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A Survey of Computational Class Field Theory

par HENRI COHEN

RÉSUMÉ. Le but de cet article est de décrire les avancées récentes
dans la théorie algorithmique du corps de classes. Nous expliquons
comment calculer les groupes de classes de rayon ainsi que les dis-
criminants des corps de classes correspondants. Nous donnons
ensuites les trois méthodes principales utilisées pour le calcul des
équations des corps de classes : la théorie de Kummer, les unités
de Stark et la multiplication complexe. En utilisant ces tech-

niques, nous avons pu construire de nombreux nouveaux corps
de nombres intéressants, en particulier ayant un discriminant très
proche des bornes d’odlyzko.

ABSTRACT. We give a survey of computational class field theory.
We first explain how to compute ray class groups and discrimi-
nants of the corresponding ray class fields. We then explain the
three main methods in use for computing an equation for the class
fields themselves: Kummer theory, Stark units and complex mul-
tiplication. Using these techniques we can construct many new
number fields, including fields of very small root discriminant.

Let K be a number field and let m = momoo be a modulus in K, i.e. mo is
an integral ideal and moo is a set of real places of K. To such a modulus is
attached a ray class group Clm(K) which generalizes the notion of ordinary
class group. In addition, to each subgroup C of Clm(K) including the
trivial subgroups is attached an (isomorphism class of) Abelian extension
L/K by class field theory, such that, among other properties, 
C
The main problems of computational class field theory deal with the ex-

plicit computations of all these objects. Thus, this paper is divided in three
parts. In the first part, we explain the computation of Clm (K) and its
subgroups, and we explain how to compute the discriminant of the corre-
sponding extension L/K, which is very easy to do once one has the tools
for computing Clm(K). In the second part, we explain the three known
methods for computing an explicit equation for In the last part, we

give some applications.
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The work described here is essentially work done jointly with F. Diaz y
Diaz and M. Olivier, with extra references to work of R. Schertz, X. Roblot,
M. Pohst and C. Fieker.

1. COMPUTATION OF RAY CLASS GROUPS

We will denote by 7~K the ring of integers of the number field K, by
Cl(K) its class group and U(K) its unit group. If m is a modulus of K, the
basic exact sequence involving the ray class group Clm(K) is

Thus, to compute Clm(K) and its subgroups, we need to do four things:
. Compute Cl(K) and U(K).
Deal with exact sequences of Abelian groups (in particular when they

are nonsplit).
~ Compute 
~ Compute the subgroups of a given Abelian group.
We consider these problems in turn.

1.1. Computation of Cl(K) and U(K). The computation of Cl(K) and
of U(K) has been the subject of intensive work in the past years (Hafner-
McCurley, Buchmann et al, Pohst et al, Cohen-Diaz y Diaz-Olivier, see
for example [4] and [7]). It is now possible to compute these groups un-
conditionally for number fields of degree up to 12 to 15 and not too large
discriminant, and under the Generalized Riemann Hypothesis (GRH) for
number fields up to degree 40 and reasonable discriminant.

Together with this computation, one also solves the principal ideal prob-
lem : express an ideal on the class group generators, and even more impor-
tantly find generators of principal ideals.
The main idea to perform this computation is to choose an a priori set of

generators (gi)m2k for the class group, the so-called factor base, and to find
sufficiently many relations between these generators by looking for elements
of small norm or by reducing ideal products, we refer to loc. cit. for details.
The main difference between the conditional and unconditional algorithms
comes from the choice of these generators: if we assume GRH, we may take
the gi to be the ideal classes of prime ideals of norm less than equal to

according to a theorem of E. Bach (see ~1~). If on the other
hand GRH is not assumed, one must take a bound such as the Minkowski
bound or a similar bound, which is proportional to Vld(K)1, hence very
large. Although quite difficult and long to implement, this is now classical,
and we will not dwell any longer on this computation.
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1.2. Computation on Exact Sequences of Abelian Groups. Since
exact sequences can always be considered as the composition of 3-term
exact sequences, we consider only those (although in practice we proceed
slightly differently). The problem is simply as follows. Given such a three
term exact sequence of Abelian groups

with explicitly given maps between the groups (in some well defined sense),
given two of the groups, compute the third one.

