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An Analogue of Pfister’s Local-Global Principle in
the Burnside Ring

par MARTIN EPKENHANS

RÉSUMÉ. Soit N/K une extension galoisienne de groupe de Ga-
lois G. On étudie l’ensemble T(G) des combinaisons linéaires sur
Z de caractères de l’anneau de Burnside B(G), qui induisent des
combinaisons Z-linéaires des formes trace de sous-extensions de

N/K qui sont triviales dans l’anneau de Witt W(K) de K. On
montre que le sous-groupe de torsion de B(G)/T(G) est le noyau
de l’homomorphisme signature.

ABSTRACT. Let N/K be a Galois extension with Galois group
G. We study the set T(G) of Z-linear combinations of characters
in the Burnside ring B(G) which give rise to Z-linear combina-
tions of trace forms of subextensions of N/K which are trivial
in the Witt ring W(K) of K. In particular, we prove that the
torsion subgroup of B(G)/T(G) coincides with the kernel of the
total signature homomorphism.

1. INTRODUCTION

Let L/K be a finite, separable extension of fields of characteristic # 2.
With it we associate the ’trace form’ which is defined by trL/K : L -
K : x ~ P.E. Conner started to investigate the connection of
the trace form of L/K and the trace form of a normal closure of

L/K. His work yields some polynomial vanishing theorems for trace forms
(see (l~). These identities come from identities in the Burnside ring of the
Galois group!g = G(N/K) of NjK. We study the trace ideal in 13(~),
which is roughly speaking the set of Z-linear combinations of trace forms of
subextensions of Nj K which are trivial in the Witt ring W(K) of K.
We first recall the definition of the Burnside ring of a finite group

9. A theorem of Springer [6] gives rise to a homomorphism hN/K : 8(9) -+
W(K). The trace ideal 7(9) is a finitely generated subgroup of the free
abelian group 13(~). We introduce a signature homomorphism sign(1 :
13(~) -&#x3E; Z for each element Q of order  2. These signature homo-
morphisms correspond to signatures of the Witt ring. We conclude that
7(9) is contained in the intersection L(9) of all kernels of signatures. The
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main theorem states that T(G) and L(g) are of equal rank. Hence the

torsion subgroup of 8(Q)jT(Q) is given by the kernel of the total signature
homomorphism. In section 7 we reduce our approach to 2-groups. The

general case follows by induction via the Frattini subgroup of g.

2. NOTATION

We first fix our notations. Let K be a field. Then K* denotes the

multiplicative group of K, K*2 is the group of squares in K*. We write KS
for a separable closure of K.

Let N/K be a Galois extension, then G(N/K) denotes the Galois group
of N/K. If1l  G(N/K) then Nll is the fixed field of 71 in N. Let Aut(K)
be the group of field automorphisms of K.
Now let K be a field of characteristic # 2. Let be non-degenerate

quadratic forms over K. Then det K1b is the determinant of 0. If p is a real

place of K then sign,o is the signature of 0 with respect to p. ’ljJ 0 cp is
the product of 0 and cp. For m E Z, m x 1b is the m-fold sum cp
indicates the isometry of 0 and cp over K. Let L/K be a field extension.
Then OL is the lifting of ~ to a form over L by scalar extension. W(K) is the
Witt ring of K. Let al, ... , an E K*. Then al, ... , an&#x3E; is the diagonal
form + ... over K. «a1,... an» = is

the n-fold Pfister form defined by 2i,... a.~.
Let L/K be a finite and separable field extension. The trace form of L/K

is the non-degenerate quadratic form L 2013~ ~ : ~ ~ 

We denote the trace form also by L/K&#x3E;, resp L&#x3E; if no confusion can
arise.

Let M be a set. Then #M is the cardinality of M. ord(g) , ord(Q) is the
order of the finite group G, resp. of the element E 0.

