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On a functional-differential equation related to
Golomb’s self-described sequence

par Y.-F.S. PÉTERMANN, J.-L. RÉMY, et I. VARDI

RÉSUMÉ. L’équation différentielle fonctionnelle f’(t) 
a des liens étroits avec la suite auto-décrite F de Golomb,

1, 2, 2, 3, 3, 4, 4, 4 5, 5, 5, 6, 6, 6, 6, ....

1, 2, 2, 3, 3, 4,

Nous décrivons les solutions croissantes de cette équation. Nous
montrons qu’une telle solution possède nécessairement un point
fixe non négatif, et que pour chaque nombre p ~ 0 il y a ex-
actement une solution croissante ayant p pour point fixe. Nous
montrons également qu’en général une condition initiale ne déter-
mine pas une solution unique: les courbes représentatives de deux
solutions croissantes distinctes se croisent en effet une infinité de
fois. En fait, nous conjecturons que la différence de deux solutions
croissantes se comporte de façon très similaire au terme d’erreur
E(n) dans l’expression asymptotique F(n) = ~2-~n~-1 + E(n)
(où ~ est le nombre d’or).

ABSTRACT. The functional-differential equation f’(t) =1/f(f(t))
is closely related to Golomb’s self-described sequence F,

1, 2, 2, 3, 3, 4, 4, 4 4 5, 5, 5, 

1, 2, 2, 3, 3, 4,

We describe the increasing solutions of this equation. We show
that such a solution must have a nonnegative fixed point, and
that for every number p ~ 0 there is exactly one increasing so-
lution with p as a fixed point. We also show that in general an
initial condition doesn’t determine a unique solution: indeed the
graphs of two distinct increasing solutions cross each other infin-
itely many times. In fact we conjecture that the difference of two
increasing solutions behaves very similarly as the error term E(n)
in the asymptotic expression ~2-~n~-1 + E(n) (where ~
is the golden number).
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1. INTRODUCTION.

For a real number p we are considering the functional differential equation

with initial condition f (p) = p. We came across this equation while study-
ing a self-described sequence of positive integers usually referred to as
"Golomb’s sequence", by the name of S.W. Golomb who rediscovered it
in 1966 [Go]. We say that a sequence ("word") W of positive integers is
self-described or self-generating if T(W) = W, where T(W) is the sequence
consisting of the numbers of consecutive equal entries of W. Golomb’s

- . - - - - . "’.... - - - - - - - -

sequence P’ is the sequence
,

w i m J m

the only nondecreasing self-described sequence taking all positive integral
values. In [Go] Golomb asks for a proof of the asymptotic equivalence

where 0 denotes the golden number. One such proof can be found in [Fi].
Another one, based on a heuristic argument of D. Marcus [Ma] and later
completed in ~Pe~, establishes in particular the fact that

where f is any positive solution of (1). In his argument Marcus mentions
the solution of (1) f+(t) _ ~2-~t~-1; note that this function has two fixed
points, p = 0 and p = 0.

It seems natural to ask whether Marcus’ solution is the only one of (1)
with initial condition f (0) = 0. The answer to this question is yes, and
proving it is proposed as problem 10573 of the A.M.S. Monthly. But it
also seems natural then to ask whether other solutions of (1) than Marcus’
exist, and if so how they behave. We eventually realised that answers to
these questions were too voluminous for a "problems section" such as in the
A.M.S. Monthly, and that at least a large note was necessary to treat them.

In this paper we describe all the increasing solutions of (1). We prove
that for each p &#x3E; 0 there is exactly one (increasing) solution f of (1) with
f (p) = p (Theorem 1), and that there are no other increasing solutions than
those having (at least) one nonnegative fixed point (Theorem 2). We long
thought (and tried to prove) that solutions of (1) satisfied a more general
unicity condition, i.e. that we could have f (p) = q for at most one solution
of (1), for every real numbers p and q, and not only for q = p &#x3E; 1. This
would have implied of course that two distinct solutions could never cross
each other. But in fact the unicity condition is not satified in a very strong
sense: indeed each pair of distinct increasing solutions cross each other
infinitely often (Theorem 3).
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But are there other solutions than increasing ones? We shall see below
("Preliminary remark 3.3") that a solution is necessarily strictly monotone
on an interval on which it is defined. We first thought there were no de-
creasing solutions, until we discovered f _ (t) = -~-~-1 (-t)-~; note that
this function has the fixed point p = -1~~. It is not our purpose to also
treat decreasing solutions; we shall nevertheless see that the existence of
many other such solutions is not difficult to establish: see the last section
of the paper.

Note added in May, 1999. Until well after the present paper was written we
were unaware of the existence of [McK], which was brought to our attention
by Berthold Schweizer, of the University of Massachusetts at Amherst. In
this work M.A. McKiernan establishes the existence of a complex solution
of (1) satisfying f (p) = p, for every complex number p 0, and
announces the presentation, in a future article (which to our knowledge has
not been published), of the extension of this result to all p with Ipl &#x3E; 1. He
doesn’t address the problem of the unicity of a solution with a given initial
condition.

