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Arithmetic of elliptic curves and diophantine
equations

par Loïc MEREL

RÉSUMÉ. Nous décrivons un panorama des méthodes reliant l’étu-
de des équations diophantiennes ternaires aux techniques mo-
dernes issues de la théorie des formes modulaires.

ABSTRACT. We give a survey of methods used to connect the
study of ternary diophantine equations to modern techniques com-
ing from the theory of modular forms.

INTRODUCTION AND BACKGROUND

In 1952, P. Denes, from Budapest 1, conjectured that three non-zero
distinct n-th powers can not be in arithmetic progression when n &#x3E; 2 [15],
i. e. that the equation

has no solution in integers x, y, z, n ~y, and n &#x3E; 2. One cannot
fail to notice that it is a variant of the Fermat-Wiles theorem. We would
like to present the ideas which led H. Darmon and the author to the solution
of Dénes’ problem in [13]. Many of them are those (due to Y. Hellegouarch,
G. Frey, J.-P. Serre, B. Mazur, K. Ribet, A. Wiles, R. Taylor, ...) which led
to the celebrated proof of Fermat’s last theorem. Others originate in earlier
work of Darmon (and Ribet).
The proof of Fermat’s last theorem can be understood as an advance in

the direction of the abc conjecture of D. Masser and J. Oesterlé. We view
the solution to Denes’ conjecture as a modest further step. We would like
to explain the additional techniques involved into this solution (and try to
avoid too much overlap with the numerous other surveys on closely related
topics) .

1 Ce texte est la version 6crite de 1’expose donne lors du deuxième colloque de la societe
mathématique europeenne a Budapest. A la grande surprise de 1’auteur, il ne figurait pas dans
les volumes publics a cette occasion par Birkhafser Verlag, lorsque ceux-ci sont apparus sur les
rayons des librairies. Suite a mon expos6 sur le meme theme aux Journées Arithm6tiques, les
6diteurs du pr6sent volume ont accept6 de publier 1’article en d6pit de de la nature plus sp6cialis6e
du colloque.
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A current approach to diophantine problems can be roughly described as
follows. One is interested in problems of the following type.

I. Determination of the solutions to a diophantine equation of the form
a+b+c=0.

Using a machinery proposed by Hellegouarch, Frey and Serre, and estab-
lished by theorems of Mazur, Ribet and Wiles (and later refinements by F.
Diamond and K. Kramer) the problem I might be reduced to problems in
the following theme.

II. The action of Gal(Q/Q) on a few torsion points of an elliptic curve
over Q characterizes the isogeny class of the curve.

or alternately

II’. same problem restricted to a certain class of elliptic curves (see section
1.1) over Q often called Frey curves.

The problem II and II’ can be reformulated in terms of inexistence of
rational points on modular curves (or generalized modular objects). This
inexistence can sometimes be established using some algebraic geometry
and, roughly speaking,

III. a diophantine argument coming from the study of the Galois coho-
mology of some modular object.

We illustrate this process by examples arranged in increasing order of
difficulty.

Fermat’s last Theorem.

According to our picture, the proof of Wiles’ theorem decomposes as
follows. Fermat’s Last Theorem is our problem of type I:

Theorem 0.1 (Wiles). The equation xP + yP = zP has no solution in 
gers x, y and z with p prime number &#x3E; 3 and xyz =1= 0.

The modular machinery reduces it to a problem of type II:

Theorem 0.2 (Mazur). An elliptic curve over Q has no Q-rational sub-
group of prime order p &#x3E; 163.

Weaker versions of type II’ of the previous theorem are sufficient for the
application to Fermat’s Last Theorem:

Theorem 0.3 (Mazur). A Frey curve has no Q-rational subgroup. of prime
order p &#x3E; 3 (the inexistence of Q-rational points of prime order p &#x3E; 3 on

Frey curves is sufficient).
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The previous two theorems of Mazur rely in an essential way on the
following result of type III:

Theorem 0.4 (Mazur). The Eisenstein quotient of the Jacobian of the mo-
dular curve Xo(p) has ,finitely many Q-rational points.
D6nes’ equation.

D6nes’ conjecture has been proved for n = 4 by Euler, for n = 3 by
Legendre, for n = 5 by Dirichlet, and for n = p prime with p  31 by Denes
himself using the methods of Kummer.

The problem was reconsidered by Ribet [63] recently in the light of the
proof of Fermat’s last theorem: D6nes’ equation can not have any non-
trivial solution when n = p is a prime congruent to 1 modulo 4 (see below).
Darmon and the author proved the following theorem of type I.

Theorem 0.5. The equation xP + yP = 2zP has no solution in integers x,
y and z with p prime 2, and x 0 ±y.

Using the modular machinery we reduced first the problem to a positice
answer to the following problem of type II.

Problem 0.6 (Serre). Does there exists a numbers B &#x3E; 0 such that for
every every elliptic curve E over Q without complex multiplication and every
prime number p &#x3E; B any automorphism of the group of points of p-division
of E is given by the action of an elements of Gal(Q/Q)?
We proved a result of type II’ in the direction of a positive answer to that

question. This result is sufficient for the application to D6nes’ conjecture.

Theorem 0.7. For every Frey curve E except the one which has complex
rraultiplication and every prime number p &#x3E; 3 any automorphism of the
group of points of p-division of E is given by the action of an element of
Gal(Q/Q) -
We obtain this result as a consequence of a theorem of type III, which is

a special case of the conjecture of Birch and Swinnerton-Dyer (see section
2.3.).
Theorem 0.8 (Kolyvagin and others). Any quotients defined of the
jacobian of a modular curve whose L-function does not vanish at the point
1 has finitely many Q-rational points.

Concerning Serre’s problem in full generality we can offer only wishful
thinking for reasons explained in section 2.4: One might hope to use as
argument III more results in the direction of the conjecture of Birch and
Swinnerton-Dyer such as the Gross-Zagier formula and the theorem of Koly-
vagin for elliptic curves of rank one.
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The Generalized Fermat equation.
Fermat’s Last Theorem and Dénes’ conjecture are essentially special cases

of the following problem of type II.

Conjecture 0.9. Let a, b and c be three non-zero integers. One has the

equality axn + byn + = 0 for only finitely many values of yn, z’~)
where x, y, z, and n &#x3E; 3 are integers and x, y, and z are coprime.

See [26] for more background on this problem. Observe that in the case
where a + b + c = 0, the equation has solution in (x, y, z) for any exponent
n. This difficulty appears already in Dénes’ equation.

Mazur proved that conjecture 0.9 holds when a = b = 1 and c is a power
of an odd prime number I which is not a Fermat prime or a Mersenne prime
[66]. A. Kraus seems to have found recently explicit bounds for the solutions
in terms of 1 [40].

Frey proved that the conjecture 0.9 is a consequence of a conjecture of
type II. (Questions of this type were raised by Mazur in [50].)
Conjecture 0.10 (Frey). Let E be an elliptic curve over Q. There exists.

finitely many pairs (E’, p) where E’ is an elliptic curve over Q and p a
prime number &#x3E; 5 such that the sets of p-division points of E and E’ are
isomorphic as Gal (Q/Q) -modules.