3. THE BURNSIDE RING 

Let 9 be a finite group and let R  9 be a subgroup of Q. We denote
the transitive action of G on the set of left cosets ~/~-l = E 91
by (Q, The transitive and faithful actions of 0 on finite sets are in
one-to-one correspondence with the set of conjugacy classes of subgroups of
9 - A subgroup 7~ of 9 induces a transitive action of degree [g : ~-l~, hence
a representation of dimension [G : 7~]. Let X1i denote the corresponding
character. We sometimes write Xg to indicate that the character is defined
on g.

Definition 1. Let g be a finite group. The Burnside ring 8(Q) of C is the
free abelian group freely generated by the set

runs over representatives of conjugacy classes of subgroups of 91
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and with multiplication given by

where the sum runs over a set of representatives of the double cosets in
u1
Remark 2. xg is the multiplicative identity, =: Xl is the regular
character.

Another way of defining the multiplication is as follows. Let Pi : 9 -+
i = 1, 2 be representations of ~. Then 

is a representation of G x G on VI &#x26;; V2. According to the diagonal embedding
x G the representation Pl (9 p2 restricts to a representation of G on

V2. For pi = (9,9IUi) we get PI 0 P219 = n

UU2U-l)).
4. THE HOMOMORPHISM W(K)

Proposition 3 (T.A. Springer). Let N/K be a finite Galois extension with
Galois group g. Then there is a well-defined ring homomor-
phism

with

..., IV / 1B ,/B. n J 

for all subgroups 1l 

Proof. Let 1l  G be a subgroup of g. Then HNIK is well-defined as a group
homomorphism since 1 &#x3E; _  ~ ( N~ ) &#x3E; _  N~ &#x3E; . Now the assertion
follows from the next lemma. El

Lemma 4. Let N/K be a finite Galois extension with Galois group 9 =
G(N/K) . Let u1, u2 be subgroups of G(NI K). Then

where the sum runs over a set of representatives of the double 

Proof. (see [2], 1.6.2) Let a E N with Nul = K(a) and let f E K[X] be the
minimal polynomial of a over K. Set L := Nu2. From Frobenius reciprocity
[5], 2.5.6 we get

1 I 11 , .

where f = f 1 - ~ ~ f r is the decomposition of f into monic irreducible polyno-
mials in L~X~. Now consider for some monic prime
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divisor g E L[X] of f . Then g is the minimal polynomial of some conjugate
of a over L. Hence

Now

The action of 9 on the roots of f induces an action of Lf2 on the roots of f,
which is equivalent to the action of Lf2 on Each orbit of this action

corresponds to a monic irreducible factor g E L[X] of f . 0

5. THE TRACE IDEAL IN L3(g)
Definition 5. Let g be a finite group. Set

where the intersection is taken over all Galois extensions N/K over all fields
K of characteristic 54 2 with Galois group g. We call T(9) the
trace ideal of B(9).

6. THE MAIN RESULTS

Theorem 6. Let 9 be a finite group. Then the trace idead T(G) of 8(9) is
a free abelian group of rank

rank(T(G)) = rank(8(Q)) -
#{conjugacy classes of elements E 9 of order  21.

The proof of theorem 6 will be organized as follows. We start by defining
in a rather canonical way signatures for elements in the Burnside ring.
By lemma 8, the trace ideal is contained in the kernel L(9) of the total
signature homomorphism. We compute the rank L(g) in lemma 14. Now
the assertion follows from the equality of the ranks of T(9) and L(9), whose
proof will be the subject of sections 7 and 8. In section 7 we reduce the

proof of theorem 6 to 2-groups. Section 8 contains the proof of theorem 6
for 2-groups. It runs via induction over the Frattini subgroup of 9.

If 9 is a finite group then RC(g) denotes a set of representatives of the
conjugacy classes of subgroups of 9. Further, RC2(9) denotes a set of
representatives of the conjugacy classes of elements of order 1 or 2 in!9. Let
~2 be a 2-Sylow subgroup of 9. Then we can choose RC2(0) C ~2.

In the sequel we will use the following proposition of Sylvester.
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Proposition 7. Let K be field, p be an ordering of K. Then for any separa-
ble polynomial f (X) E K[X] the signature of the trace form of K[X]/(f(X))
over K equals the number of real roots of f (X) with respect to the ordering
p.