Last remark on Golomb’s sequence. The sequence F(n) was recently stud-
ied in several papers, and a much more precise asymptotic estimate than
Golomb’s (2) is now known. I. Vardi [Va] first proved that the error term
associated with (2) is « n~-1/ log n. He also proposed two conjectures,
which were proved respectively by J.-L. Remy and by Y.-F.S. P6termann
and J.-L. Remy, and which can be summarized as follows (putting
F(t) = F([t]) if t is not an integer).

Theorem 0 ([R6] and [P6R6]). We have for t &#x3E; 2

where the real functions h is continuous, not identically zero, and satisfies
h(x) = -h(x + 1) for x &#x3E; 0.

It is interesting to note that, while the main term is a solution
of the functional differential equation (1), the error term associated with (2)
(i.e. the second and third terms on the right of (3)) satisfies an approximate
functional-integral equation

As we mentioned, the function f+(t) _ ~2-~t~-1, which is the main term
on the right of (3), is an increasing solution of (1). We also announced
Theorem 3 below, which states that the graphs of two distinct increasing
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solutions of (1) cross each other an infinity of times. We think these cross-
ings occur very regularly, in a pattern that can be described similarly as
the error term in (3).

Conjecture 0. If f is an increasing solution of (1) which is different from

where the real functions 1] is continuous, satisfies ~(x) _ -q(x + 1), and
vanishes exactly once on [0, 1).

Acknowledgements. This work was partly done while the first author was
visiting the second and supported by the Université Henri Poincar6 Nancy
1 and by the INRIA Lorraine. The authors are very grateful to these insti-
tutions for their help.

2. STATEMENT OF THE RESULTS.

We adopt the convention that f is a maximal solution (MS for short)
of (1) above if the following conditions are satisfied.

(a) It is defined and continuous on some interval I containing p, but not
only p.

(b) f(I) C I.

(c) Equation (1) is satisfied for every t in I (where by convention we write
f’(t) =00 if f ( f (t)) = 0).

(d) f cannot be extended to a larger interval J containing I and where
Conditions (a), (b) and (c) are satisfied.

The main result of this paper is

Theorem 1. For every real number p &#x3E; 0 there is exactly one MS f of (1)
with f (p) = p.
The proof splits up into three cases depending on whether p  1, p = 1,

or p &#x3E; 1. For p &#x3E; 1 the general idea is fairly simple: First one notes that
the functional differential equation (1) implies that all higher derivatives
f(k)(t) of f (t) can be expressed as rational functions of iterates of f (t). It

then follows that if p is a fixed point of f (t), then is a uniquely
defined function of p. This then implies that the Taylor series of f (t) at p is
uniquely defined in terms of (computable) rational functions of p. To show
that a solution exists and is unique one then has to prove
(1) The formal Taylor series defined in this way actually satisfies (1).
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(2) The Taylor series defined in this way converges in some neighbourhood
of p.

(3) A solution of (1) is analytic in this neighbourhood.
Lemma 2 below shows that the case p  1 can be reduced to p &#x3E; 1.

For p = 1 we have not been able to prove (2) directly, so another method
is required. It is not difficult to verify (see Preliminary remark 3.3 next

section) that all the solutions of (1) with p &#x3E; 0 are increasing. But are
all the increasing solutions of the functional differential equation (1) the
functions described by Theorem 1 and its proof? It is a priori conceivable
that some other increasing solution (i.e. with no fixed point) might exist.
We show that this is not the case.

Theorem 2. If f is a solutions of (1) which is increasing, and rraaximal (in
the sense that its interval of defcnition I satisfies the conditions (b), (c),
and (d)), then f has a (nonnegative) fired point.
We shall see in the proof of Theorem 1 that if 1  q  q’, and if fq (t)

is the solution of (1) with p = q, with Iq its domain of definition, then for
0  t  q’ and t E Iq we have fq(t)  But this doesn’t remain true
for all t &#x3E; q’, In fact the graphs of two arbitrary distinct increasing solutions
cross each other infinitely many times.

Theorem 3. if f and g are increasing maximal solutions of (1), then there
is a sequence of numbers si -3 00 (i -~ oo) with f (si) = g(si).

3. PRELIMINARY REMARKS.

3.1. A maximal solution of (1) with p = 0 or with p = ~? where 0 denotes
the golden number and I = [0, +oo) is

A maximal solution of (1) with p = -1~~ and I = (-oo, 0) is

The solution f- is clearly maximal; to see that f+ is maximal, see Remark
3.5.

3.2. If f is a MS of (1) then f’(t) ~ 0 for every t in I.
(Otherwise f ( f (t)) would not be defined).

3.3. If f is a MS of (1) then f’ / remains of the same sign on I, whence
the function f o f cannot change sign on I. It also follows that f is strictly
monotone on I.