First, we need to explain how to "give" an Abelian group ,A. The canonical
way is to write it in Smith Normal Form (SNF), i.e. to write

where for all i  m we have ai+i ai, a2 &#x3E; 1 for all i, and ai E .A of order
exactlyai. The elementary divisors ai (not the cx2 ) are unique, and the SNF
of an Abelian group A can easily be obtained from any complete system of
generators and relations for ,A by using the SNF algorithm (see for example
[4], Algorithm 2.4.14). We will set DA to be the diagonal matrix of the
ai, A to be the row vector of the ai , and write simply _ (A, DA). Note
that, in the above, we have carefully avoided isomorphisms and used explicit
equalities. This is essential in all computational work (strictly speaking, the
use of implies an isomorphism, but it is an extremely convenient
shorthand) .
An Abelian group is however often not considered as an abstract struc-

ture, but as a subgroup of a larger group. In this case, there is another

representation which is preferable. To define it, we need another special
form of matrices, which is even more essential than that of SNF, the notion
of Hermite Normal Form (HNF). We will say that a matrix H is in HNF
if it is a square upper triangular matrix H = with strictly positive
diagonal coefficients hi,i, and with the off-diagonal coefficients satisfying
0  hi,j  hi,i for j &#x3E; i. The main theorem about the HNF is that given
any k x m matrix M of maximal rank k (so that m &#x3E; 1~), there exist a unique
HNF matrix H, and a unimodular matrix U such that MU = The
columns of H form a Z-basis of the module generated by the columns of
M, and the m - k first columns of U form a Z-basis of the Z-kernel of M.
In addition, there are efficient algorithms to compute such a decomposition
(see for example [4], Algorithm 2.4.8).

Let us come back to the representation of subgroups. Let B = (B, DB)
be an Abelian group. Then it is easy to show that subgroups of ,~3 are in
one to one correspondence with left divisors H of DB (i.e. integral matrices
H such that H-1 DB is also integral) which are in HNF, the columns of H
giving the generators of the subgroup in terms of the generators B of the
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group B. It is not difficult to go back and forth from a subgroup to an SNF
representation of a subgroup.

For exact sequences

we have three problems to solve: given A and l3, compute C (computing a
quotient), given Band C, compute A (computing a kernel), and given A
and C, compute t3 (computing an extension). Of course it is essential that
the maps 0 and 1b be specified explicitly in some way, otherwise the problem
does not make sense.

All these problems can be solved very simply using the HNF and SNF
algorithms (see [8] for details). In particular, there is no difficulty in com-
puting group extensions in practice, even when the exact sequence does not
split. For the reader’s interest, we give the method in that case.

Let A = (A, DA) and C = (C, Dc) be given, as well as the maps 0 and 
Write A = (ai), DA = (ai), C = and Dc = (ci). Since 0 is surjective,
we choose arbitrary lifts of 7i to ,L3, i.e. such that ~(~3Z) _ and let B’
be the row vector of the Oi’. Then = 1C, hence there exists 0152~ E A
such that ~(a~,) _ Let P be the matrix whose columns are the

exponents of 0152~ on the given generators ai of A. If G = (O(A)IB’) and

M = -P , then (G, M) is a complete system of generators andB Lt C
relations for the group B, from which one computes the SNF (B, DB) using
the SNF algorithm.

1.3. Computation of and of Clm(K). Although a very natural
problem, the explicit computation of is not at all easy in theory.
There is a paper by Nakagoshi [17] dealing with this problem, but the answer
is not at all satisfactory, even for algorithmic purposes. We explain here
how the computation can easily be done in practice, although it leaves open
a more theoretical answer (which probably does not exist in simple terms).
By the Chinese remainder theorem, we can easily reduce to the case

where the modulus m is of the form p k for a prime ideal p. Let p be the

prime number below p.
To compute we first remove the prime to p part, which is

isomorphic to (ZK/P)* - (7G/(pf - 1)Z), where f = f (p/p) is the residual
index of p over p. This is easy, and of course must be done without using
isomorphisms. We are left with the group G pk= (1 + p)/(1 + 