For a proof see [7].

Lemma 8. Let G be a fircite group and let Q E 9 be an element of order
 2. Then there is a Galois extension N/K of algebraic nurrtber fields and
an G(N/K) such that

1. 

2. c(Q) is induced by the comPlex conjugation.

Proof. Set n := ord(g).

1. ord (a) = 2. If n = 2, set K = = Q( vi -1) .
Now let n = 2m &#x3E; 4. Consider the quadratic form 0 = (m - 1) x 
1, -1&#x3E;11, -2&#x3E; as a form over Q. Then detqo 0 ‘2 and signqo = 0. By
theorems 1 and 3 of [4] there is a field extension L/Q with normal closure
N/Q such that N C C, G(NIQ) - C5n and L/Q has trace form 0. Here C~n
denotes the symmetric group on n elements.

Let a E L be a primitive element of L/Q. Since sign~  L &#x3E;= 0 no

conjugate of a is real (see proposition 7). Let M : = fal, a- 1, . - - , 
be the set of conjugates of a. 1i1 is the complex conjugate of a E C. Let

M be a bijection such that for each a E 9 the set 
consists of a pair of complex conjugate elements of M. Now according to
the identification given by cp we get a monomorphism t : 9 -4 S(Q) .:+
S(M) 4 G(N/Q). Then t(a) is given by the complex conjugation on N.
Set K := Since t(a) E t(g) the field K is real.

2. Q = id. Set 0 = (n - 1) x 1&#x3E;12&#x3E;.
Then detQ1b g Q*2 and sigriqo = n. Now choose L, N and a E L as above.
Since signQ’lfJ = signq L&#x3E;= n all conjugates of a are real. Hence L C

N C R. Choose any injection L : 9 Y G(NjQ) and set K := C R. 0

Set

Let N/K be a Galois extension with Galois group G(N/K) _ G. Let p be
a real place of K. Then
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gives

Let H  G and N1í = K(a). By proposition 7, signp  N~ &#x3E; equals
the number of real conjugates of a with respect to the ordering p. Let Q E
G(N/K) be the automorphism which is induced by the complex
conjugation. Then signp is the number of fixed points of the action
of  a &#x3E; on the set of conjugates of a, which equals the number of fixed
points of the action of Q&#x3E; on 9/1-£. Therefore the equation (I) is already
determined by 9 and the conjugacy class of the complex conjugation in ~.
This leads to the following definition.

Definition 9. Let Q E G be an element of order  2. Let ?~ be a subgroup
of 9 and let Xll E be the corresponding character. Set

Of course, signa X1i = Since our approach is motivated by
quadratic form considerations we feel it is more convenient to talk about

signatures.
As usual Cg (a) denotes the centralizer of o, in 9. Let Goa = p E

91 be the set of conjugates of Q in 9.

Proposition 10. Let !g be a finite group, H  G a subgroup of ç. Let

Q E 6; be an element of order  2. Then

Proof. Consider the action of Q&#x3E; on ~/7~. Let p E 9. Then is a fixed

point if and only if p-1Qp E ~-l. Hence we can assume that

is a set of r &#x3E; 0 elements. Let

Obviously the cardinality of ~VI is the product of and the number of

fixed points. Further, for i = 1, ... , r we get

Hence

Corollary 11. In the situation of proposition 10 we get



37

3. sign,X-H 54 0 if and only if 1-l contains some conjugates of a.
4. Let T E G be an elements of 2. Then sign,X, =,4 0 if and only

if Q and T are conjugate or Q = id.
5. Let T and a be two conjugate involutions. Then

6. If H is a normal subgroup of ~, then signa X1l = 0 or = [9 : 1-£].

sign, extends to a homomorphism on C3(~).

Proposition 12. Let 9 be a finite group and let Q E 9 be an element of
order  2. Then there is a unique homorrtorPhism

with sign,Xu - 0 {fixed points of «a&#x3E;, Lf)} for all subgroups U of 9.

