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On an estimate of Walfisz and Saltykov for an
error term related to the Euler function

par Y.-F. S. PÉTERMANN

RÉSUMÉ . On étend la technique qui a permis à A. Walfisz d’établir
(en 1962) l’estimation H(x)  (logx)2/3(loglogx)4/3 pour le
terme d’erreur lié à la fonction d’Euler H(x) = 03A3nx 
tout en incorporant à l’argument des simplifications rendues pos-
sibles par des travaux de A.I. Saltykov et de A.A. Karatsuba.
On remarque en passant que la preuve proposée en 1960 par

Saltykov de H(x)  (logx)2/3(loglogx)1+~ contient une faute,
qui une fois corrigée ne livre "que" le résultat de Walfisz.

Les généralisations obtenues s’appliquent aux termes d’erreurs
liés à diverses fonctions arithmétiques classiques, et moins clas-
siques, comme par exemple à (~(n)/n)r, (03C3(n)/n)r et (03C3(n)/~(n))r
pour chaque valeur réelle de r, ou encore à 03C3(r) (n), la somme des
diviseurs exponentiels d de n tels que p03B1 d si p203B1~n et 03B1 &#x3E; 1.

ABSTRACT. The technique developed by A. Walfisz in order to
prove (in 1962) the estimate H(x)  (log x)2/3 (log log x)4/3 for
the error term H(x) = 6 03C02x related to the Euler
function is extended. Moreover, the argument is simplified by
exploiting works of A.I. Saltykov and of A.A. Karatsuba.

It is noted in passing that the proof proposed by Saltykov in
1960 of H(x)  (log x)2/3 (log log x)1+~ is erroneous and once cor-
rected "only" yields Walfisz’ result.

The generalizations obtained can be applied to error terms re-
lated to various classical - and less classical - arithmetical func-

tions, as for instance to (~(n)/n)r, (03C3(n)/n)r and (03C3(n)/~(n))r
for every real value of r, and also to 03C3(r)(n), the sum of the ex-
ponential divisors d of n with p03B1 d if p203B1~n and 03B1 &#x3E; 1.
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1. INTRODUCTION

Let cp denote as usual the Euler totient function, and consider the asso-
ciated error term 

, , -

It was already known to Dirichlet in 1849 that H(x) = o(x). A proof of
the more precise estimate

is given by Walfisz in his book [11], posthumously published in 1963. In
1960 already, however, A. I. Saltykov proposes a proof of the better

where e is an arbitrarily small positive number. His proof however contains
a mistake, and once amended "only" yields Walfisz’ result (1) (see the
details in Section 5 below).

Saltykov’s paper has been considered suspect for another reason: it relies
on a theorem proved in [5], in a paper in which M.N. Korobov also makes
an (as of today) unverified claim about the Riemann zeta-function (see ~11~,
Notes on Chapter 5, p. 226). But in his work Saltykov only uses proved
results of Korobov. Walfisz, who died in 1962, never mentions Saltykov’s
paper. It thus appears that he was unaware of its existence, as the possi-
bility that he could have considered it suspect because of the use made in
it of [5], and simply ignored it without even mentioning it (as it has been
suggested), is very unlikely. Walfisz knew indeed very well Korobov’s pa-
per, and not only the few last lines of it containing the unverified claim. In
fact an essential ingredient of his own proof of (1) comes from this work, as
he himself acknowledges it on page 223 of [11]: "Als Quelle fur §2.2 diente
die Arbeit Koroboff [1] (in this paper: [5]). Sie wurde, unter Beibehaltung
aller Koroboffschen Ideen, sehr stark iiberarbeitet (...)" .

In my joint work with U. Balakrishnan [1] I treat a class of arithmetical
functions whose generating functions is of the form ((s)(Q(s + 1) f (s + 1), 7
where denotes Riemann zeta function and f is some "innocuous" factor.
For instance 0(n)/n is such an arithmetical function. For the related error
term I generalize Walfisz’ estimate (1) ((1~, Theorem 2). I must admit that
I have known the existence of Saltykov’s paper [7] for quite a time, but that,
because it is in Russian I repeatedly postponed the task of reading it, and
because of its bad reputation I never referred to it in my papers. So I am
very grateful to Professor A. Schinzel for twisting my arm and succeeding
in making me finally read it.
My reading then was however not careful enough, and I was first (wrongly)

convinced that Saltykov’s proof was perfectly sound and that his result
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could be generalized, very similarly as I generalized Walfisz’ in [1], thus
yielding an improvement of our Theorem 2: this was announced in an
"Added in proof’ at the end of [1].