To compute this group, two methods can be used. The first natural
one is the use of p-adic logarithms. Indeed, additive structures are much
easier to compute than multiplicative ones, and if p is not too ramified,
more precisely when e(p/p)  p - 1, the p-adic logarithm function gives
an explicit isomorphism of the multiplicative group Gpw with the additive
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group which can easily be computed (once again using HNF and SNF
techniques) .
When this method fails, i.e. when e(p/p) &#x3E; p - 1, we must use another

method, which is the computation by induction. Such a method was already
used by Hasse and revitalized by Pohst and collaborators, who compute Gpk
in terms of G, k-1. To go faster, we prefer doubling the exponent at each
step and use induction on the exact sequences

together with the trivial isomorphisms

Of course the above exact sequences are treated using the tools mentioned
in the preceding section.

Once has been computed, we use once again the tools developed
for computing on exact sequences to compute the ray class group Cl m (K) .
We note that at the same time, it is easy to develop a principal ideal algo-
rithm in Clm (K), which not only says if an ideal becomes trivial in the ray
class group, but finds a generator multiplicatively congruent to 1 modulo m
if it is.

1.4. Computation of the Subgroups of an Abelian Group. Once
Clm(K) is computed, to obtain all Abelian extensions of .K of modulus m
by class field theory, we also need to compute all possible subgroups of the
Abelian group G = Clm(K). To do this, we proceed as follows. First write
G ~ EBGp, where Gp is the p-Sylow subgroup of G. Then subgroups A of G
are in a unique way of the form A = where Ap is a subgroup of Gp.
Thus, we can reduce the problem to finding all subgroups of a p-group. Note
that in the above description, it is essential to chase though all the implicit
isomorphisms using Chinese remainder theorem techniques, and this is a

little painful but absolutely necessary.
Thus, assume now that G is a p-group of SNF D = According

to the correspondence explained above, finding subgroups of G amounts to
finding all the HNF left divisors H of D.

If D is of very small size, this is easy. For example, if m = 1, then
H = (ei) with el ~ I cl . If m = 2, then an immediate calculation shows that

H = 0 e 2 with c2 for i = 1 and 2, and fi = 
0 2

with 0  1k  gcd(el, c2/e2).
For larger values of m, the answer to this problem has been given com-

pletely by G. Birkoff in 1934 [2], and is too complicated to state here. It

is however completely algorithmic. I was not aware of this result at the
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time of my talk, and I am grateful to L. Habsieger and L. Butler for hav-
ing pointed it out to me. Birkhoff’s paper contains many misprints, and
I refer to L. Butler’s memoir [3] for a detailed statement and improve-
ment of Birkhoff’s theorem (K. Belabas has implemented Butler’s version
of Birkhoff’s theorem in Pari, with apparently correct results, and Butler
herself has done so, hence presumably there are no misprints in her state-
ment).

2. COMPUTATION OF RAY CLASS FIELDS

We now come to the more difficult but more interesting part of the theory:
the computation of the class fields themselves.

2.1. Computation of Conductors and Discriminants. Using the tools
explained in Part 1 that are now at our disposal, we can already perform
quite a number of interesting computations, as we now explain. For all the
details on these computations, I refer to [9].

First, let (m, C) be a congruence subgroup, in other words C is a subgroup
of the group 1m of fractional ideals coprime to m containing the group Pm
of principal ideals generated by an element multiplicatively congruent to
1 modulo m, or equivalently the set C of ideal classes is a subgroup of
Cln,(K). We need to compute the conductor of this congruence subgroup,
i.e. the smallest modulus n for which C can be defined modulo n. This

is now very simple. If n I m, denote by the natural surjection from

Clm(K) to and set h(m, C) _ Then for every place p
dividing m (finite or infinite), compute If for any p this

is equal to h(m, C), replace m by m/p and start again the whole process. We
stop when h(m/p, sm,m/p(C))  h(m, C) for all p, and (m, C) is our desired
conductor.

Second, let L/K be an Abelian extension (unique up to isomorphism)
corresponding to a congruence subgroup (m, C) by class field theory. Then
even without assuming that (m, C) is minimal (i.e. that m is the conductor
of the extension, or equivalently of the congruence subgroup (m, C)), we can
easily give some information on the field L. The signature is easily obtained
(in fact it is trivial if m is known to be the conductor, since in that case the
real places which ramify in L/K are exactly those dividing m).