Frey even shows ([24], [25]) that the conjecture 0.9 is equivalent to the
restriction to Frey curves of the conjecture 0.10.
Darmon conjectures that there exist only finitely many triples (E, E’, p)

as in conjecture 0.10 with E and E’ non-isogenous and p &#x3E; 5.

No argument of type III seems to be available to solve the conjecture
0.10. One can only hope that the Birch and Swinnerton-Dyer conjecture is
still relevant to the study of the arithmetic of twisted modular curves and
their jacobian.

The Generalized Fermat-Catalan equation.
Here is another well-known generalization of Fermat’s equation.

Conjecture 0.11. Let a, b and c be three non-zero integers. One has the
equality axr + bys + czt = 0 for only finitely many values of (xr, ys, zt) with
x, y, z, r, s, and t integers, x, y, z coprime, xyz =,4 0, and 1 + s + t  1.

The abc conjecture easily implies conjecture 0.11. For a = b = -c = 1,
the conjecture 0.11 is sometimes called the Fermat-Catalan conjecture since
it combines Fermat’s theorem with the Catalan conjecture; The ten known
triple (xr, ys, zt) which satisfy the equality xr + ys = zt are listed in [3].
In the direction of the Generalized Fermat-Catalan conjecture, we have the
following two results. The first is obtained as an application of Faltings’
theorem [12]:
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Theorem 0.12 (Darmon, Granville). Let r, s and t be three positive inte-
gers such that -1 + ~ + 1  1. Let a, b, c be three non-zero integers. Then
the equation axr + bys = czt has finitely many solutions in coprime integers
x, y and z.

Moreover the techniques developped by Darmon and the author to study
Denes’ conjecture combined with earlier work by Darmon [8] led us to the
following [13]:
Theorem 0.13. 1) Let n be an integer &#x3E; 3. The equation xn + yn = z2
has no solution in coprime and non-zero integers x, y, z.

2) Suppose that every elliptic curve over Q is modular. Let n be an

integer &#x3E; 2. Then the equation xn + yn = Z3 has no solution in coprime
and non-zero integers x, y, z.

The study of these equations has some history. For instance the case
n = 4 in the first equation was solved by Fermat and the case n = 3 in
the second equation was solved by Euler. We relied on work of B. Poonen
to solve these equations by elementary methods for a few small values of n
[62].

There is a considerable bibliography on the subject of diophantine equa-
tions of this type. We are very far from being complete here. The interested
reader might consult [10], [12], [18], and [53].
The abc conjecture.
We recall its statement for the convenience of the reader [59].

Conjecture 0.14 (Masser-Oesterle). For every real number E &#x3E; 0 there
exists a real KE &#x3E; 0 such that for every triple of coprime non-zero integers
(a, b, c) satisfying a + b + c = 0 we have the following inequaLity:

ibl, icl)  
where Rad(n) for any integer n is the product of the prime numbers dividing
n.

The abc conjecture illustrates (and maybe concentrates) the difficulty of
understanding how the additive and multiplicative structures of the integers
relate.

Its resolution would affect our understanding of many problems in number
theory ([51], [58], [76]).

As explained in [25] (see also [44], [73] and [74]), it is now a consequence
of the following degree conjectures, which is a problem of type II:

Conjecture 0.15. Let E be a modielar elliptic curve over Q of conductor
N. Let 6E be the degree of the corresponding minirraal modular parametriza-
tion Xo (N) - E. Let E be a real number &#x3E; 0. There exists a number T,
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independent of E such that one has

Remark that this is no longer a uniformity statement since the degree
6E is expected to be bounded by a number depending on the conductor of
E. This problem is apparently related to the existence of rational points on
certain Hilbert modular varieties.

This paper is organized to be accessible to a wide audience in its first
part which explains the process of going from problem I to problem II. The
second part might contain results of interest to the specialist (see sections
2.4 and 2.5) and deals mainly with Serre’s problem. In the third part we

explain how the degree conjecture can be studied from an elementary point
of view.

Acknowledgement. I would like to thank H. Darmon, B. Edixhoven, I. Chen,
and K. Ribet for comments useful in the course of writing this paper during
my stay at the University of California, Berkeley.

1. THE MODULAR MACHINERY

1.1. The curves of Frey and Hellegouarch. In order to study equations
of the type a + b + c = 0, with a, b and c coprime non-zero integers, Frey,
following earlier work by Hellegouarch about Fermat’s equation (~30~, [31]),
proposed to consider the elliptic curve Ea,b,c over Q given by the cubic
equation

We can assume without loss of generality that b is even and that a is
congruent to -1 modulo 4. We call elliptic curves given by cubic equations
of this form Frey curves. Elementary facts concerning them can be found in
various places of the literature ([22], ~23~, [67], [59]). The modular invariant
of Ea,b,c is given by the formula

In is not integral (and Ea,b,c has no complex multiplica-
tion) except in the case (a, b, c) = (-1, 2, -1).

All the 2-division points of Ea,b,c are Q-rational. The exact formula for
the conductor Na,b,c of Ea,b,c has been calculated by Diamond and Kramer
[17]. One has

Na,b,c = Rad(abc)EZ(b),
where E2 (b) = 1 if 32 ( b, E2 (b) = 2 if 16 ~ b and 32 E2 ( b) = 4 if 41b and
16 ¡fb, E2 (b) - 16 if 4 lb. In particular Ea,b,c is a semi-stable elliptic curve
if and only if 16 ( b.
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1.2. Wiles’ theorem. The work of Wiles and the notion of modular el-

liptic curve has been explained in many expository articles recently. For a
different perspective we explain the meaning of modularity for an elliptic
curve in a non-standard way. The following formulation has the advantage
of bringing directly to mind the quadratic reciprocity law of Gauss (the
function ~ below is analogous to the Legendre symbol). This point of view
was introduced by Y. Manin (and maybe B. Birch) more than twenty years
ago ~45~, 1461&#x3E; [52].

Let E be an elliptic curve over Q. Let 1 be a prime number. Let IE(IFl)1 I
be the number of points of the reduction modulo 1 of a minimal Weierstrass
model of E. Let al(E) = 1 + 1 -IE(IFl)l.

Let AN be the set of functions

satisfying for any (u, v) E the equations (the Manin relations)

Let AE be the set of elements ~ of AN satisfying for every prime number
1 an equation which can take several forms, the most simple that I know

being the ai(E)-modular relations (we abuse the notations here since the
relations refers to two numbers: al and l):

where (a, b, c, d) E Z4.
The curve E is said to be modular of level N if there is a non-zero element

in AE . Any element of AE must be homogeneous, i. e. it satisfies the equality

Remark. The existence of a non-zero element of AE is equivalent to the
existence of a normalized eigenform of weight 2 for rl(N’) whose

1-th Fourier coefficient is hence the connection with the standard

notion of modularity (see [55]). This can be proved by remarking that
there is a bijection between the set of elements of AN which vanish on
non-primitive elements of and The functions
of N satisfying the al(E)-modular relations correspond bijectively to the
elements of HI (Yl (N) (C), Z) which are eigenvalue of the Hecke operator 7l
with the eigenvalue ai (E) see ~55~.