Suppose on the contrary that f’ takes positive and negative values on
I. Then there must be three numbers tl, t, t,2 with tj  t  t2, and
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such that f (tl) - f (t) and f (t2) - f (t) are of the same sign. So for in-
stance we have &#x3E; f (t) and f (t2) &#x3E; f (t). Let T be in the interval

and define I- . f -1(T) fl and

I+ := f -1 (T) n (t, t2l. The sets I- and I+ are not empty, as f is con-
tinuous. And we can choose T with 0 since f’ cannot vanish by
Remark 3.2. Now we put t’ := sup I- and t2 = inf I+. Again by using the
continuity of f we have ti E I- and t2 E I+. This means that t’  t  t2,
that = f (t2) = T, and that f (s)  T for every s in the interval (~2)-
And, again since f’ cannot vanish, we must have f’(t[ )  0 and f’(t2) &#x3E; 0.
But this is in contradiction with f’(ti) = f’(t2) = 1/ f (T), since f (T) ~ 0.

3.4. If f is a MS of (1) and if f’(to) = oo for some real number to in I, then
to is the largest lower bound or the smallest upper bound of the interval I.

Indeed if a neighbourhood of to is included in I, then with the help of
Remark 3.3 we infer that a neighbourhood N of To = is included in

I, that f (To) = 0, and that f (T) has a constant sign in N. The relation
f’(To) = 0, being excluded by Remark 3.2, we now reach a contradiction
very similarly as in the proof of Remark 3.3.

3.5. A MS f of (1) is indefinitely differentiable in I.
This will follow from expression (4) in Section 4 below, where by conven-

tion we write = oo if f, (t) : := = 0 for some t with 2  ~  
With the help of Remarks 3.3 and 3.4 we see that this can in fact possibly
occur only at a to satisfying = 0, that is at to = inf I or to = sup 7.

3.6. If f is a MS of (1) and if f (a) &#x3E; 0 and f’(a) &#x3E; 0 for some a, then f (t)
is positive and strictly increasing for all t in I exceeding a, so that f’(t) is
positive and (strictly) decreasing for all t in I exceeding a.

3.7. If f is an increasing MS of (1) and if I is unbounded above, then so
is f (I).

Indeed the assumption 0  f (f (t))  A for all t leads to a direct contra-
diction, as then f’ (t) 2: 1/A for all t.

3.8. Let a solution f of (I) have a fixed point p. Then we have the follow-
ing.

(i) 0 then f can have no fixed point of the other sign.
Indeed the derivatives of f at fixed points of opposite signs are of

opposite signs.
(ii) If p  0, then f’(p) = 1/p  0, f is decreasing on I, and thus f can

have no other fixed point.

(iii) If p &#x3E; 1, then f’(p) = l/p  1, f’(t) is strictly decreasing for t &#x3E; p,
and thus f can have no fixed point larger than p.
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(iv) and if f has a larger fixed point P2, then p2 &#x3E; 1.

Indeed since f’(p) = I/p &#x3E; 1, if we suppose that p2 is the next fixed

point of f we must have f (t) &#x3E; t for p  t  p2, whence f’(p2)  1
and p2 &#x3E; 1. And p2 = 1 is ruled out since then f’(1) = 1 and by
Remark 3.6 f’(t) &#x3E; 1 for p  t  1, which is in contradiction with
f(p)=pand f(1)=1.

(v) If p = 0 then f can have no negative fixed point.
Note that f’(0) = oo, so that by Remark 3.4 f (t) is defined either
on some nonnegative, or on some nonpositive, values of t. If it is
on nonnegative values (like f+ of Remark 3.1), then f can have no
negative fixed point. If it is on nonpositive values, then by Condition
(b) f (t) is always negative, and so is f’(t) ( f’(t) = oo (or "-oo") being
allowed), so that f is strictly decreasing and negative. But this is not
compatible with f (0) = 0.

(vi) From all this it follows that if p is negative or if p = 1, then f has
no other fixed point, that if 0  p  1 then f can have at most one
other fixed point p2, which must be larger than 1, and that 
then f can have at most one other fixed point pl, which must satisfy
0pl1.

3.9. If f is a MS of the differential equation (1), then (by Remark 3.3)
the inverse function f -1 is defined on the interval f (I). So for t E f (I) the
function f satisfies the indefinite integral equation

To see this, note that in general, if a and b belong to f (I), we have

where k(t) is an integrable function. Equation (1’) follows by putting
k - 1. But also note that (1’) is not quite equivalent to (1), since in

general, for a solution f of (1) the inverse function f -1 is not necessarily
defined everywhere in I (i.e f (I) can be strictly included in I).

4. PROOF OF THEOREM 1.

With the two first lemmas we begin by showing that a MS of (1) with
some p satisfying 0  p  1 is also a MS of (1) for some P2 &#x3E; 1. First
we show that I contains no t  p, which by Condition (a) implies that it
contains some t &#x3E; p.

Lemma 1. If f is a MS of (1) with 0  p  1, then I contains no number
tp.
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Proof. If p = 0 this follows from Remark 3.8 (see the proof of (v)). If

0  p  1 and to  p belongs to I, then f (to)  to since by Remark 3.8 f
has no fixed point smaller than p. So if we note ao = to and = f (ai)
for i &#x3E; 0, the sequence ai is decreasing and entirely in I. If it eventually
becomes negative, then there is a To &#x3E; 0 with f (To) = 0, and thus there
is also a Tl with To  T1  p, f (Tl ) = To, and f’(Ti) = oo, which is in
contradiction with Remark 3.4. So ai &#x3E; 0 for all i, and a := 
0 exists. If a is in I then f (a) = limi-+oo f (ai) = a, and a is a fixed

point smaller than p, a contradiction. If a is not in I we define f(a) =
limi-+oo f (ai), and on the one hand we have a = f (a) = f ( f (a)), and on
the other hand, since f’ is decreasing on (a, oo), f’(a) exists and is equal
to f’(ai). It follows that we can extend the definition of f at a in
such a way that Conditions (a), (b) and (c) be satisfied on J := I U a

contradiction to Condition (d). D

We are now in position to prove the following.