But there also exists a nice formula for the relative discriminant -O(LIK)
(hence also for the absolute discriminant d(L) = 
where the sign is determined by the signature), given as follows. We have
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with

Thus, although the field L is in general not uniquely determined by its
signature and discriminant, we have pretty good control over it. For exam-
ple, if we are looking for number fields of reasonably small discriminants
(see applications below), one can immediately tell whether a field L will be
interesting or not before computing explicitly an equation for it.

Third, we can easily compute the norm group of a given Abelian extension
L/K. Here, we assume that L/K is given explicitly (this will be the case
later). We proceed as follows. Let m be a known multiple of the conductor
of L/K, for example the relative discriminant c~(L/K) together with the
real places of K which ramify in L/K. Let (C, Dc) be the SNF of the ray
class group Clm(K), and denote by n the relative degree [L : K]. Initialize
a matrix M to the diagonal matrix Dc. For each prime ideal p of K not
dividing m do as follows, until the determinant of M is equal to n. Compute
the factorization of p7GL into prime ideals q3 of Z L. Since L/K is Abelian,
all the relative residual degrees f(fl3/p) will be equal, say to f . Let L be
the column vector of the exponents of p on the generators C of Clm(K).
Finally, concatenate M with the one column matrix f L, and replace M by
the HNF of this concatenation. It is easy to show that the determinant of
M will always be a multiple of n, and that after a small number of steps the
matrix M will have determinant exactly equal to n. When this happens, M
is a left divisor of Dc which gives the norm group (i.e. the kernel
of the Artin map) on the given generators C of the class group.

&#x3E;From this, it is of course trivial to compute the conductor of the Abelian
extension L/K: set m equal to a known multiple of the conductor of L/K,
say as above the relative discriminant together with the ramified real places.
Let C be the norm group for the modulus m as computed above. Then the
conductor of the congruence subgroup (m, C) computed as explained at the
beginning of this section is the conductor of the Abelian extension L/K.

If desired, it is also easy to compute the conductors of individual charac-
ters of the extension L/K.

2.2. Generalities on Class Field Constructions. We now must deal
with the more difficult task of finding an explicit relative or absolute equa-
tion for the extension L / K, knowing only that it corresponds to a given
congruence subgroup (m, C) by class field theory.

To my knowledge, there are three methods to do this, which we shall
examine in turn (there is a fourth method, used long ago by a distinguished
colleague, which is essentially using one’s nose, but this does not count as
an algorithm).
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. Kummer theory. This method has the advantage of complete gen-
erality, and in fact is also the method used in the theoretical proof of the
Takagi existence theorem of class field theory. Its main disadvantage is that
it requires sufficiently many roots of unity in the base field, hence in general
these have to be adjoined to the base field, so the computations are done in
much larger fields than apparently necessary. In addition, it is necessary to
have suitable tools to go back down from the larger fields to the fields that
we want.

9 The use of Stark’s conjectures. The explicit construction of ray
class fields by the use of elements (in fact units) obtained by analytical
means was one of the main motivations for Stark’s conjectures. The use
of these conjectures has now been put in a precise and general algorithmic
form by X. Roblot (see [18], [19] and [10]).

This method can be used only when the base field K is totally real (al-
though I have been told that it may be possible to treat also the case where
K has a single complex place, i.e. 2 complex conjugate embeddings). The
fact that an unproved conjecture is used here is completely unimportant,
since once the field L is obtained, it is easy to show that it is the desired
ray class field.

. The use of complex multiplication. This method is very efficient,
but applies only when the base field is an imaginary quadratic field. The
principles behind the method have been known for a century (the use of the
values of the elliptic modular invariant j (T) at quadratic points), but it is
only recently in particular thanks to work of R. Schertz (see [20], [21] and
[22]) that the method has become algorithmically useful.
We consider these methods in turn in a little more detail.

2.3. Kummer Theory. An easy reduction which can be made (in every
method, not simply in Kummer theory), is to reduce to cyclic extensions of
prime power degree. The desired extension L/K will simply be the composi-
tum of its cyclic prime power degree subextensions, and the corresponding
congruence subgroups are completely under control. This reduction should
be made in any case.