The concept of modularity is captured in the last family of equations. It
is the expression of a law ruling all the reductions modulo 1 of the elliptic
curve E. Remark that the integers a, b, c, d involved in the sum depend on
I but not on E or ~.
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The curve E is said to be modular if it is modular of some level. If E
is a modular elliptic curve, then a theorem of H. Carayol ([5]) implies that
it is modular of level the conductor of E. The set of functions 4D which
establish the modularity at that level is a free Z-module of rank 2. The
recent work of Wiles [77] (completed by a joint work with Taylor [75] and
subsequent work of Diamond and Kramer [17]) leads amongst other things
to the following result, as explained in [17] (K. Rubin and A. Silverberg also
remarked in [65] that the next theorem can be deduced from another work
of Diamond [16]).
Theorem 1.1 (Wiles, Taylor-Wiles, Diamond-Kramer). The elliptic curve
Ea,b,c is modular.

1.3. Serre’s conjectures. Let p be a prime number. Consider an irre-
ducible Galois representation

which is odd, i.e. the determinant of the image of a complex conjugation is
-1.

There is a notion of modularity for such a representation. For every
prime number 1 ~ p at which the representation p is unramified, denote
by al(p) (resp. bl (p)) the trace (resp. the determinant) of the image in
GL2(JFp) of a Frobenius endomorphism at the prime l. Once again we give
a non-standard formulation of modularity as above.

Let AN,p be the set of functions

satisfying for any (u, v) E (Z /NZ) the Manin relations

Let Ap be the set of elements of AN,p satisfying for every prime number
1 the al(p)-modular relations:

where a, b, c and d are integers, and

We say that the representation p is modular of level N, if there exists a
non-zero function in Ap.
The representation p is said to be modular if it is modular of some level.
The fact that p is odd implies (by class field theory) that &#x26;p is even (i.e.
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.Remark. This definition of modularity can be shown to be equivalent to the
one used originally by Serre. One can first reformulate Serre’s conjecture
using modular forms of weight 2 only by using results of Ash and Stevens
[2]. Making use of the interpretation of functions satisfying the Manin
relations in terms of the homology of modular curves as we did in the
previous section ( i. e. one shows that the existence of an element of Ap is
equivalent to the existence of a non-zero modular form f of weight 2 for
r1(N) in characteristic p which satisfies = (l prime ~’Np, Tl is
the 1-th Hecke operator). Take note that we allow the prime p to divide N
here.

Serre conjectures that any odd, irreducible representation is modular.
Moreover he predicts the minimal level of modularity of such a representa-
tion [67].

Let E be an elliptic curve over Q. The set E[p] of Q-rational p-division
points of E is a Fp-vector space of dimension 2. Let us choose, once and
for all, an identification between this set and ~. This defines a Galois

representation pE,p of the type considered above. The coefficients al(PE,p)
and are the reductions modulo p of and 1 respectively.

If the elliptic curve E is modular of level N then the representation pE,p
is modular of level N, as one can see by reducing a function (D attached to
E modulo p. By choosing an appropriate multiple one can insure that
the reduction is non-zero. Therefore is homogeneous. But it might occur
that pE,p is modular of level strictly smaller than N. This is for instance
the case if the reduction modulo p of 4D is non-zero and factorizes through

where N’ is strictly smaller than N.

1.4. The theorems of Ribet and Mazur. Suppose that p &#x3E; 2. For our

purpose we need only the following recipe predicted by Serre and proved by
Ribet for the level of modularity of the representation pa,b,c,[p] = 

For any integer n &#x3E; 0, denote by np the largest p-th power dividing n
and let = Rad(4/np). Let = Radp(abc)E2(b).
Theorem 1.2 (Ribet). Suppose that p &#x3E; 2 and that the representation

modular and absolutely irreducible. Then zs modular of
level 

At this point one needs the following theorem of B. Mazur. We do not
insist on it for the moment since results of this type will be the subject of
the second part of the paper.

Theorem 1.3 (Mazur). Let p be a prime number,. Let E be an elliptic
curve over Q having all its 2-division points defined over Q. Then PE,p is

absolutely irreducible when p &#x3E; 3.
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This theorem implies that we can not have al (Pa,b,c,(p]) =1 + l for almost
all prime 1 when p &#x3E; 3. (If = 1 + 1 for almost all primes l, then
1 is an eigenvalue of almost every image of a Frobenius endomorphism.
By Chebotarev’s density theorem, the number 1 is an eigenvalue of every
element in the image of Pa,b,c,[p]. This implies that the representation Pa,b,c,[p]
is reducible.)
1.5. Denes’ conjecture. We apply now the machinery described above
to D6nes’ equation. We merely repeat in essence here what is contained in
[13], [64], and [67].

In view of the results mentioned in the background, we need only to prove
D6nes’ conjecture for prime exponents &#x3E; 31. Let us consider a solution

(x, y, z) to the equation xP = 2zP (p prime number &#x3E; 31, xyz =1= 0).
We may suppose that x, y, and z are coprime and that x is congruent to
-1 modulo 4. We want to show that we have x = y = z = 1.

Proposition 1.4. Suppose that p is a prime &#x3E; 3. The Galois representa-
lion PxP,-2zP,yP,[p] ZS not surjective.

Let us consider the Frey curve 
If z is even, then 3212zP and the Galois representation associated to p-

division points of the Frey curve is modular of level 2. The space of ho-
mogeneous functions (Z/32Z)2 --~ Fp satisfying the Manin relations is
of small dimension. All its elements satisfy modular equations with

= l + 1 (l prime ~’2p) . This is impossible by Mazur’s theorem.
If z is odd, the Galois representation associated to points of p-division is

modular of level 32 by Ribet’s theorem.
One can check by elementary but tedious computations of linear algebra

that the IFp-vector space of homogeneous functions of level 32 satisfying the
Manin relations and the al (p) modular relation with al (p) =1= t+1 (for at least
a prime 1 )’2p) is of dimension 2. Using the fact that P-1,2,-l,[P] is modular
of level 32, one obtains that the function 4)p attached to PxP,-2zP,yP,(P] is pro-
portional to one attached to P-1,2,-,,[p] and therefore that al(P-1,2,-I,Ipl) =
al (PxP ,-2zP ,yP ,(P]). This implies by Chebotarev’s density theorem and Schur’s
lemma that the representations and p_1 ~,_i,pj are isomorphic.

Note that the Frey curve E-1,2,-l corresponds to the trivial solution
D6nes’ equation. It is an elliptic curve with complex

multiplication by the ( i. e. its ring of endomorphism is isomorphic
to 

The theory of complex multiplication informs us that the image of

P-1,2,-l,[p] (and therefore of is strictly smaller than GL2(IFp).
Specifically it is contained in the normalizer of a split (resp. non-split)
Cartan subgroup of if p is congruent to 1 (resp. -1) modulo 4
(see below).
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We now turn to the second part of our paper to explain why the image
of a Galois representation of the type is surjective when (a, b, c) ~
(-l, 2, -1) and p &#x3E; 3.