Also, there is a mistake in [1]. Hypothesis (hl) in Theorem 2 of this
paper, stating that 1 (log x)a for some a &#x3E; 0, is not sufficient
to ensure the validity of this result (the last argument in the proof of
Lemma 3.3 on pages 52-53 is not correct under that too weak hypothesis).
Thus, Theorem 2 of [1] is not proved for a class of functions v as large as
stated there.

There are three objects to this paper.
(a) I first prove that the result of Theorem 2 in [1] is nevertheless true for
a class of functions including all the v associated to the examples treated
in [1] i.e. to the error terms of the summatory functions of 

(a(n)/n)O and (Q(n)/~(n))a~2. Indeed Theorem 1 below provides the re-
quired estimate when the function v satisfies hypothesis (hl) below instead
of (hl) in [1]. And in fact, the proof of Theorem 2 in [1] (under the as-
sumption of the new (hl)) can easily be amended by using Lemma 8 below
in the proof of Lemma 3.3 of [1].
(b) As for Theorem 2 below, it is more widely applicable, but with a
slightly weaker result than Theorem 1. Both Theorems 1 and 2 are proved
in Sections 2 and 3. Section 4 is devoted to some applications.
(c) Finally, in a short section at the end of the paper (Section 5) I give
some details on Saltykov’s erroneous proof.

I have a few comments on (a) and (b). In [1] our proof of Theorem 2 heav-
ily refers to Walfisz’ proof of (1) in [11]. I then chose this solution mainly
because of space (our paper [1] is rather long), and this was justifiable by
the availability of (11~, although sometimes on the verge of inadequacy. In
the present work I don’t only exploit Walfisz’ ideas, but also Saltykov’s.
On the one hand the proof of the theorems requires further generalizations
of some of the auxiliary results of Walfisz and Saltykov. And on the other
hand, Saltykov’s paper [7] is not so easy to find, and in addition already
heavily refers to Walfisz’ proof - in an earlier version [10] providing a weaker
estimate than ( 1 ) . So I could decently not in turn heavily refer to Saltykov’s
paper. I finally chose to refer without proof only to auxiliary results whose
original statements don’t need any modification for my purpose (Lemmas
A, B and C), and whose proof can easily be found in the literature. This of
course means that large parts of this work are little more than a translation
of large parts of [11] and [7]. I however think that a self contained proof is
this time definitely required.

As I said, Korobov’s results used by Saltykov are correctly proved. In any
case, in the present work I use instead a later (1971) and more general result
of Karatsuba’s [4] with the help of which the proof can be considerably
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simplified: as soon as M G x1-f for some e &#x3E; 0, there is no need anymore
to treat exponential sums of the type e(x/m) according to the
size of M (i.e. with a method of Weyl for the larger values of M, and with
a method of Korobov originated from the works of Vinogradov for smaller
values of M). Thus Korobov’s paper [5] is not used at all in this work.

Finally, it should be mentioned that the original hypothesis (h3) in [1]
is stronger than (h3) below: it requires not only that pv(p), but also that

be ultimately monotonic. It is the Main Lemma of Section 2 below
that permits this simplification: in [1] it was only available for k = 1; here I
apply it for k = 2 also when I prove Theorem 1 (in the proof of Lemma 11).
For some applications this is appreciable, as it is sometimes not so easy
to see that p2v(pz) is ultimately monotonic (see for instance the proof of
Theorem 4 in [1]).

I now state the two main results of this paper.

Theorem 1. Let vn = v(n) be a real multiplicative arithmetical function
satisfying, for some real numbers a &#x3E; 0, ,(3 &#x3E; 0, and Fr (r &#x3E; 0), and for
every positive natural number À,

(h3) pv(p) is an ultimately monotonic functions of p,
and P"v(p") is bounded for every v &#x3E; 1.

Set y for some positive number b  1, t := log x, and
u := log t = log log x. Put := {~} - 1/2. Then I have

Theorem 2. Let S2(n) denote the number of all prime divisors of n (p be-
ing counted v times if P" divides n but pv+1 does not). Let vn = v(n) be a
real multiplicative arithmetical functions satisfying, for some real numbers
a &#x3E; 0, ,C~  1, 7 &#x3E; 1, a &#x3E; 0, c &#x3E; 0, and Fr (r &#x3E; 0), for every positive nat-
ural number A, for some positive integer Ko &#x3E; 0, and for absolute positive
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constants Kl and K2,

pUv(p") is an ultimately monotonic function of p, with
.. ~ ... ., I - _ .