Lemma 2. If f is a MS of (l~ with 0  p  1 there is exactly one other
fixed point P2 of f , which is larger than 1.

Proof. By Remark 3.8 above it is sufficient to show that f has another fixed
point. By Lemma 1 there is some to &#x3E; p such that f is defined on [p, to].
We put as before ao = to and = f(ai) for i &#x3E; 0. Then I contains

IP, ai] for every i. If no such interval contains a fixed point larger than p,
then ai+1 = f (ai) &#x3E; ai for every i. This implies that the sequence of ai
is bounded (if it weren’t, then f’(ai) would tend to 0, and f (ai)/ai could
not remain larger than 1). Thus a := limi,,,. ai exists. If a is in I, then
f (a) = a and we are done. And the assumption that a is not in I leads to
a contradiction as in Lemma 1: we defines f (a) = ai and we infer
that f satisfies (1) at t = a. This concludes the proof. 0

Now we prove Theorem 1, considering separately the three cases p &#x3E; 1,
0
Case 1: p &#x3E; 1. In the next three lemmas we first establish the existence of
a solution and describe its domain of definition I.

Lemma 3. If p &#x3E; 1 then there is a function f (t) defined in the interval
(p - P2(p - 1)~2, p + p2(p - 1)/2) and satisfying (1) there.

Proof. Let f (t) satisfy the equation (1) and define f1(t) = f (t) and fk+1(t)
= 1. Then, by a simple induction



219

Also, one has

and similarly for any k &#x3E; 1

where the sum runs over a finite collection Sk of sets of exponents
a2, ~ ~ ~ , ak+1, and where the C(a2, ... , ak+1) are positive constants. Now,
provided t is such that fk (t) &#x3E; 0 for every k &#x3E; 2 (it follows from Remark
3.5 that this will be the case if f2(t) &#x3E; 0), we have

Now note that when a term under the sum of (4) is differentiated, the
exponent bi of f i (t) appearing in one of the resulting terms always satisfies
ai  b2  ai + 2: it follows that max ai  2k. Hence if we put t = p in the
expression above we obtain

that is

So the Taylor series for f has a radius of convergence at least P2(p - 1)/2.
Now consider

the formal power series solution of + s) = + s)), with

h(p) (p) = p. Then h(p) (p + s) is also its own formal Taylor series at s = 0.
Note that the above computation is valid at t = p if we replace f by h~p~. It

follows that this Taylor series has a radius of convergence at least p2(p-1)/2,
and thus represents a solution of (1) within that radius.

Lemma 4. If p &#x3E; 1 then there is a function f (t) defined in the interval
[p, oo) and sati.sfying (1) there.
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Proof. Consider the function f of Lemma 2, defined and satisfying (1) on
Ko := ~p, Po~, where Po  p -I- p2(p - 1)/2, and put for t in Ko

Since f is strictly increasing its inverse function f -1 is well defined on

f (Ko). So for t in f (Ko) we have
.. 1 ;, - ., ...

The inverse function g-1 is thus well defined on Ko, = f (v) .
there. But since f (t) &#x3E; 1 for t &#x3E; p we see from (6) that in fact the inverse
function g-1 is well defined on g(Ko) = f-1(Ko) =: Kl, where Kl is an

interval containing Ko and larger than Ko. Moreover, since for t in Ko we
infer from (6) that g’(v) = f (v), we have for t in K,

Thus the function g-1 coincides with f on Ko, and satisfies (1) on Kl. We
write f(t) := for t in Ki.

Continuing in this way we obtain a sequence of intervals Ki = ~p, Pi]
(i = 0,1,2,... ), with Pi+1 &#x3E; Pi, on each of which the function f of Lemma
3 can be extended and still satisfy (1). And we have f (Pi+1) = Pi. To
conclude the proof of the lemma we have to ensure that the sequence of
Pi is unbounded. If it is bounded we can do as in Lemmas 3 and 4, that
is put P = limi-+oo Pi and define f (P) = f (Pi) = limi-+oo Pi = P.
We then easily see that f still satisfies (1) at t = P. But f (P) = P, a
contradiction to Remark 3.8. 0

Lemma 5. If p &#x3E; 1 then there is a function f (t) defined in an interval
[Q, p] and satisfying (1) there, where either Q is a fixed point of f with

satisfies f(Q) = Z and f ( f (Q)) = f(Z) = 0 for some
Z with Q  Z  0.