2. RATIONAL POINTS ON MODULAR CURVES

2.1. Serre’s problem. In [66], Serre proved the following theorem.

Theorem 2.1 (Serre). Let E be an elliptic curve over Q which does not
have complexe multiplication. There exists a number BE such that for every
prime numbers p &#x3E; BE the map

is surjective.

The interested reader might consult [68] to see this theorem put in a
larger theoretical context. Serre proposed the following problem:

Can the number BE be chosen uniformly (i.e. independently of E)?
This problem is still unsolved. The smallest possible candidate for a

uniform BE, up to the current knowledge, is 37 ~50~.
There are formulas for BE in terms of various invariants of E [47]. One

might try to find an expression for BE in terms of the conductor of E.
Building on [70], A. Kraus proved the following result [40]:
Theorem 2.2 (Kraus). Let E be a modular elliptic curve without complex
multiplication. Then the representation PE,p is surjective when one has

where NE is the product of the prime numbers dividing the conductor of E.

Note that one can get stronger bounds assuming the Generalized Rie-
mann Hypothesis [70]. In the case of a Frey curve is equal
to ~2(&#x26;)Rad(a&#x26;c). Kraus’ theorem gives directly an estimate (left to the
reader) for the size of hypothetic solutions to D6nes’ equation.

To determine the image of pE,p, we have to take into account that its
determinant is Pp. To show that is surjective it is enough to show that
its image is not contained in any of the following proper maximal subgroups
of [66]:

- A Borel subgroup, i. e. up to conjugacy the group of upper triangular
matrices.

- The normalizer of a split Cartan subgroup of i. e. up to

conjugacy the set of diagonal or antidiagonal matrices.
- The normalizer of a non-split Cartan subgroup of GL2(Fp), i. e. up to

conjugacy the normalizer of the image of an embedding of ~2 into GL2(Fp)
(see below).
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- An exceptional subgroup, i. e. a subgroup of GL2(Fp) whose image
in PGL2(Fp) is isomorphic to the symmetric group S4 or to one of the
alternate groups A4 or A5. The two latter cases can not occur because of
the surjectivity of the determinant. The case of S4 can occur only if p is
congruent to ~3 modulo 8.

Serre showed that the image of PE,p can not be contained in an excep-
tional subgroup when p &#x3E; 13 or p = 7 [66].
2.2. Mazur’s theorems. Serre’s problem can be translated in terms of
rational points on modular curves, i. e. in diophantine terms.

Let N be an integer &#x3E; 0. Let Y(N) be the curve which is the moduli
space of pairs 0), where S is a Q-scheme, E/S is an elliptic curve
and 0 is an isomorphism of group scheme between and the group
E[N] of N-division points of E. It is a curve defined over Q endowed
with an action of GL2(Z/NZ) defined over Q. Let K be a subgroup of
GL2(Z/NZ). Let YK = Y(N)/K. This curve classifies elliptic curves over
Q up to Q-isomorphism such that the image of the map

is contained in K.
A positive answer to Serre’s problem is equivalent to show that none of

these curves has a Q-rational point which does not correspond to an elliptic
curve with complex multiplication when N = p is a large enough prime
number and K is a proper subgroup of GL2(Z/pZ).
We describe briefly Mazur’s approach to Serre’s problem. Let XK be the

complete modular curve attached to the subgroup K of Let

JK be the jacobian variety of XK.
For any cusp Q of XK, denote by kQ C Q(J-tN) its field of definition and

by jQ the morphism XK - JK which sends P to the class of the divisor
(P) - (Q). Let 0 = Let I be a prime number which does not
divides N. Let A be a prime ideal of 0 C above 1. Let Ox be the
completion of C~ at A.

There is a canonical smooth model XK of XK over C~ [14]. Let A be
an optimal quotient of JK, i. e. an abelian variety defined over Q such that
there exists a surjective homomorphism of abelian varieties over Q JK --7 A
with connected kernel. Let jQ,A be the morphism XK -&#x3E; A obtained by
composing the morphism JK - A with jQ. By universal property of
Neron model jQ,A extends to a morphism XK ooth - A defined over L~.
Proposition 2.3. Let 1 be a prime number ¡f2N. Let A be a prime of C~
dividing l. Suppose that there exists an abelian variety A defined over Q
such that

1) A is a non-trivial optimal quotients of JK with finitely many Q-rational
points.
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2) The morphism jQ,A is a formal immersion at Q in characteristic l for
each cusp Q of XK.

Then there is no elliptic curve E over Q such that 1 divides the numerator
of j(E) and such that the image of is contained in K.

Proof. Suppose that the conclusion of the theorem is false. Then the modu-
lar curve XK has a Q-rational point P which is not a cusp. Let us prove that
jQ,A(P) is a torsion point of A for any cusp Q. Let D be a Q-rational divi-
sor of degree n &#x3E; 0 with support on the cusps of XK (There exists some).
By the Drinfeld-Manin theorem [19] the class x of the divisor D - n(Q) of
degree 0 is torsion in JK. The point njQ(P) - x of JK is Q-rational. Its

image in A is of finite order since A(Q) is finite. Therefore njQ,A(P) is of
finite order. Therefore jQ A(P) is a torsion point of A for any cusp Q of
XK.

Since 1 divides the denominator of j(E), the sections Spec(9 XK
defined by P and some cusp Q coincide at A, for some prime divisor A of 1.
This implies that jQ,A (P) crosses jQ,A = 0 in the special fiber at A of A.
Since 1 &#x3E; 2 and since 1 is unramified in kQ (because 1 /N) and since JK
(and therefore A) has good reduction at l, a standard specialization lemma
can be applied to show that jQ,A(P) = 0 (see ~50~).

Therefore we have jQ,A(P) = jQ,A(Q) = 0 and the sections defined by P
and Q coincide in characteristic I. This contradicts the fact that jQ,A is a
formal immersion in characteristic 1 at the cusp Q.

Remarks. 1) Mazur’s method can, to a certain extent, be generalized to
algebraic number fields of higher degree ([1], [34], [54]).

2) Mazur showed how the formal immersion property can often be checked
using the theory of Hecke operators and q-expansions of modular forms [50].

3) Central to the method is the existence of a non-trivial quotient abelian
variety of the jacobian with finitely many rational points. In [49], Mazur
introduced the Eisenstein quotient of Jo(p) and proved the finiteness of the
group of rational points of this quotient by a method which made use of
the semi-stability of Jo(p). Mazur’s construction and proof have not been
extended to non semi-stable jacobians of modular curves (see [27] for an
attempt). The Eisenstein quotient was used in [50] as the auxiliary abelian
variety A to prove the following result in the direction of Serre’s problem
(from which one deduces the theorem 1.3).
Theorem 2.4 (Mazur). Let p be a prime number. Let E be an elliptic
curve over Q such that the image of contained in a Bored subgroup
of GL2(Fp). Then one has p  163. If one supposes that all the points of
2-division of E are rational, then one has p  3.