&#x3E;From there, two methods can be used. One is to reduce the cyclic
extension of prime power degree to a tower of cyclic extensions of prime
degree, in order to apply a theorem of Hecke specific to such extensions
describing completely the ramification properties.
The other method is to use directly the Artin map from ideals to the Ga-

lois group of the desired extension, and implicitly forget about ramification
properties. This method has been introduced by C. Fieker (see [11]) and
is certainly much more efficient in the general case. I refer to his paper for
details. Here we describe briefly the first method.
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Thus, assume that we want to find a cyclic extension L/K of prime
degree I corresponding to a given congruence subgroup (m, C). Thanks to
the preceding section, we may assume that (m, C) is minimal, i.e. that it is
the conductor of the extension L/K.

To apply Kummer theory, we need to adjoin to K the f-th roots of unity,
which in general are not all in K. Hence, if ( is a primitive f-th root of
unity replace L/K by the extension Lz/Kz = L(~)/K(~). Then Kummer
theory tells us several things.

. There exists 0152 E Kz such that Lz = 

. The number 0152 must satisfy ramification conditions coming from a the-
orem of Hecke which completely describes the ramification properties and
the relative discriminant of such a Kummer extension.

~ The number a must satisfy Galois conditions coming from the fact that
the extension Lz/K, which is the compositum of the Abelian extensions
L/K and is Abelian. This is equivalent to the use of Lagrange
resolvents.

These conditions can be transformed into conditions involving only linear
algebra, and we can thus reduce to a small finite set of a. There is almost
no search in this step.

For each of the tentative a, we then compute the norm group using the
method explained in the preceding section, and exactly one of the a will
give a norm group equal to C. Once the correct a is obtained, it is easy to
compute the relative equation for L/K, and also the absolute equation for
L/Q if desired.

2.4. The use of Stark’s Conjectures. For this section, I refer to [18],
[19] and [10].
The main inefficiency of the algorithmic use of Kummer theory is the

necessity of adjoining an f-th root of unity (, which transforms the base
field K into a base field Kz = K(() of much larger degree.
When K is totally real, there exists a completely different method which

uses Stark’s conjectures and Stark units.

Let L/K be an Abelian extension of K, and let S be the set of infinite
places of K together with the prime ideals of K which ramify in L/K. Let
Art be the Artin map from the ideals of K coprime to S to Gal(L~K).

For Q E Gal(L/K), define

If there exists a unique real embedding T of K into C which is unramified
in L/K (i.e. which has only real extensions), then Stark’s conjecture asserts
that there exists a unit E such that for all embeddings Q of L extending T,
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we have

To obtain an extension L’/K satisfying the condition of the conjecture, it
is enough to choose L’ = L(fl) for a satisfying suitable conditions. Once
the unit E’ E L’ is found, one can come down to L by setting c = e’ + 1/ ê,’,
and it can be shown that L = K(e).

Several non-trivial technical details must be solved, in particular the
numerical computation of but this leads to a reasonably efficient
method. The generating polynomials which are obtained usually have large
coefficients and must be reduced using well known polynomial reduction
methods such as the Polred algorithm of Pari (see [6]). When applicable
(i.e. when the base field K is totally real), this method performs much faster
than the method using Kummer theory, except when K already contains
all the necessary roots of unity (for example when [L : K] = 2 or more
generally when Gal(L/K) is an elementary 2-group). Only in that case is
it preferable to use Kummer theory or genus theory when applicable.

2.5. The use of Complex Multiplication. For this section, I refer to

[20], [21] and [22] (see also [23] and [12]).
Let K be an imaginary quadratic fields. If j (T) denotes the usual modular

function, the modular invariance implies that one can define j (a) for an ideal
a, and the polynomial

is an irreducible polynomial which defines the Hilbert class field of K, i.e. the
ray class field corresponding to the trivial modulus m = 7GK.

Modifications of this construction using the Weierstraf5 p function gives
also ray class fields.
The problem with this method is that the size of the coefficients of the

polynomials obtained in this way is very large (10 or 20 digits even for small
discriminants).