Set as before y, t, and u. Then I have

Remark 1. Hypothesis (hl) implies irc particular that

Acknowledgements. I am grateful to Professor S. Kanemitsu for trans-
mitting to me the translation in English he made of a large part of Saltykov’s
paper [7].

Je remercie vivement le rapporteur, dont la lecture minutieuse m’a per-
mis de corriger de nombreuses coquilles, petites fautes et imprecisions, et
de rendre ainsi je 1’espere ce travail plus agréable à lire.

2. AN EXPONENTIAL SUM ON PRIMES.

In this section I prove the fundamental auxiliary result just below, which
I call Main Lemma. Lemmata 6 and 7 at the end of the section are also
essential auxiliary results (Lemma 6, which is used for the proof of the Main
Lemma, is also required for the proofs of the theorems; Lemma 7 is used
for the proof of Theorem 2). I first introduce some notation. In the sequel
N is a real number with
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where B is some positive constant, and t, u, and b are as in Theorem 1. In
addition I put

where ko is some positive constant. Also, as is customary, the symbol p is
used to denote prime numbers exclusively.

It should be noted (this will not be repeated below) that a number of
inequalities involving x and N (or parameters depending on x and N) I
state in the sequel are not necessarily true for every positive x and N, but
only for large enough x and N.

Main Lemma. and Let A &#x3E; 0. Then there is a choice of B, such that if
k is a positive integer and

we have

Remark 2. Walfisz proves this for k = 1 with A = 5 (see [11], Hilfssatz
.~.,~.8). I note in passing that I don’t claim that the constant implied by the
symbol « is independent of k. We shall use the Main Lemma with k =1
and k = 2 for the proof of Theorem 1, and with k  Ko for the proof of
Theorem 2. The auxiliary quantity No is used in the proof, and the involved
constant ko depends on A (the value of B for which the Main Lemma is
satisfied will in turn depend on We put

I first state three auxiliary lemmas, whose proofs are available in the
literature.

Lemma A. If d(n) denotes as usual the number of divisors of n then we
have

and

This is well known. A proof is given in [11] (see Hilfssatz 4.4.1).
Lemma B. Let f (x) be real and have continuous derivatives up to the

I

r-th order, where
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This is also well known. A proof can be found for instance in Titchmarsh’s
[9]: see Theorems 5.9, 5.11 and 5.13. Or in Ivi6’s [2]: see Lemma 2.6. Also
see Walfisz’ (11~, Hilfssatz 4.2.5.
Lemma C (Karatsuba, [4] Theorem 1).
Let N and P be integers, P being positive. Let f (x) be a real function
having a continuous (n + l)-th derivative, n &#x3E; 2, in the interval N  x 
N + P. Suppose that there exist positive absolute constants 
and c4 such that co  1, ci  1 and c2 + c4  C1; an integer r such that

r~; and 2 ( j = 1," - , r) not exceeding k, such that
for N  x  N + P the following inequalities are satisfied:

Then for each positive integer Pi not exceeding P, if we let

we have

where A &#x3E; 0 and ~y &#x3E; 0 are absolute constants.

In the proofs of the Main Lemma and of Theorem 1 we shall use Karat-
suba’s theorem applied to = 

Lemma C1. Let k be a positive integer, 0  e  1, z &#x3E; and

exp(48(k + 1)2/E2)  Q  (~’  2Q, and put {3:= log Q/ log z Then

for some absolute constants c.

Proof of Lemma 01. We apply Lemma C to f (x) = z/xk with
n = [48(k + 1)/(e2,Q)~, N = P = Q and sj all the integer s with 3/(E~3) 
s  6/(f(3) (their number r satisfying 32(~+1 n  r  n), and with
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We verify that conditions (a) and (b) of Lemma C are satisfied. We have,
when Q  ~  2Q,

and similarly

and the lemma is proved. D

We now proceed to prove the Main Lemma.

Proof of the Main Lerrima. In the three first lemmas below we first reduce
the problem of estimating S’ to the problem of estimating the more man-
ageable expression T(M, U) defined just before the statement of Lemma 3
below. If we put P := then we have
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and

whence

where we put

Now we split the interval [1,~V~] in O(log N) = O(s) intervals of the form
where M’  ý2NI/k, in such a way that

none of the numbers MIlk is an integer. We write

where

We dispose of the with large values of M.