By the same method, and still using the Eisenstein quotient, F. Momose
completed an earlier result of Mazur to obtain the following theorem [56].
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Theorem 2.5 (Momose). Let p be an odd prime number. Let E be an

elliptic curve such that j(E) ~ Z[ 1 ] and such that the image of 
is contained in the normalizer of a split Cartan subgroup of GL2(Fp). Then
one has

2.3. Winding quotients. The conjecture of Birch and Swinnerton-Dyer
provides a criterion to decide whether an abelian variety over Q has finitely
many rational points: one has to check whether the L-function of the abelian
variety vanishes at the point 1. By a winding quotient, we mean a maximal
quotient abelian variety of the jacobian of a modular curve (or alternately
of the new part of the jacobian) whose L-function does not vanish at the
point 1. This terminology has its origin in [48] and ~49~.

Let N be an integer &#x3E; 0. Let J1 (N) be the jacobian of the modular curve
Xl(N). Let T be the subring of End(Ji(N)) generated by the Hecke opera-
tor Ti It operates on the new-quotient JîeW(N) of J¡(N). Let I be
an ideal of T. Let JI be the quotient abelian variety 
A classical theorem of Eichler, Shimura, Igusa and Carayol asserts, after an
easy reformulation, that

where f runs through the newforms (i.e. the normalized eigenforms of
weight 2 which are new for rl(N)), and where

In the direction of the conjecture of Birch and Swinnerton-Dyer, K. Kato
has announced that, amongst other things, he has obtained the following
theorem by an original method [36], [37], [38].
Theorem 2.6 (Kato). Suppose that L(JI, 1) ~ 0, then the group of ratio-
nal points of JI is finite.

This theorem should be sufficient to decide whether the jacobian of any
modular curve has a non-trivial quotient with finitely many rational points.

Let us mention the earlier work of V. Kolyvagin and D. Logachev [39]
which treated the case of quotients of jacobians of the form They
built on earlier work by Kolyvagin, on a formula of B. Gross and D. Zagier
(28~, and on a result established independently by K. Murty and R. Murty
[57] and by D. Bump, S. Friedberg, and J. Hoffstein [4]. This last case is
sufficient for the practical applications which have been considered up to
now. Indeed all three families of modular curves considered to solve Serre’s

problem are related to jacobian varieties of the type Jo(N) (in the Borel
and normalizer of a split Cartan cases this is evident, in the normalizer of
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a non-split Cartan case it is a theorem of Chen explained below). We turn
to that case in more detail.

Let N be an integer &#x3E; 0. Let d be a square-free integer dividing N
(in particular one might have d = 1). Denote by Wd the Fricke involution
Xo(N). Denote by Jo(N)d the jacobian of the quotient curve Xo(N)/wd
Let us describe a winding quotient of the jacobian Jo(N)d of the curve
Xo(N). (A finer version is described in P. Parent’s forthcoming thesis.)
Let T be the subring of End(Jo(N)d) generated by the Hecke operators
Tn (n &#x3E; 1, (N, n) = 1). It operates on the singular homology group
H1
Let e be the unique element such that the integral
of any holomorphic differential form ca on along a cycle of
class e coincides with the integral along the path from 0 to ioo in the upper
half-plane of the pullback of Mazur has called e the winding element
(see [48] for the origin of this terminology). Let Ie be the annihilator of e in
T. Let be the old abelian subvariety of Jo(N)d. Let be

the quotient abelian variety Jo(N)d/(IeJo(N)d + The following
proposition can be proved by mimicking what is in [55] (the case N prime
and d = 1) and in [13] (the case N = 2p2 and d = p).
Proposition 2.7. The L-function of does not vanish at the point
1.

By application of the theorem of Kolyvagin and Logachev one obtains.

Theorem 2.8 (Kolyvagin-Logachev). The group ofQ-rational points of the
abelian variety is finite.

Therefore one obtains the following criterion which is a prior curious
since it involves only the complex structure of the modular curve.

Corollary 2.9. If e does not belong to the old part of H1(Xo(N)d(C),Q),
then has a non trivial quotient with finitely many rational points.

To check such a criterion one might have to make calculations on mod-
ular symbols using Manin’s presentation of the homology of Xo(N) ([45],
[54], [61]). The verification amounts then to a study of a graph with ver-
tices indexed by (see [54], [61]) which is essentially the "dessin
d’enfant" associated to the curve Xo(N) in the sense of [29]. However in

[13], this was done by a simpler argument that we do not describe here.

2.4. Chen’s isogeny. In [13] a result of I. Chen was used to obtain our
main result (6~.
Theorem 2.10 (Chen). Let Kns (resp. Ks) be the normalizer of a non-
split (resp. split) Cartan subgroup of GL2(Fp). Let Xns and Xs be the
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corresponding modular curves. Let Jns and Js be the jacobians of Xns and
Xs. There is an isogeny of abelian varieties defined over Q between J, and
Jns x Jo (p) .
Chen uses trace formulas to prove that the two abelian varieties have the

same L-function. Making use of a theorem of Faltings he concludes that
the abelian varieties are isogenous. The problem was reconsidered by B.
Edixhoven in [20], who gave a more elementary proof of Chen’s theorem
based on the theory of representation of GL2(Fp). Neither of these two

proofs gave an explicit description of the isogeny, nor is the short proof that
we give below.

Since JS is isomorphic to the jacobian of XO(p2)/wp (where wp is the
Fricke involution), an elementary argument of sign of functional equation
of L-function leads to the following consequence.

Corollary 2.11. The L-function of any non-trivial quotient abelian variety
of Jns vanishes at 1.

If one believes in the conjecture of Birch and Swinnerton-Dyer, no non-
trivial quotient abelian variety of Jns has finitely many rational points. And
we are embarrassed to apply Mazur’s method to Xns.
One is tempted now to consider other results in the direction of the

conjecture of Birch and Swinnerton-Dyer, such as the formula of Gross and
Zagier [28] and the result of Kolyvagin on elliptic curves of analytic rank
one to understand the arithmetic of Jns.

We expect that Chen’s isogeny can be deduced from from an explicit
correspondence between XS and Xns.

Let Hp = ("The upper half-plane over
It is a finite set of cardinality P(p - 1)/2 endowed with a transitive

action of GL2(Fp) deduced from the homographies on Let A =

f t, -tl E Hp such that t2 E 1FP . Let be the stabilizer of A in GL2(Fp ).
It is the normalizer of a non-split Cartan subgroup of GL2(Fp).

Let ca C Hp. To any g E GL2 (Fp ) we associate a subset gca of Hp
(the support of a "geodesic path" of HP) and a pair of elements of 
the set f g0, goo) (two "cusps").

For every pair P2 ~ of distinct elements of there is an element

g E GL2(Fp) such that {P1,P2~. This element is well defined
up to multiplication by a diagonal or antidiagonal matrix. This implies that
the set gca depends only on f Pi, P2 1. Let us denote it by  Pl, P2 &#x3E;. Let

Cp be the set of pairs of distinct elements of P (Fp ) .
The group of diagonal or antidiagonal matrices is the normalizer KS of

the split Cartan subgroup of GL2(Fp ) formed by diagonal matrices. The
map GL2(Fp ) - Cp which to g associates f g0, goo} defines a bijection
between and Cp.
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Let

be the group homomorphism which associates to [IP,, P2}] the sum of el-
ements of  Pi, P2 &#x3E; (the map which to the support of a "geodesic path"
associates the sum of its points). Let

be the group homomorphism which to ~P~ associates the sum of elements
of Cp containing P.
The group homomorphism

- . , .. ,. - - , r ,. -

which to gKs associates ¿hEGL2(JFp)/(KsnKns) coincides with f if one
identifies Hp with and Cp with as above.

