}(kX) = X + t \cdot 2^l X \equiv X \mod \mathcal{T}(\mathcal{G}_2)$.

This leads to the following question: Does the restriction homomorphism induces an isomorphism

res :
$$L(\mathcal{G})/\mathcal{T}(\mathcal{G}) \to L(\mathcal{G}_2)/\mathcal{T}(\mathcal{G}_2)$$
?

We know that the answer is affirmative if \mathcal{G} is an abelian group whose 2-Sylow subgroup is cyclic or elementary abelian. In these cases $L(\mathcal{G})/\mathcal{T}(\mathcal{G})$ has exponent 2. If \mathcal{G} is the dihedral group of order 8, then the exponent is 2. In the case of the quaternion group Q_8 of order 8 we get $\exp(L(Q_8)/\mathcal{T}(Q_8)) = 4$.

REFERENCES

- [1] P. Beaulieu and T. Palfrey. The Galois number. Math. Ann. 309 (1997), 81-96.
- [2] P.E. Conner and R. Perlis. A Survey of Trace Forms of Algebraic Number Fields. World Scientific, Singapore, (1984).
- [3] C. Drees, M. Epkenhans, and M. Krüskemper. On the computation of the trace form of some Galois extensions. J. Algebra, 192 (1997), 209-234.
- [4] M. Epkenhans and M. Krüskemper. On Trace Forms of étale Algebras and Field Extensions. Math. Z. 217 (1994), 421-434.
- [5] W. Scharlau. Quadratic and Hermitian Forms. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, (1985).
- [6] T. A. Springer. On the equivalence of quadratic forms. Proc. Acad. Amsterdam, 62 (1959), 241-253.
- [7] O. Taussky. The Discriminant Matrices of an Algebraic Number Field. J. London Math. Soc. 43 (1968), 152-154.

Martin EPKENHANS Fb Mathematik D-33095 Paderborn

 $E ext{-}mail:$ martineQuni-paderborn.de