Proof. We consider the representations and characters over fields of char-
acteristic 0. Let p : ~ -&#x3E; GL(V) be the underlying representation of xu.
Hence we get sign,Xu = trace(p(Q)) = Xu(a). Since trace(A 0 B) =
trace(A) ~ trace(B), sign, is a ring homomorphism. D

We conclude that 7(9) is contained in the intersection of all kernels of

signature homomorphisms.

Definition 13. Let 9 be a finite group. Set

Lemma 14. Let 9 be a finite group of order n. The system of linear equa-
tions given by

has 

Proof. Let 1 = id, a2 ... , be the r distinct elements of Con-
sider the coefficients for i, j - 1, ... , r. We get 

e {7~,~/2} for i = 1,... , r. For j = 2, ... , r we have
0 if and only if i = j . D
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Remark 15. By lemma 14, L(G) is a free abelian group of rank

Further, T(9) C L(g) by lemma 8 and the remarks following it. We get
rank(T(9)) = rank(L(9)) if and only if there exists a positive integer a E Z
with a - L(9) C T(9).

By Pfisters local-global principle, L(9) is the set of all X E such that

h N / K (X) is a torsion form for any Galois extension N/K with G(N/K) - G.
Hence the rank formula of theorem 6 is equivalent to the existence of an
integer 1 E 7G, l &#x3E; 0 depending only on 9 such that 21 annihilates 
for any Galois extension N/K with Galois group ~.

Since T(9) c L(9) each signature homomorphism signa induces a unique
signature homomorphism sign : 13(G)/T(~) ~ Z. Hence we easily get from
Theorem 6:

Theorem 16 (Local-Global Principle). An element X E 8(Q) is a tor-
sion element in 8(9)/T(9) if and only if sign~(X) = 0 for every a E 9 of
order  2. Every torsion elements of B(Q)IT(9) has 2-power order.

7. REDUCTION TO 2-GROUPS

Proposition 17. Let!; be a group of odd order. Then

Hence = 1.

Proof. Let N/K be a Galois extension with Galois group ~.
Let L be an intermediate field of N/K. Then L&#x3E;= [L : K] x 1&#x3E; (see [2],
cor. 1.6.5). Let X = Then E1lERC(Q) °

[G :  1 &#x3E; . Since ord(G) is odd, L(9) is defined by the equation
[9 : = 0 (see corollary 11). Now the statement about

the ranks follows from remark 15. 0

Let 1l, U be subgroups of 9. Then the representation defined by the action
of G on restricts to a representation of 1l on This defines a ring
homomorphism 

/"I

the ’restriction map’. We get

where is a character of ~.

Proposition 18. Let 9 be a finite group and let H  9. Let cr be an
element of order  2. Then
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commutes.

Proof. Let U  g. We compute the signature ofres as follows: Restrict
the action of 9 on 9 IU to 7~. Then count the number of fixed points of
a&#x3E; according to this action. Of course, this number equals D

There is an additive but not multiplicative corestriction map cor( : 8(H) -+
8(9) defined by corblxlf = Xu
Proposition 19. Let 9 be a finite group, H  9. Let be a Gadois

extension with G(N/K) _ ~. Let s* : W(K) -~ W(Nx) be the lifting
homomorphism. Then

and

commute.

Proof. We use the notation of lemma 4 and its proof. Set L := Then
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Lemma 20. Let 1i  G be finite groups.

Proof. 1. follows from proposition 18.
2. Choose RC2(9) C and apply proposition 18.
(b) Let NI K be a Galois extension with and let X E B(9)
with res~(X) e T(1-£). Now o res~(X) = 0 = s* o by
proposition 19. By a theorem of Springer s* is injective (see [5], 2.5.3).
Thus hN/K(X) = 0. 0

From X E T(9) we get X E ker(h,N~K), hence res~(X) e ker(hN/N1-l). But
we do not get res~(X) e We only get res~(X) e n where

the intersection runs over all Galois extensions N/K with Galois group C
and such that g  Aut(N).

Let exp(9) denote the exponent of 9.