Therefore one deduces from f~° a correspondence fp: X, -~ Xns given
by the canonical morphism XKasnxs - Xns x Xs and of degree 

Let Bo be the Borel subgroup of GL2(Fp) consisting of upper triangular
matrices. The map GL2(Fp) - P1(IFp) which to to g associates goo
defines a bijection between G L2 (JFp ) / Bo and P (Fp ) .
The group homomorphism

which to gBo associates ¿hEGL2(JFp)/(KsnBo) ghKs coincides with 0 if one
identifies P (Fp ) with GL2(Fp)/Bo and Cp with as above.

Denote, as usual, by Xp(p) the modular curve XBo. One deduces from
gp a correspondence gp: Xo(P) --7 Xs of degree p.

, A straightforward calcula-

Problem 2.12. What is the image of f2?
To our embarassment we could not give an answer to this question. It is

likely that this image generates Q[Hp] as a vector space. This was verified
by Chen in a few non-trivial cases.

If this is true, the inverse image by 12 of 20 is generated by the image
of 92. In particular the kernel of fP is generated by the image by 0 of
elements of degree 0.

Let us say that a divisor of XS is p-old if it is the image by the correspon-
dence Xo (p) --&#x3E; XS and that a divisor of Xns is p-old if it is the inverse

image of a divisor of X(1) by the morphism Xns --&#x3E; X(1). Since X(1) is a
curve of genus 0, the class any p-old divisor of degree 0 is 0 in Jns(p). The
properties of fp translate immediately into properties of the correspondence
,fp. The image by fp of a p-old divisor of XS is a p-old divisor of Xns.
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The correspondence fp defines by Albanese and Picard functiorality two
homomorphisms of abelian varieties fp*: JS ) Jns and fP: Jns 2013~ ~ The
correspondence gp defines similarly an homomorphism of abelian variety gp,:

~ JS. Since one has fp* o gP*(Jo(p)) = 0, one can expect that fP* is
the explicit description of Chen’s isogeny. To prove this it would suffice to
show that the cokernel of fp is finite.
Remark. Using the techniques of [43], the determination of the image of i f p 0
should lead to the explicit description of the kernel of It would not be

surprising if the image of f~ contained 
Let us give a quick proof, essentially suggested by Edixhoven, of Chen’s

theorem. Let E be a set with one element considered as a trivial GL2(IFP)-
set.

Lemma 2.13. The sets PI (Fp ) U Hp and Cp U E are weakly isomorphic as
i.e. any element of GL2(Fp) has the same number of fixed

points in each set.

Proof. Let g E GL2(Fp). The number of fixed points of 9 depends only on
the conjugacy class of g. There are four types of conjugacy classes. In each
case we indicate the number of fixed points of g in P1(IFp), Hp, Cp and E
respectively. First case: g is a scalar matrix; The numbers of fixed points
are p + 1, P~ 2 1~ , 1 and 1. Second case: g has two distinct eigenvalues
in Fp - We have then 2, 0, 1, and 1. Third case: g is not a scalar matrix and
has one double root in its characteristic polynomial; The numbers of fixed
points are 1, 0, 0, and 1. Fourth and final case: g has no eigenvalue in Fp;
One obtains 2, 1, 0, and 1.

In each case the sum of the first two numbers equals the sum of the
remaining two.

As a consequence the Q[GL 2 (Fp )]-modules Q[P  and Q[Cp U E~
are isomorphic (see [72] exercise 5, chapter 13). Using the identifications of

Hp, Cp, and E as cosets of GL2 (Fp ) given above, such an isomor-
phism defines a correspondence from Xo ( 1 ) U XS (p) to Xo (p) U Xns (p) , which
defines in turn, by Albanese fonctoriality an homomorphism of abelian va-
rieties

Since Jo (I) is trivial, Chen’s theorem follows.
One can deduce mutates mutandis similar results by adding an extra and

prime to p level structure. For the purpose of the study of Frey curves and
D6nes’ conjecture we needed the following variant.
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Let K be the subgroup of GL2(Z/2pZ) such that the image of K in
and GL2 (Fp ) are a Borel subgroup and the normalizer of a non-

split Cartan subgroup respectively. The modular curve XK = Xns,2 associ-
ated is the product Xns xx(i) Xo(2)_

Corollary 2.14. The p-new quotient of and Jns,2 are isogenous
abelian varieties.

2.5. Serre’s problem and Frey curves. We describe now a weak result
in direction of Serre’s problem relatively to the modular curve XK quotient
of X (2p), where the image of K in GL2(F2) and GL2 (Fp) are a Borel
subgroup and the normalizer of a Cartan subgroup respectively as above.
Darmon and I obtained the part concerning non-split Cartan subgroups

of the following theorem. The part concerning split Cartan subgroup is a
theorem of Momose except when p E {5, 7, 13} (see also (33~).
Theorem 2.15. Let E be an elliptic curve over Q and p &#x3E; 5 be a rational
prime satisfying the following assumptions:

1) E has a Q-rational torsion point of order 2.
2) The image of pE,p in GL2(Fp) is isomorphic to the normalizer of a

Cartan subgroup.
Then j(E) belongs to Z[ 2p

Proof. We apply Mazur’s method to the modular curve XK, where K is
the subgroup of GL2(Z/2pZ) whose images in GL2 (IF2 ) and GL2(Fp) are
a Borel subgroup and the normalizer of a Cartan subgroup.

This was carried out in detail in [13] in the non-split Cartan case. A key
point was to show that new part of the jacobian of the curve Xo(2p2)/wp
has a non-trivial winding quotient when p &#x3E; 3. This was done by using the
criterion of the corollary 2.9.

In the split case, the modular curve XK we consider is isomorphic to
Xo(2p2)/wP. Its jacobian has a non-trivial winding quotient A as we just
mentioned. It remains to check the formal immersion criterion at all cusps in

every characteristic I not equal to 2 or p. This is done as in [50], proposition
3.2 (resp. ~56~, proposition 2.5) at the two cusps above the cusp o0 of Xo(p2)
(resp. at the other cusps).
Remarks. 1) Our method shows easily that the theorem 2.15 still holds if
the hypothesis 1) is replaced by:
E has a Q-rational isogeny of order r # p, where r = 3, 5, 7 or 13 (the

cases for which Xo(P) has genus 0).
2) A better understanding of the bad reduction of non semi-stable jaco-

bians of modular curves might lead to a stronger version of the theorem
with the conclusion j(E) E Z[~].



192

3) When the image of PE,p is contained in the normalizer of a non-split
Cartan subgroup the conclusion of the theorem might be improved to j (E) E
Zp
The theorem 2.15 has the following implication for Frey curves.

Corollary 2.16. Let (a, b, c) ~ (-l, 2, -1) be a as in section 1.1. Let p be
a prime number &#x3E; 3. Then the representatiorc Pa,b,c,[p] is surjective..