The use of other functions such as Weber’s functions is well known to

improve dramatically the situation (see [23], [12]). The problem with these
functions is that they do not work in all cases (one often has to assume that
the discriminant of the quadratic field is prime to 3, or in given congruence
classes modulo 8). In the worst cases, they give polynomials with coefficients
which are again too large to be practical.
A systematic treatment of this algorithmic problem using a quotient of

a product of two 71 functions has been given in the 1980’s by R. Schertz,
together with non-trivial generalizations to the case of ray class fields. This
method is extremely efficient and allows to compute Hilbert and ray class
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fields of imaginary quadratic fields in very little time. This method always
gives polynomials having relatively small coefficients (although necessarily
still exponentially growing with the size of the discriminant, as will all
methods based on modular functions), although the coefficients are a little
larger than the ones obtained with the Weber functions in the special cases
where these functions give good results.

For instance, we have the following theorem of Schertz. Note that con-
dition (2) was forgotten in his papers.

Theorem 1. Let be a system of representatives of the ideal
classes of K = chosen to be primitive. Let p and q be ideals of K
of norm p and q respectively. Assume that:

1. The ideals p and q are primitive ideals which are non-principal.
2. If both the classes of p and q are of order 2 in the class group, these

classes are equal.
3. For all i, pqt1i is a primitive ideal.
4. e is a positive integer chosen such that 24 e(p - 1)(q - 1).

Set 
, I , ,. , .. ~ h

where aipq = ai (pqZ 
Then P(X) E Z[X], it is irreducible in Z[X] and also in K[X], its

constant term is equal to ::i:1, and the field obtained by adjoining to K a
root of P is the Hilbert class field of K.

For similar results leading to the construction of ray class fields, see [21]
and [22].

3. APPLICATIONS AND SOFTWARE

3.1. Applications. Apart from the intrinsic interest of computing ray class
fields, the main application of the above algorithms is the construction of
new number fields, in particular number fields of small discriminant, or large
tables of number fields having given Galois group. As already mentioned,
all the implementations and the applicationss are joint work with F. Diaz
y Diaz and M. Olivier.

~ Small discriminants. We have found many number fields having
smaller discriminants than previously known ones, and very close to the
GRH bounds (often less than 1%). For example, in the totally complex.
case, J. Martinet in [16] gives a table of the best known fields for degree up
to 80 (using similar methods, but more adapted to hand computation). We
have obtained better fields for 10 cases ranging from degree 12 to degree
56 (we had in fact also obtained a better field in degree 10, but it was first
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found by Leutbecher and Niklash in [15] while searching for small Euclidean
fields). For example, in degree 12, the totally complex field of smallest
known discriminant is generated by the polynomial

whose root discriminant is only 0.843% above the GRH bound. I refer to

[9] for the other examples and details.
o Tables of octic fields. We have made extensive systematic tables of

all octic fields containing a quartic subfield, with more than 10000 fields per
signature. In addition, we have computed all the minimum discriminants
for the possible pairs Galois group, signature, for such fields. Some were
missing from the tables obtained from the main computation, hence we
extended the tables as needed, using the specific properties of the Galois
group we were looking for.

In particular, we found a large number of nonisomorphic arithmetically
equivalent fields (i.e. having the same Dedekind zeta function) correspond-
ing to exactly 2 specific Galois groups in degree 8, and we also found
many sets of nonisomorphic number fields having the same discriminant,
the largest having 11 elements.

3.2. Software. Two packages can be used freely for the above computa-
tions :

The KANT/KASH package from Berlin, under the supervision of
M. Pohst. This is available from:

ftp.math.tu-berlin.de

The PARI/GP package from Bordeaux, under my supervision (and now
under the supervision of K. Belabas). This is available from:

megrez . math . u-bordeaux . f r

Mention should be also made of the much larger software package
MAGMA which contains KANT and a part of PARI, under the supervision
of J. Cannon in Sidney. Number theory is only a minor part of this pack-
age, which also contains functionalities for many other algebraic subjects,
Although non-commercial, this package is not free, however.

Finally, the C++ software library LiDIA from Darmstadt under the su-
pervision of J . Buchmann is also a remarkable package, and will soon contain
functions for class field theory.
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