Lemma 1. For ~VI &#x3E; N 2/5 we have

Proof. 1. First suppose that xil2  N  xexp(-tb).
We apply Lemma B with a = M k and b = Mi. We obtain
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Note that since we have M =
whence D &#x3E; 2/5. We have

Now we put r = ~k/D~ + 2 and we note in passing that
We have

and

The last expression is  -D/k  -2/(5k) if r &#x3E; 3, and is = -1 if r = 2
(since then {k/D~ = k/D). We recall that exp(-tb) and we have
thus 

-

whence the lemma in this case.
2. There remains to consider the case where exp
We apply Lemma Cl. Put ,
x3fl0 and M -
and Lemma Cl holds with e = 2/5. Hence

for some positive constant c. Since log N « log M we have for some positive
constants c’ and c"

We conclude the proof of the lemma by noting that

Now we consider the case where M  We may write

We call an integer d in the expression above 6h when it has exactly h prime
divisors p &#x3E; No. Note that it is assumed below that 6h I P (so that in
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particular the divisors of 6h are all distinct). Let ho be the largest value of
h for d  N. Since 2h~  N we see that

We have

where

We dispose of Soj (M).
Lemma 2. For M  N2~5 we have

Proof. Let L2 := -ko/(3k) + 1 and suppose that 60 &#x3E; If
~ denotes the number of (necessarily distinct) prime divisors of 60 (each of
which, by definition of bo, doesn’t exceed No), we have

whence

Hence

Thus by Lemma A we have
,

and the lemma is proved.

Now when 0  h  ho we write
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where Thj2(M) is restricted to the terms with p ~ I q and Thjl(M) to the
others. (Note that for instance is empty). Putting q = pr we see
that

where L3 = s/(ko log2 s). Since Thj1(M) = we have

And now we split the summation interval No  p  of the

inside sum of in O(s) intervals of the form U k  p  U’, where
and we write

where

Finally we define, for 1~2 &#x3E; 0,

where ; &#x3E;

and we prove

Lemma 3. For M  N 2/5 and U as in the definition of
have 

- ’" ? .....

Proof. Recall that If we write
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we have

where "£’ means that q satisfies Thus

and

Hence a use of Lemma A yields

Since we have

the last estimate can be rewritten as

where we now let q and q1 take atl positive integral values not exceeding
To this last estimate the terms with q = ql contribute at

most a 0 of
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whence

where V and V’ are as in the definition of T(M, U) above. Now we have

and thus

Moreover we have

whence

Now when the conditions
&#x3E; are satisfied we also have 

z  and the lemma is proved. D

To complete the proof of the Main Lemma, there thus remains to esti-
mate T(M, U) when M  N2/5. We consider a wider class of functions.
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Definition. For k2 &#x3E; 0, z := qïk - and v an arithmetical function

satisfying (hl) of Theorems 1 and 2 let

where M, U, V and V’ are assumed to satisfy

Remark 3. We shall prove with the three next lemmas somewhat more
than we need just now, i. e. that for each choice of the positive constants ko
and k2 and f or every A &#x3E; 0 there is a choice of B ensuring that

This will of course be used in order to complete the proof of the Main Lemma
(with simply v(q) = But it will also be used in the next section for
the proof of the theorems, with k = 1.

Lemma 4. Write z = with -1  a  1 and de-

fine (3 = (3(MU, À) with MU = Now let 

/3  3/4 where A is some positive constant. Let L5 &#x3E; 0. Then there is a
choice of A for which

Proof. Since MU :
whence (by using log(

And since 1
we may apply Lemma Cl with c = 1/4, Q = V, and xz instead of z. We



218

have, for some positive constant c,

if A3 &#x3E; 2kL6/c. So if we choose L6 &#x3E; L5 + 3 + 2a the lemma follows. D

Lemma 5. If MU &#x3E; xN-1 then 
-

for some L7(X) -t oo as x -t oo.

Proof. We apply Lemma B, with f (n) = xz/n k, a = V - 1, and b = V’.
We have

whence

Now if we set r = [klD] + 2 as in the proof of Lemma 1, then we have
2  r  k + 2 and 2R - 2  2 k+2 whence

and
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(As in the proof of Lemma 1 the last estimate is obtained by considering
separately the cases r &#x3E; 3 and r = 2). Hence we have

and the lemma is proved. 0

Lemma 6. Let L &#x3E; 0 and choose the constant A sufficiently large to ensure
that holds for L5 = L. Put B = 3Ako. Then

Proof. 1. By Lemma 5, Lemma 6 is true when MU &#x3E; xN-1. By Lemma 4
it is also true for 1

~ (3 f 3/4, and thus when
(3/(1 - (3). Hence it is true for

Since on the other hand No, in order to conclude the proof it is
sufficient to ensure that