Proo f . Suppose that the elliptic curve is semistable ( i. e. 16Ib), Serre
proved that is surjective or of image contained in a Borel subgroup
[69]. The latter case is impossible by Mazur’s theorem since p &#x3E; 3. There-
fore we may suppose that 16 /b.
We have to prove that the image of pa,&#x26;,c,[p] is not contained in any of

the proper maximal subgroups of GL2(IFp) described at the beginning of
section 2.1. Taking into account that the image of is not contained
in Borel subgroup (Mazur’s theorem), it is contained in the normalizer of
a Cartan subgroup or in an exceptional subgroup. The groups of the two
latter types do not possess elements of order p &#x3E; 3.

Since E is not semi-stable, its minimal discriminant A is equal to 16(abc)2
[59]. Let I be an odd prime number. The I-adic valuation of A is divisible by
p, otherwise Tate’s theory would produce a unipotent element in the image
of Therefore abc is the product of a power of 2 by a p-th power;
In other words, the triple (a, b, c) comes from a solution of the equation
x~° + + zP = 0. By the proof of Fermat’s last theorem and its variants,
one must have a = 1 [64]. In that case the image of is contained in
the normalizer of a Cartan subgroup. This is impossible by theorem 2.15.

Remark. Concerning the case p = 3, Diamond and Kramer showed that the
image of is irreducible when Ea,b,c is not semi-stable and p &#x3E; 3 [17~.
One might gain some insight from [21] to study the situation when p = 3.

Corollary 2.17 (D6nes’ conjecture). The equations xn + yn = 2zn has no
solution in integers x, y, z, n with n &#x3E; 2, 0 and x =,4 

3. THE DEGREE OF MODULAR PARAMETRIZATIONS

3.1. The pairing A. Let E be an elliptic curve over Q of conductor N.
Let Ao (N) be the set of functions

satisfying the Manin relations described in the section 1.2 and that we

repeat now:

and
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Let AE be the set of elements of Ao(N) satifying the al (E)-modular relations
for every prime number 1 XN:

where a, b, c, and d are integers.

Remark. The group coincides with the group of functions &#x26; : :

P1(7G/N7G) ~ Z satisfying the following property: For any ¿MUM[M] E

The ai(E)-modular relation can be reformulated in a similar way (55~.
As we already mentioned AE is a free Z-module of rank 2. We define

an alternate Z-valued pairing A on Ao(N) as follows. Let and $2 be
elements of Ao(N). We set

We still denote by A the restriction of A to AE. Let Ao be a bilinear,
alternate and surjective pairing AE x AE - Z. It exists and is unique up
to sign. We have A = DEAO, with dE integer &#x3E; 0 if one makes the suitable
choice of sign for Ao. In other words, dEZ is the image of A.

3.2. Connection with the degree. Let E be a modular elliptic curve of
conductor N. A non-constant morphism Xo(N) - E which sends the
cusp oo to 0 will be said to be minimale if it does not factorizes through
an endomorphism of E which is not an automorphism. Such a morphism
factorizes through the map i Xo(N) - Jo(N) which sends the cusp
00 to 0. A modular elliptic curve Eo is said to be optimal if the the in-
duced morphism of abelian varieties Jo(N) ~ Eo has a connected kernel.
The corresponding minimal parametrization Xo (N) - Eo is the optimal
Pararrtetrization. It is unique up to automorphism of Ep.

Let CN be the cuspidal subgroup of Jo(N), i.e. the group generated by
the classes of divisors of degree 0 with support on the cusps. It is finite by
the Drinfeld-Manin theorem and is defined over Q. Let CEO be its image
by an optimal parametrization Xo(N) --&#x3E; Eo.
The elliptic curve E is said to be cuspidal if it fits in the exact sequence
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where Eo is an optimal elliptic curve. The morphism Xo(N) -3 E obtained
by composing the optimal parametrization with the isogeny Eo - E is
said to be the cuspidal Pdrametrization. It is not a priori clear that it is
minimal.

The following proposition is similar to a formula contained in [55] and
seems to be essentially the formula given by Zagier and Cremona ([78], [7]).
Proposition 3.1. Let E be a cuspidal modular elliptic curve of conductor
N. The degree of the cuspidal parametrization is equal to dE.

Proof. First we collect some information on the homology of modular curves.
In what follows the homology groups of curves are the singular homology
groups of the associated Riemann surfaces. Intersection products will be
denoted by ~.

Let cusps be the set of cusps of the modular curve Xo(N). We will
consider the relative homology group H1 (Xo (N), cusps; 7G). Integration of
holomorphic differential forms defines a group homomorphism

which to x associates the only element R(x) E H1 (Xo (N); IE8) such that
f. w = IR(X) W E H°(Xo(N), S21)). Let H(9 be the image of R. Let

D be a divisor of degree 0 with support on the cusps of Xo (N). Let

E H1(Xo(N),cusps;Z) be the class of a cycle of boundary D. The

image of R(xD) in H8IH1(Xo(N);Z) depends only on the class of D in
CN. This defines a group isomorphism between CN and Z).
The Drinfeld-Manin theorem asserts that the image H9 of R is contained
in (or equivalently that CN is finite). There is a perfect
duality between H1(Xo(N),cusps;Z) and H1 (Yo (N); ?Z) given by the in-
tersection products. The dual of R defines a group homomorphism R*:

-~ H1(Yo(N);Q). Let H9* be the set of elements x of
H1 (Xo(N); Z) such that xo y E Z (y E H8).
Lemma 3.2. The image of H8* by R* is a direct factor of 
Proof. Making use of duality, the statement of the lemma translates into
the obvious statement that the image of R is Ho.

Let 7r: Xo(N) ~ E be the cuspidal parametrization.
Lemma 3.3. The image of the map 7r*: Hi(E, Z) --~ de-

duced from the cuspidal parametrization is a direct factor of H8* .

Proof. Let = 11. Recall that there are canonical iso-

morphisms of complex Lie groups: Jo(N)(C) -- Hom(H1(Xo(N); Z), 1U),
E(C) ~ and Eo(C) ~ Hom(H1 (Eo,Z), ). With this

identification CN corresponds to the elements of 
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vanishing on Hd*. The homorphisms of complex Lie groups Jo(N)((C) -
Eo (C) -&#x3E; E((C) coincide with those deduced from the group homomor-
phism Hi (E, Z) - Hi (Eo, Z) ---~ Let iro: Xo(N) -~ Eo
be the optimal parametrization. The optimality property translates into the
fact that the image of 7r* is a direct factor of HI (Xo (N); Z). The definition
of E translates into the fact that the image of 7r* is a direct factor of H~*.