Proof. This time we use the fact that the function f of Lemma 3 is defined
and satisfies (1) on Jo := (Qo, p~, where Qo &#x3E; p - p2(p - 1)/2. As above
we define g(t) by (6) for t in Jo. Similarly as before we obtain recursively a
sequence of intervals Ji = [Qi, p] (i = 0,1,2,... ), with Qi+1  Qi, on each
of which the function f of Lemma 2 can be extended and still satisfy (1),
and with f (Qi+1 ) = Qi ~ But here the construction might end after a finite
number of steps: indeed if for some i we obtain f (Qi)  0 the expression
(6) does not produce anymore a well defined function on Ji. So we consider
two cases.
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I. At each step we have f (Qi) &#x3E; 0, so that the construction never ends.
Since f’(p) = 1 j p  1 we may suppose that f (Qo) &#x3E; Qo. Then if
for some i &#x3E; 0 f (Qi) &#x3E; Qi, we have f-1(Qi) _ Qi+1  Qi whence
I(Qi+1) = Qi &#x3E; Qi+,. Thus f (Qi) &#x3E; Qi for each i. (Note that this
will also be true for each i  io in the case where the construction
ends at Jio). Now since f"(t) = -(f3(t)f23(t))-’ is negative at least
for all t for which f (t) &#x3E; 0, that is in particular on every .li, f’ is

decreasing on every Ji, and thus the sequence of Qi cannot diverge.
So put Q := limi-4oo Qi. Again we define f (Q) = limi_ f(Qi) . We
then easily see that f (Q) = Q and that f still satisfies (1) at t = Q.
And by Remark 3.8 we must have Q &#x3E; 0.

II. At the i-th step of the construction we reach a Qi with f (Qi)  0.
So there is a Z &#x3E; Qi with f (Z) = 0. Note that Z is negative since
Qi  Z  Qi-l = 0. Since f is well defined and nonnegative
on ~Z, p~, expression (6) produces a function g well defined on ~Z, p~,
and whose inverse coinciding with f on [Z,p], is well defined on
[Q := g(Z),p] and satisfies (1) there. So we may extend the definition
of f on (Q, p~ by putting f = there. And we have f (Q) = Z, as
claimed.

0

This concludes the proof of Lemma 5. So if p &#x3E; 1 we established the
existence of a function f satisfying (1) in an interval ~Q, oo) where Q is
either a fixed point for f with 0  Q  1, or is such that f’(Q) = oo. With
Lemma 1 and Remark 3.4 this shows that f is a MS of (1).

To prove the unicity, we first note that the proof of Lemma 2 shows that
any solution h(t) of (1) must have at t = p the same Taylor series as f .
If h is analytic in some interval [Qo, Po] with Qo  p  Po then h = f
there. In order to verify this, note in addition that there is some po with
p &#x3E; p - po &#x3E; 1, such that if p &#x3E; t &#x3E; p - po then h(t) &#x3E; t &#x3E; 0

and h,’(t) &#x3E; 0: this follows from the facts that 0  h’(p) = 1/p  1, that h’
is continuous, and that h has no other fixed point p’ &#x3E; 1. It follows that if

hk-1(t) &#x3E; t &#x3E; 0 for p &#x3E; t &#x3E; p - po then hk(t) &#x3E; h(t) &#x3E; t &#x3E; 0
for p &#x3E; t &#x3E; p - po. Thus, for some po &#x3E; 0, the functions hk all satisfy
hk (t) &#x3E; t if p &#x3E; t &#x3E; p - po. It follows in turn that estimate (5) in the
proof of Lemma 3 remains true if we replace f by h and p by some to with

Thus

Also note that from estimate (4) in the same proof is positive and
decreasing if k is odd, and negative and increasing if k is even, whence

is decreasing for every k &#x3E; 1. It follows that the remainder term in
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modulus of the Taylor expansion of order k of h(t) at p does not exceed

And estimate (7) shows that if t is close enough to p the last expression
tends to 0 as k - oo. Thus h is analytic in some [Qo, Po] as claimed.
Now we show that h is f , with I = [Q, oo) its domain of definition.

Suppose it is not the case and let I’ = [Q~) or I’ = (Q’, w~ be the do-
main of definition of h. Suppose first that h = f on I fl I’. Then I = I’
would contradict the hypothesis, I’ C I or Q’  Q would contradict the
maximality of f , and I C I’  oo would contradict the maximality of
h. To see this recall that Io C I’, and recall the proofs of Lemmas 4 and
5. So there must be some t E I rl I’ with f (t) ~ h(t). Now by Remark
3.8 and Lemma 1, for every t in I which is not a fixed point of f we have
0  ( f (t) - p)/(t - p)  1, and for every t in I’ which is not a fixed point
of h we have 0  (h(t) - p)/(t - p)  1’ Suppose for instance there is
some t  p with f (t) # h,(t) (the other case is treated similarly). If we put
to := sup~t  p, f (t) ~ h(t)}, we have h - f on [to, p] and to  Note
that to cannot be a fixed point of f or h, as it then would be the infimum
of I or I’ (by Remark 3.8), which would contradict the maximality of f or
of h, f and h being defined (and distinct) on some t  to. Thus h(to) &#x3E; to
and f (to) &#x3E; to. Now by hypothesis f (t) and h(t) are defined for values of
t  to; moreover f and h are strictly increasing. So the inverse functions

f-1(t) and h-1(t) are defined for values of t  h (to) = f (to). It follows that
there is some so with to  so  h(to) = f (to), and such that f-1 and h-1
are both defined on ~so, p~. Thus by Remark 3.9 we have, for t &#x3E; so,

and f -1 - h-1 on (so, p~. The strict monotonicity of f and h now imply
that f - h on [ti,p] for some t1  to (satisfying f (tl) = h(tl) = so),
contradicting the definition of to. This concludes the proof of Theorem 1 in
case p &#x3E; 1.