Since finally log( the last estimate will in
- -"

turn be verified if

By hypothesis we have

and Lemma 6 is proved. 0

We are now in position to conclude the proof of the Main Lemma. We
use Lemma 6 with the arithmetical function v(n) =1 /n. From Lemma 3
we see that (for 0  ~  ho)

This implies with (7), (6) and Lemma 2 that (for 0  h  ho)

Now with (4), (5) and Lemma 1 we see that
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and finally with (3) and (2) that, if we choose k2 &#x3E; 3 + 2ko/(3k),

This concludes the proof of the Main Lemma. D

Remark 4. Given A &#x3E; 0 we may choose the various constants involved in
the proof as follows. As is mentioned at the beginning of the section we set
l~o = (3A + 9)k. Then we put k2 = 3 + 2ko/(3J~), and we choose A large
enough to ensure that Lemma l~ is satisfied with L5 = -3 + k2. Finally we
set B = 3Ako.

Remark 5. Given A &#x3E; 0, we shall require in the next section the Main
Lemma to szmultaneously hold f or k =1, 2, ..., Ko. This can be ensured by
setting ko = (3A + 9)Ko, k2 = 3 + 21~0/3, A large enough to ensure that
Lemma l~ is satisfied with L5 = -3 + k2 for k =1, 2, ..., Ko, and B = 3Ako.

We conclude this section by an auxiliary result required for the proof of
Theorem 2.

Lemma 7. Let

where No  U  U’  2U  2NNõ1, and let L &#x3E; 0. Then, provided the
constant B (with Bt2~3u4/3  s is chosen large enough we have

Proof. The proof is very similar to that of Lemma 6. Briefly, it goes as
follows.

First, as in Lemma 4, we show that T(v, U) « N2s-L if U = (zzl’ with
the condition  3/4 (provided A is chosen
large enough). For this we apply Lemma Cl with E =1 /4, Q = U and xz
instead of z.

Then, as in Lemma 5, we show that If U &#x3E; (xNo 1 s-~2 ) 3/4 then T (v, U) «
for some L7(x) -~ oo as x --~ oo. For this we apply Lemma B with
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r = 2: we obtain, by also using U  2NNo 1 « exp(-tb) and Re-
mark 1,

Finally we conclude the proof as in that of Lemma 6, by ensuring that

Note that for this it is sufficient to choose B &#x3E; 2Ako: thus B as in Lemma 6
is satisfactory. D

3. PROOF OF THE THEOREMS.

The proofs of both theorems are very similar and are presented simulta-
neously below. Only a few estimates are obtained differently if hypotheses
(h2*), (h3*) and (h4) of Theorem 2 are assumed instead of (h2) and (h3)
of Theorem 1. For both proofs we shall need

Lemma 8. If v satisfies hypothesis (hl) and if y  then

Proof. If a &#x3E; ,Cj &#x3E; 0 and {3’ := [{3] + 1 we have

we have
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Hence

and the lemma. 0

We let similarly as in Section 2 N  x exp(-tb) be a real number and
put as before s := log N and t, u and b as in Theorems 1 and 2. We will
make use as before of an auxiliary quantity

and shall assume from now on, for the proof of Theorem (~9 = 1 or 2),
that N satisfies

with

and

and

where B is large enough to ensure that the Main Lemma holds for A = a+5,
for k = 1 and2ift9 = 1, and for k = 1, 2, ..., Ko if {) = 2. In order
to simplify the notation we put Ko = 2 in case # = 1. We also ask
that B be large enough to ensure that Lemma 6 with k = M = 1 and
Lemma 7 both hold for L = 12. The first condition on B can be satisfied
with the use of an auxiliary quantity such as No with ko &#x3E; (3a + 24)Ko,
and of an auxiliary constant k2 (as in the definition of T(v, M, U)) with
~2 &#x3E;_ 3 + 2ko/3 &#x3E; (2a + 16)Ko + 3 in the proof of the Main Lemma: see
Remarks 4 and 5; the second condition, however, can be achieved with any
(positive) choice of the auxiliary numbers ko and k2. On the other hand
we shall see below that the proof requires to choose k2 &#x3E; 24 + 4a (see the
last lines of this section). We may thus set
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We prove the theorems for x an integer; if x is not an integer the results
then follow from (hl) (see Remark 1), since

Now if w := it is an immediate consequence of (hl) (also
see Remark 1) that

We shall prove that

whence the theorems. The last sum consists in O(t) sums of the type
where Q  Q’  2Q and Q  (~’ _ y,

and it is thus sufficient to show that

This last estimate will follow from

which we proceed to reduce in turn to Assertion 1 below.