Proposition 21. be a finite group and let 92 be a 2-Sylow subgroup
of 9.

1. Then the rank formula of theorem 6 holds for 9 if it holds for any
2-Sylow subgroup of 9, in which case divides the ex--

ponet
2. Suppose there is a set X of fields such that 9  Aut(N) for any N E X

and such that

Then X E T(9) only if E T(92). Hence L(9)/T(9) is
isomorphic to a subgroup of L(92)//(92).

Proof. 1. If the rank formula holds for 92, then by remark 15 there is a posi-
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lemma 20(2)(b). The proof of (2) is left to the reader. D

8. PROOF OF THEOREM 6

Let ,72(~) be the set of involutions of the 2-group G. For a subgroup H
of 9 define

and let

By proposition 10 and corollary 11, M is a free subset of L(0) which consists
of elements. We will prove by induction that Mg is contained
in T(g).
Lemma 22. Let g be a 2-group. Then Mg is a free subset of T(9) con-
sisting of rank(L(G)) elements.

Proof. Observe that T(Z2) = 0. Let 9 be a group of order 2i &#x3E; 4 and
let N/K be a Galois extension with Galois group 9. Now we proceed by
induction.

1. Let be a subgroup with 1-l ~ 9. Let T, T’ E 9 be involutions. Then
XT = if and only if T’ E 9r. Since J2 (9) is the disjoint union of the
conjugacy classes of the involutions of 9 we get

Let U  9 be a maximal subgroup of 9 which contains Then

Now X~ E by induction hypothesis. Hence (XWU) = 0, which
(see proposition 19). Hence

2. Next we have to prove XO E T(~). First we consider an elementary
abelian group. Then
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Now expand the Pfister form « -al, ... , »= 1, b2, ... , b2l &#x3E;.

Then the entries b2, ... , b21 are in one-to-one correspondence with the
quadratic subextensions of There are exactly 2l-1 - 1 elements
T id such that C NT . Hence

Now we can assume that g is not an elementary abelian group. Let

Ll1, ... , Urn be the maximal subgroups of 9. Since 0 is not a group of
order 2, we get J2 (C) C This gives

where the sum runs over the set of all non-empty subsets of 11, . - - , 
Let 41, (G) denote the Frattini subgroup of G. Let 2 k be its order and set
V = Let F be the fixed field of &#x26;(C) . Then F/K is an elementary
abelian extension. Let {i 1, ... , ~r} C (I, ... , m} be a set of r different
indices. Set 1-£ n ... nUir. Then XJ/f E T(1-£) by induction hypothesis.
We get 0, which implies

Set V = and suppose H fl By (1) we know that X, E T(V)
for all subgroups V’ of V with V’ ~ 1. This gives
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We further get

If 7~ = &#x26;(0) , then ,72(~-l/~(~)) is empty and Nll = F. Hence the formula
also holds in this situation.

implies

by the above.

9. OPEN QUESTIONS

We conclude with some open questions. How does the exponent of

8(9)/T(9) depend on 9?

Proposition 23. Let 9 be a finite group. If a 2-Sylow subgroup 92 of 9
is a normal subgroup of 9, then the restriction homomorphism. induces an
epirnorphism
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Proof. Let cor : B(92) --7 B(9) be the corestriction. This is an additive

homomorphism. Sinceg2 is normal in G we get res o cor = [G : G2] - id.
By Theorem 6 there is an integer 1 E N such that 21 - L(g2) C T(~2). Let
k,t E 7G,k &#x3E; 0 with k.[9: G2] = Then resocor(kx) = X+t. 2X =-
X mod T(G2)- 0

This leads to the following question: Does the restriction homomorphism
induces an isomorphism

We know that the answer is affirmative if 9 is an abelian group whose

2-Sylow subgroup is cyclic or elementary abelian. In these cases L(9)/T(9)
has exponent 2. If G is the dihedral group of order 8, then the expo-
nent is 2. In the case of the quaternion group Q8 of order 8 we get
exp(L(Qg)/T(Qg)) = 4.
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