As a consequence of the two previous lemmas, R* o 7r* (H 1 (E, Z)) is a
direct factor of H1(Yo(N);Z). It is the set of elements x of H1(Yo(N);Z)
satisfying the equality Tix = al(E)x, (I prime number not dividing N).
We describe now the bijection between H1(Yo(N); Z) and 11o(N). Recall

that the map Tp(p)g (0,1)g defines a bijection between ro(p)BSL2(Z)
and Pl (Z/NZ). Let E = SL2(Z)i U SL2(7G)p where i = and p = e %7r/3
Let co be the geodesic path from i to p in the upper half-plane. For g E
SL2 (Z) , consider the class in of the image in Yo(N) of the
path gco. It depends only on x = p1(Z/NZ). Denote it by 
Let ~ E Ao(N). In [55], we proved that 2:xEP1(Z/NZ) 4) (x) [x] belongs
to Hl(Yo(N);7G) identified with a subgroup of H1(Yo(N), E; Z). The map
P H defines a group isomorphism i: Ao(N) ~ H1(Yo(N);7G). The

action of Hecke operators translates as follows on Ao(N) [55]:

where a,b, c, and d are integers and 1 IN is a prime number.
The system of eigenvalue ai(E) appears exactly with multiplicity one in

H1 (Yo (N); Z) and therefore in Ao(N). Since H 1 (E, Z) is a direct factor of
H1(Yo(N);7G), the isomorphism between H1(Yo(N);7G) and &#x26;0 (N) induces
an isomorphism between Hi (E, Z) and AE.
The embedding Xo(N) c Yo(N) defines a surjective group homomor-

Lemma 3.4. The alternate bilinear pairing x --~ Z which

to (&#x26;1, ~2) associates S(c~2 ) coincides with the pairing A.

Proof. Let Ao(N)2. Let us calculate S(c~2). For x =
(0, 1)g E p1(Z/NZ), denote by x the image of gco in Xo(N). Let (x,~’) _
((u, v), (u’, v’)) = ((0, 1)g, (0,1)g’) E p1(ZjNZ). The hyperbolic triangle
of the upper half-plane whose vertices are oo, 0, and p is the boundary of
a fundamental domain of SL2(Z). It contains the support of the path co.
Therefore the pathes x and x’ do not meet if x 0 x’ except maybe at their
extremities.

These pathes meet at their extremities if and only if Fo(N)g = fo(N)g’,
Fo(N)g = = fo(N)g’T, or = where
~ and T are generators of the stabilizers of i and p respectively in SL2 (Z) .
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These cases correspond to the cases (u, v) = (u’, v’), (u, v) = (-v’, u’),
(u, v) = (v’, -u’ - v’), or (u, v) = (-u’ - v’, u’) respectively.

Therefore to calculate our intersection product we have only to take care
of the contributions at the elements of E E Xo(N). An analysis of these
contributions reveals that the pairing on H1(Yo(N);Z) which to (x, y) as-
sociates 5~) ~ S(y) is induced by the pairing

which to the classes of x’ and i associates 0 (resp. 1/2, resp. -1/2) if

x 54 x’T and x 54 x’r2 (resp. x = x’r, resp. x = x’T2). This last pairing
coincides with A when one identifies Ao(N) with 
We conclude the proof of the proposition 3.1. The degree deg-x of 7r

appears in the formula

where x and y are elements of H1(E,7G). In particular the image I of the
pairing on H1 (E, 7G) which to (x, y) associates 7r*(~) ~ is equal to
degJr Z.
The embedding of H1 (E, 7G) as a direct factor of Ao (N) - 

identifies it with AE. By lemma 3.4, the pairing (x, y) M 7r*(x) .7r*(Y)
coincides with A. Therefore I is equal to the image of A and dE is the

degree of the cuspidal parametrization.

Proposition 3.5. Let E be an optimal modular elliptic curve. The order

of CE is bounded by a universal constant.
Suppose that E is a Frey curve. Then the order of CE divides 16 if E is

not semi-stable; It divides 24 if E is semi-stable.

Proof: The group CE is isomorphic to Z /nZ x Z/mZ with nlm. Therefore
E has a Q-rational cyclic subgroup of order m/n. Mazur’s theorem implies
that m/n  163, and m/n  12 if E is a Frey curve. If E is a non-semi-
stable Frey curve, it has no rational subgroup of order 3 [17], and m/n
divides 4.

It remains to find a bound for n. Recall that the conductor N of E over

Q divides 33.26 times the square of a squarefree number [60] (in the case
of a Frey curve N divides 16 times a squarefree number). Recall that the

cusps of Xo(N) are defined over the cyclotomic field where d2 is the
largest square dividing N. In particular, any element of CE is defined over
Q(J.ld) (over Q(I) when E is a Frey curve). Because of the Weil pairing,
the field defined by the points of n-division of E contains Therefore
one has nld (nl4 in the case of a Frey curve and nl2 if E is semi-stable).
Therefore n divides 24 times a square free number. We have only to bound
its prime divisors.
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Let p be a prime number dividing n. The action of Gal(Q/Q) on the
points of p-division of E factorizes through an abelian group since the cusps
are defined over a cyclotomic field. Therefore PE,p is not surjective. Its im-
age is contained in a maximal subgroup of GL2(Fp). It can not be contained
in Borel subgroup when p &#x3E; 163. It can not be contained in an exceptional
subgroup when p &#x3E; 13. When p &#x3E; 163, it is contained in an abelian

subgroup of the normalizer of a Cartan subgroup. This abelian subgroup
must be contained either in the Cartan subgroup itself, which is impossible
when p &#x3E; 37 by a theorem of Serre ([70]) or into a group isomorphic to
Z/2Z x Z/2Z, which is also impossible because of the surjectivity of the
Weil pairing. Therefore one has p  163.

In the case of a Frey curve, we have proved that the order of CE divides
48 or 32. Any element of CE is defined over the field Q(z), which is a

quadratic field. Kamienny, Kenku and Momose ([35], [32]) determined all
the possible torsion subgroups of elliptic curves over quadratic fields. By
looking at their list, one finds that that any such torsion subgroup is of

order dividing 16 or 24.

Corollary 3.6. Let E be a Frey curve. The degree 8E of the corresponding
minimal pararraetrization satisfies the following inequalities

1

Proof. Let E’ be the optimal elliptic curve in the isogeny class of E. Let
6’ E be the degree of the corresponding modular optimal parametrization.
Since E is a Frey curve it has no rational cyclic subgroup of order &#x3E; 12.

Therefore one has 12ðk. The corollary follows from the equality
= dE (proposition 3.1) and from the proposition 3.5.

3.3. A problem. We conclude this article by raising a question which can
be formulated in elementary terms. By a theorem of Faltings, an elliptic
curve over Q is characterized by its conductor N and its coefficients al (E) for
1 prime number  c(log N)2, where c is a universal constant (see ~71~, note 6
page 632). We have only weaker results of this type for newforms: Newforms
of weight two for To(N) are characterized by their Fourier coefficients al for
1 prime number  gn,, where 9N is the genus of the curve Xo(N).

The coefficients satisfy the inequality I  2B/L
In view of the degree conjecture and of the corollary 3.6 the following

problem arises.

Problem 3.7. Given an integer N &#x3E; 0 and a family of integers al (E) (1
prime number  of absolute value  20, the Z-module of functions

--7 Z satisfying the Manin relations and the ai(E)-rnoduldr re-
lations is free of rank 0 or 2. Assurning that it is of rank 2, what bound
depending on N only can be given for dE 2
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We view see this problem more as an indication of the difficulty of the
degree conjecture rather than a promising way to tackle the abc conjecture.
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