Assertion 1. Let z &#x3E; ee, V := log z, ~  Q’  2Q and
of

Then

Lemma 9. Assertion 1 implies estimate (10).
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where wa = satisfies

and

Thus we have, with Y = x,

In S, Q and Q’ satisfy the conditions of Assertion 1. Indeed note that

we have z &#x3E; x, whence V-1~3(lOg V)1/3~-’~ C t-1/3u1/3+’?, and z  Rx =
Thus

Thus we have

As for S’2 we have, since R &#x3E; x2,

We just proved that

Now
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and thus

and with (hl)

This completes the proof of the lemma, since 2Q  ~ and the last sum is
empty. 0

Now we reduce Assertion 1 to Assertion 2.

Assertion 2. N  xexp(-tb) then

Lemma 10. Assertion 2 implies Assertion 1.

Proof. We apply twice Assertion 2: with x = z, N = Q, and with x = z,
N = Q’. We obtain

so that Assertion 1 is satisfied and the lemma is proved.

We reduce Assertion 2 to Assertion 3.

Assertion 3. If

and

where No  U  U’  2U  and where g(q) denotes the largest
prime divisor of q, then
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where the implied constants are independant of v.

Lemma 11. Assertion 3 implies Assertion 2.

Proof. We write

and we first estimate S’ ~. We have

We have from (hl)

As for II, suppose first that the hypotheses of Theorem 1 hold. We have

where denotes the number of integers not exceeding N and free
of prime factors larger than No. Since

(see for instance Theorem 111.5.1 in [8]), and since ko &#x3E; 16 + 2# we have
from (h2)

Hence in this case

Now assume instead that (h4) of Theorem 2 holds. Then, since g(q)  No
we have No ~q&#x3E; &#x3E; Nl/2, whence and

From (h4) it follows that

And since ko &#x3E; (a + 4)2/ log y we also have in this case

There remains to estimate S3.
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We write

and

where

and

First we assume that the hypotheses of Theorem 1 hold, and we evaluate
Its inner sum is, if we let pn denote the n-th prime number,

where

and

If v &#x3E; 3 we are content with the estimate I W (pn) ~K And if v = 1
or 2 we have tV(pn) I N3I (~v) when p~  N31(4v) , and

when N3/(4v) ~ since then p" &#x3E; (recall that B’ &#x3E;
4B), and the Main Lemma applies with A = 5 + a, x/q instead of x and
p~ instead of N, Hence, with (h3) we see that the expression in (11) above
is D of

and of
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the implied constant being independent of v in the second estimate. With
(hl) it follows that

and with Remark 1 that, for v = 1 and v = 2,

Finally, with Assertion 3 we see that

for every v (and for an implied absolute constant), and the lemma is proved
in this case.
Now we assume that the hypotheses of Theorem 2 hold. First we evaluate

S3(v) = Sl(v) + S2(v) when v  Ko. The inner sum of Sl(v) is as in (11).
Now we may rewrite 52(v) as

where No = No(q) := and its inner sum as

As before we have

This time, since

(recall that B’ &#x3E; 3koB), and since N/q, the Main Lemma of Section 2
applies to both sums, with A = a + 5, x / q instead of x and p~ or No instead
of N . So Ko we have

Hence we see with (h3*) that the expressions in (11) and (12) above are
both 0 of
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if v  whence with Remark 1,

Finally we see by Assertion 3 that

whence Assertion 2 holds for # = 2 also: the lemma is proved. D

Now we use Lemmata 6 and 7 of Section 2 to prove that Assertion 3

holds, thus concluding the proof of the theorems. Let T (v,1, U) be as
defined just before Lemma 4 (with M = 1 and k =1), and T(v, U) be as in
Lemma 7.

Lemma 12. There are some V, V’ satisfying

such that

where the implied constants are independent of v

Proof. We estimate I S2 (v, U) ( 2. The estimation of ~ I 81 (v, U) 2 is done
very similarly (and in a simpler way). We have by the Cauchy-Schwaxz
inequality, and by (h3) if t9 =1 and (h2*) if t9 = 2,