Case 2: 0  p  1. We first prove the unicity. Consider two MS of (1)
with 0  p  1 f and h. Then by Theorem 1 f has another fixed point
p2 &#x3E; 1, and h has another fixed point p3 &#x3E; 1. Suppose they are unequal,
say p2  P3. Let c be the largest number not exceeding p3 such that
f (c) = h(c). This number exists since f (p) = h(p) and since f and h are
continuous. Note that c  p2 and that f (t)  h(t) for t E (c,P3~, and recall
that f (t) &#x3E; t and h(t) &#x3E; t for t E (p,P2). It follows that f’(c)  h’(c). It
also follows that if c &#x3E; p then f ( f (c))  h( f (c)) = h(h(c)), a contradiction.
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So c = p. But then

So p2 = P3, and by Case 1 h = f on [p, oo).
Now we prove the existence. For q = p2 &#x3E; 1 denote by fq the MS of (1)

and by Iq = [Qq, oo) its domain of definition. Recall that the fixed points
of fp are and 0. So from Remark 3.1 and the argument used to prove
the unicity we infer that for every q with 1  q  0 we have fq (t)  
for t E ~max{0, 0], and that for every q &#x3E; 0 we have fq (t) &#x3E; for
t E [max{0, Q9~, q~. It follows that each fq with 1  q  0 has a fixed point
p = p(q) with 0  p  1 (and that no fq with q &#x3E; 0 has such a fixed point).
Moreover the same argument shows that if 1  q  q’  0, then p(q’)  p(q)
and fq(t)  for t E [p(q), q] - So the function p : (1,~~ - (0,1)
is decreasing. What we need to show is that it is continuous, and that
p

To prove the continuity we consider some q = p2 with 1  q  ~ and let
q’ --&#x3E; q with 1  q’  0. Without loss of generality we may suppose that
q’ - q remains of the same sign. Suppose for instance that q’ increases to q;
the other case is treated similarly. We put f for the MS of (1) with fixed
point q, and h for the MS of (1) with fixed point q’. Let s be a real number.
For some s’ and s" between 0 and s we have

If, for some negative real number so we have so  s  -so, and 
(this will hold for instance if q := (q + 1)/2 and q - q’  (q - 1)/2) we see
with the help of estimate (7) that the last term does not exceed in modulus

provided so+q &#x3E; 1. The last expression tends to 0 as K ~ oo if -so is small
enough. Now from (2) it is clear that for every k, h,~~~ (q’) - -a 0 as

q’ ~ q. So the sum tends to 0 as q’ 2013~ and h(q’+s) converges uniformly to
f (q + s) in [so, -so~. It easily follows that h(t) converges uniformly to f (t)
in [Qo, q] for some Qo  q. Now we shall essentially follow the construction
of Lemma 5, after the following.

Remark. Let p = p(q) and p’ = p(q’) be the other fixed points of f and h,
and let c &#x3E; 0. Note that p’ decreases if q’ increases. There is a j3 _ j3(E) &#x3E; 0
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such that the derivatives of f (t) in [p + E, q~ and of the functions h(t) in
(p’ + 6,g] are all within the interval ~1/~, 1/~].
Now from

for t E (Qo, q), we see converges uniformly to f -1 (t) for
t E [Qo, q~. For E &#x3E; 0 as in the Remark put p, = inffpl + E. Then if
6 &#x3E; 0, h(t) converges uniformly to f (t) for t E (f -1(Qo) + 6 := 
provided Q1 &#x3E; p~. And we can as well fix 9 = E. Recursively we see
that if h(t) converges uniformly to f (t) for t E [Qi, q], then it does also for
t E + E := QZ+i, Q~~ provided Qi+1 &#x3E; Pf.

So for t E [Q’,q], and for every Q’ &#x3E; max{liminfi-tooQi =: Q; pE}, h(t)
converges uniformly to f (t). We have f (Q) = limsuPi-too + E) 
Q + e /p  Q+6. So h(t) converges uniformly to f (t) for t E q~,
where [p, Qf] is the largest interval beginning at p where 0  f (t) - t  E.

It now easily follows that inf p’ = p.
Finally, if p2 = q = 1 +,E where E  1/9, we show that p(q) &#x3E; q - 9E. If

not it is easy to verify that f’(t) &#x3E; q - 2E if t  q and that f’(t) &#x3E; q + c
if t  q - 3E, whence f (q - 9E)  q - 9E, a contradiction. This shows that
p(q) ~ 1 as q ~ 1 and concludes the proof of Theorem 1 in Case 2.
Case 3: p = 1. We first prove the existence of a solution. Let 
and be the two sequences of functions [1, oo) -3 [I, cxJ) defined as
follows.