..n

If we set
we have

where z denotes as before q11- q-1. With the help of (h2) if # = 1 and
(h2*) if # = 2 the contribution from the terms with q = q1 on the right
of this last estimate is easily seen to contribute a And it is
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clearly sufficient to estimate only half the remaining terms in (13), i.e. the
terms with ql  q. Now the conditions

imply

We estimate the terms moved aside to replace the condition 91  9 
by (14). First by using (hl) we easily see that if we restrict the

sum to the terms with ql  9 ~ NU-1, the terms moved
aside contribute at most O(N 2,-k2/~-+2c,). So we may suppose that 91 &#x3E;
NU-1s-k2/2, that is whence with Lemma 8

It follows that the terms moved aside to ensure that q - q1 &#x3E; NU-ls-k2
contribute at most a 0(~5"~~~). On comparing (15) with the def-
inition of T (v,1, U), we conclude the proof of the required estimate for
I sz(~~ U) ~2. 0

By Lemma 12, (8) and the choice of B the theorems are proved.

4. SOME APPLICATIONS

I first state three applications of Theorem 1.

Theorem 3. Let a denote the usual sum-of-divisors function, 0 the Euler
phi function, and r some real number. We have

where the Ci, Bm and Dm are real constants, and where
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with y and v = vi as in Theorem 1, whence

and

Proof. As it is mentioned in the introduction the proof of (19) is to be
found in [1], with the restriction that only a weaker version of (hl), not
sufficient to ensure the validity of (20), is verified there. (On the other hand
a stronger version of (h3), which is not needed anymore, is also obtained
there). I briefly indicate how (20) is established for i = 0 by using the
results of [1] and Theorem 1 of this paper (the proofs for i = 1, 2 are
similar). For v = vo we have (Q(n)/n)’’ _ (1 * v)(n) with

(Lemma 5.1 of [1]). It follows that E n-s = where
the function f (s) can be represented by a Dirichlet series whose abscissa
of absolute convergence is strictly smaller than 1. Thus Lemma 2.3 of [1]
applies to v (n) (with a =1 [ r 1), and this immediately implies (hl),
with a =~ r ~ I -l. For a proof of (h2) see Lemma 5.3 of [1]. And with (21)
we easily see that (h3) is satisfied. D

We now turn to an application of Theorem 2. Let n be a positive integer
with canonical decomposition n = p’l ... p’k. We call d an exponential
divisor of n if d = lAk (1  j  k). We can consider the
sum of all exponential divisors of n, which we denote by u(e)(n) (with the
convention that u(e)(1) = 1), or a sum u(r)(n) restricted to the exponential
divisors of n of a certain type (and also with the convention that Q~r~(1) _
1). For instance if we exclude in u(r)(n) the divisors of n for which I1j = vj / 2
when vj &#x3E; 2, then we have = (1 * vr) (n), where for v = v,.

It follows that, for some Ho(s) represented by a Dirichlet series with abscissa
of absolute convergence aa(Ho)  0, we have
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and

Similarly we see that

and

Now if we use well-known estimates for C(2s + 1) and C(3s + 1) in a large
enough zero-free region of the function ( (see for instance Chapitre 11.3 of
[8]), a standard complex integration argument invoking Perron’s inversion
formula and the theorem of residues, exactly as in a classical proof of the
prime number theorem (see for instance Section 11.4 and the introductory
paragraph of Section 11.5 in [8]) yields

Note that of course a more precise estimate can be obtained instead of
(24), which is however sufficient to ensure that the first part of (h2*) is
satisfied. And by (23) hypothesis (hl) (with a = 1) is also satisfied. Now
for 1  q  21/4  and k &#x3E; 44 we have, for 0  Ck  
_

We clearly have c(n) 1= 0(l), and since
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we have a(n) = 0 if n is not squareful, and

if n = Similarly b(n) - 0 if n is not cubeful, and I b(n) 1
~(~)~-i/3 ~ follows that

where we have used E. Grosswald’s estimate 2‘~~"~ = O(N log N)
(see [3]). Note that by using an argument similar to that required to obtain
Theorem 3 (see Chapitre 11.5 of [8] or [1]) one can show that in fact

But (25) is sufficient for our purpose, which is to ensure that (h4) holds.
Moreover from (22) it is easy to verify that the second part of (h2*), as
well as (h3*), is satisfied for v &#x3E; Ko := 3. Now if we note that

that, again with a standard complex integration argument we have

where the Di are some effective constants, and finally that for y as in the
statement of Theorem 2 we have

we see that all the assumptions of Theorem 2 are satisfied by v = vr. Thus
we may state
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Theorem 4. We have

where

Remark 6. In [6] we establish
Theorem 4A. We have

where

With practically no modification the method we use there (see "Proof of
Theorem 2" in [6]) yields

which of course is not quite as good as Theorem l~ just above. On the other
hand, however, we cannot improve Theorem !~A with the help of Theorem
2, which is not applicable in this case: the function ve doesn’t satisfy the
second part of (h2*).

5. REMARKS ON SALTYKOV’S PAPER 7

Saltykov proves in [7] (Lemma 1.5) that if, under certain conditions on
the coefficients of the polynomial f (y) = + ..- + al y, we have

for some positive absolute constants ci and c2, where 0, y2 &#x3E; 1 and
1 + ~y2 &#x3E; yl, then, if A &#x3E; 0 is a sufficiently large constant depending
upon ’Y1 and ’Y2, and logz &#x3E; if # belongs to the interval
[.A(log~/(~+~+i)~ 1/12], and if Q and Q’ are integers such that Q  Q’ 
2Q and Q = [z,3], we have

where c3 and c4 are some positive constants (depending on 71 and y2).
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In the proof of Lemma 2.6 he then applies this result, obtaining

where MU  V’  2MU and

and belongs to the interval

Saltykov claims that

(first displayed formula after (37) on page 43).
This estimate is essential for the proof of (S) in the introduction, with

7 = 2/3. But the only values of ’Y1 &#x3E; 0 1 for which ’Y = 2/3 and for
which estimate (26) is proved are yl = 0 and 72 = 2. No stronger estimate
is given in Theorem 1 of Korobov’s [5], used by Saltykov (nor in Theorem
1 of Karatsuba’s [4], used in the present paper). And for these values of ’Y1
and y2 the equality in (30) is not satisfied when /3 = A(log(xN-1 HÀ))-1/3.
Indeed, since

the middle expression in (30) is then

In fact, Saltykov’s argument is correct as soon as ’Y1 &#x3E; 0, and thus yields
(with -y2 = 2)
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for every e &#x3E; 0, which is the estimate he claims to improve upon (and which
he attributes to Korobov: see below (9) on page 35 of [7]). If however, sim-
ilaxly as in Lemma 4 in Section 2 above, we make the stronger requirement
that ~i be in the subinterval of (29)

then we have instead

provided that A3 &#x3E; 33/(2c3). With this amendment Saltykov would have
obtained Walfisz’ estimate (1) (see Lemma 2.8 of [7]) in a simpler way (and
before Walfisz), avoiding the long and technical proof of Hilfssatz 4.4.7 in
(11~.

However, it seems very unlikely that Saltykov’s method could, after being
further amended, yield a better result than (1), as long as (26) is not proved
for values of 11 and q2 with y  2/3: after all, the crucial ingredient in
both arguments (Walfisz’ and Saltykov’s) is the same theorem of Korobov.

REFERENCES

[1] U. Balakrishnan and Y.-F.S. Pétermann, The Dirichlet series of 03B6(s)03B603B1 (s + 1) f (s + 1):
On an error term associated with its coefficients, Acta Arith. 75 (1996), 39-69.

[2] A. The Riemann zeta-function, John Wiley and Sons 1985.
[3] E. Grosswald. The average order of an arithmetical function, Duke Math. J. 23 (1956),

41-44.

[4] A.A. Karatsuba, Estimates for trigonometric sums by Vinogradov’s method, and some
applications, Proc. Steklov Inst. Math. (A.M.S English translation, 1973) 112 (1971),
251-265.

[5] M.N. Korobov, Estimates of trigonometrical sums and their applications (in Russian),
Uspekhi Mat. Nauk. 13 (4) (1958), 185-192.

[6] Y.-F.S. Pétermann and Jie Wu, On the sum of exponential divisors of an integer, Acta
Math. Hungar. 77 (1997), 159-175.

[7] A.I. Saltykov, On Euler’s function" (in Russian), Vestnik Moskovskogo Universiteta,
Seriya I: Matematika, Mekhanika, no vol. number, fasc. number 6 (1960), 34-50.

[8] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres. Institut
Elie Cartan 13 1990.

[9] E.C. Titchmarsh, The theory of the Riemann zeta-function, Oxford, Clarendon Press
1951; second edition revised by D.R. Heath-Brown, ibid 1986.

[10] A. Walfisz, Über die Wirksamkeit einiger Abschätzungen trigonometrischer Summen,
Acta Arith. 4 (1958), 108-180.

[11] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie. VEB Deutscher
Verlag der Wissenschaften, Berlin 1963.

Y.-F. S. PGTFRMANN
Section de Mathématiques
Université de Geneve

2-4, rue du Li6vre, C.P. 240
1211 Genbve 24 SUISSE
E-mail: petermaamibm. unige . ch