We see recursively that they are well defined. Indeed, is well defined
with 1 for every t &#x3E; 1, then is strictly increasing and
unbounded, whence f n is well defined with f n (t) &#x3E; 1 for every t &#x3E; 1. Now
we have, for every t &#x3E; 1,

And if h+ and h- are two increasing and unbounded functions (1, oo) -
with h+(1) = h_(1) = 1 and h+(t) &#x3E; h- (t) for every t &#x3E; 1, then we

have 
-+ -I-lOt

whence k-’(t) for every t &#x3E; 1. Thus an induction argument
starting with (8) shows that the sequences and 
are for every t &#x3E; 1 respectively decreasing and increasing (strictly, when
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t &#x3E; 1), and that in addition f2k(t) &#x3E; for every k &#x3E; 0. Now we

put, for t &#x3E; 1, F(t) = and G(t) = and we
shall prove that F - G and that F is a (maximal) solution of (1) for p = 1.
First we verify that F and G are strictly increasing and unbounded, and
that their inverse functions satisfy

J 1 J 1

whence in particular they are indefinitely differentiable functions. We prove
the first equation in (9); the second one is treated similarly. Since f2~(t) &#x3E; 1
and is decreasing, F is integrable and

Thus we see that the inverse function H-1 exists. And we know that the
function g2~ is increasing for every k &#x3E; 0, and that the sequence 
is decreasing for every t &#x3E; 1. Now if E &#x3E; 0 let 77 = H(y) - H(y - E). Then
for k large enough we have

whence t := H(y) e (g2k(y - 6)~2A;(~/)) and (y - e, y). It follows

that g2~ (t) converges to H-1 (t). But also converges to G(t), and
the first equality of (9) is proved.
Now we show that F * G.

Lemma 6. Let F and G be two increasing and unbounded functions 
e indefinitely differentiable, and satisfying

Then if the equations (9) hold we have P’ =- G.

Proof. First note that F and G must be strictly increasing, unbounded
functions, and that their inverse functions F-1 and G-1 are well-defined.
From 

_ , , _ , ,

we see that

It follows that
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Now let H(u) := maxIF(G(u)) - G(F(u)), 0~. Then from the above ex-
pression and since F(v) &#x3E; 1 and G(v) &#x3E; 1 for all v &#x3E; 1 me may write

Since on the other hand F(F(u)) &#x3E; F(G(u)) and .
we have F(F(u)) - G(F(u)) &#x3E; H(u) whence

There is some (necessarily nonnegative) constant C such that F(t) -G(t) 
C for every t with 1  t  3/2. Let C be the smallest such constant. Then
since G(t~  F(t~  t we have

if 1  t  3/2. Thus C = 0 and F - G on (1, 3/2~. In order to see that
F = G on (1, oo) we recursively use the expression

which we just proved holds when t belongs to the interval ~1, 3/2~. If we

put to = 3/2 and ti = F-1(ti-1) (i &#x3E; 0), then the sequence Itil is strictly
increasing since F-1(t) &#x3E; t for every t &#x3E; 1 by hypothesis. And if (10) holds
for t  ti, then F-1(t) = G-1(t) for t  ti, whence F(t) = G(t) for t  ti+1
and (10) holds for t  ti+1. So we only need to ensure that the sequence
{ti~ cannot converge. If it did, to some T  oo, say, then we would have
T = limi-too ti = F-1(ti) = F-1(T), in contradiction to one of the
hypotheses. This concludes the proof of the Lemma. 0

Now by differentiating (10) and putting v = F(t) we see that F is a
solution of (1) for p = 1 (and it is a MS by Lemma 1).

Finally we show that the solution is unique. First note that by Lemma 1
a MS f of (1) for p = 1 is defined on an interval I whose lower bound is 1,
that by Remark 3.3 f is strictly increasing, and that we thus have f (u) &#x3E; 1,
whence f’(u)  1, for every u in I. In particular we also have for

every u in I. Also note that similarly as we proved above that F - G on
[1, oo), we can put ti = f -1(ti-1) (i 2: 1) where to &#x3E; 1 is some number in I,
and see that in fact I = [1, oo). If F is the solution we constructed above,
then we have
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Now there is some nonnegative constant C such that IF(t) - f (t)~  C for
every t in ~l, 5/4~. Let C be minimal with this property. Then for some
function v = v(v,) where v(v,) is between f (u) and F(u), we have

" .J.

Thus C = 0 and F - f on [1,5/4]. And in fact F - f’ on [1, oo): again this
can be seen similarly as in the proof of F - G above. This concludes the
proof of Theorem 1.

5. PROOFS OF THEOREMS 2 AND 3.

We now show that there are no other increasing MS of (1) than those
described by Theorem 1.

Theorem 2. If f is a solutions of f’(t) = 1/f (f (t)) which is increasing, and
maximal (in the sense that its interval of definition I satisfies the conditions
(b), (c), and (d~), then f has a (nonnegative) fixed point.

Proof. Let A be the largest lower bound of I. If A &#x3E; 0, then considering
limits we see that f (A) exists and A E I; and we must have f (A) &#x3E; A. If
A  0 then since f takes positive values and I is an interval, f is defined on
t = 0. Suppose f (0)  0. Then since f is increasing, f (t)  0 if t  0, and
thus f’(0) = 1/ f ( f (0))  0, which is not true. So we must have f (0) &#x3E; 0.

Hence there is a to &#x3E; 0 with f (to) &#x3E; to. If f (to) = to the theorem is
proved. So suppose f (to) &#x3E; to. Then f is defined at least on the interval
[to, f (ta) =: tl]. Now define tn = f(tn-1) (n = 1, 2, ~ ~ ~ ). Then either

for every n, or for some n. In the second case
there is some t &#x3E; 0 with f(t) = t, and again the theorem is proved. In

the first case, we first note that the increasing sequence tn cannot diverge:
if it did then we would have f’(tn) e 0, which is incompatible with the
assumption that for every n. Thus tn converges to some number
T as n e oo. Again considering limits we see that f(T) exists and T E I.
We have f (T) = limn-too = = T, and again the theorem is
proved. D

Remark. It is conceivable that some solution f of (1) with f (t) &#x3E; 0 if
t  0 .f (t)  0 if t &#x3E; 0 might exist. Such a function, however, would have
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derivatives of opposite signs for arguments of opposite signs, and could thus
not be continuous on an interval containing 0. In other words, it could not
be an MS on any interval I.

Now we prove that the graphs of two arbitrary distinct increasing solu-
tions cross each other infinitely many times.

Theorem 3. If f and g are increasing maximal solutions of (1), then there
is a sequences of numbers si ~ oo (i e oo) with f (si) = g(si).

Proof. First note that any increasing solution of f’(t) = satisfies
the asymptotic equivalence (t 2013~ oo): this follows from

Proposition 2 in [P6] (The condition f : [0, oo) ~ [0, oo) of this general
result can clearly be removed for the solutions of (1) we consider).

Let [r, oo) be the interval of nonnegative arguments on which both func-
tions f and g are defined. Now first assume that f and g never cross each
other, for instance that f (t) &#x3E; g(t) for all t &#x3E; T. It follows that f’(t)  g’(t)
for all these t, and that if we put f (to) - g(to) =: C for some to &#x3E; T to be
fixed later on, then f (t) - g(t) &#x3E; C for T  t G to. Now for T  t  to let

t1 = tl (t) = f -1 (t). Then we have, if to is large enough,

where C’ = C~~ ~/2. Note that we have to = and choose to large
enough to ensure that f (tp) &#x3E; T. Then by integrating we get from (11)

But (13) holds in particular for ti (to) = f-1(to) ~ 0’-"to 0 as to e oo, and
it follows that l(t1(t)) cannot remain negative for all t  tp.

So there is at least one crossing. Now suppose the set S of crossings is
bounded. Then s = sup S is itself a crossing. (Note in passing that the
assumption f - g on an interval leads to a contradiction: i.e. crossings are
crossings in the strictest sense). Suppose that for instance f (t) &#x3E; g(t) for
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all t &#x3E; s =: To. Let Tl be such that g(T1) = To; then for t &#x3E; T1 we have
f ( f (t)) &#x3E; f (g(t)) &#x3E; g(g(t)), whence g’(t) &#x3E; f’(t). So if we put, for some
to &#x3E; Tl, &#x3E; f (tp) - g(to) _: C, then f (t) - g(t) &#x3E; C for Tl  t  to.
Now for Tl  t  to let ti = = f -1 (t). We may suppose that T1 is

large enough to ensure that t1 &#x3E; t; and also that to is large enough to ensure
that f (to) be larger than Tl. Then the estimates (11), (12) and (13) hold
if to is large enough, and it follows as before that g(t1(t)) - f (tl(t)) cannot
remain negative for all t  to. This concludes the proof of the theorem. 0

6. LAST REMARK ON DECREASING SOLUTIONS.

Although it is not our purpose to also treat decreasing solutions of (1)
(like f-(t) = 2013~’"~"~(2013~)~), we note that it is now fairly easy to establish
the existence of infinitely many such functions.

Indeed, for every p  -1 the argument in the proof of Case 1 of Theorem
1 helps verify that there is exactly one MS fp of (1) with fP(p) = p. Consider
the formal power series solution h(p) (t) of (1) with fixed point p. From (4) it
is clear that at t = p this series has a radius of convergence at least as large
as that of the power series expansion of the solution of (1) with fixed
point at t = lp 1, which is positive by Lemma 3. Thus represents
within that radius a solution of (1), which we may call fp(t) . We can then
extend fP to a MS of (1) by using

if the fixed point p is stable (as in Case 1 of Theorem 1), respectively
unstable. (In view of the function f- it seems likely that p is unstable).
Unicity is obtained similarly as in Case 1 of Theorem 1, and by using the
analyticity of flpl(t).
We mention the fact that, by comparing the coefficients of the (formal)

solution h(p)(t) written as a (formal) Taylor series at t = p with those of
the solution f_1~~(t) := f- (t) (also at t = p), one can in fact establish the
existence of a solution for every p  -1/~.
We have no opinion to offer regarding the existence of solutions when

-1/~ p  0.
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