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The Distribution of the Sum-of-Digits Function

par MICHAEL DRMOTA et JOHANNES GAJDOSIK

RESUME. Dans cet article, nous démontrons que la fonction
"somme de chiffres" (relative à des recurrences linéaires finies et
infinies paxticulieres) satisfait à un theoreme central limite. Nous
obtenons aussi un théorème limite local.

ABSTRACT. By using a generating function approach it is shown
that the sum-of-digits function (related to specific finite and in-
finite linear recurrences) satisfies a central limit theorem. Addi-
tionally a local limit theorem is derived.

1. INTRODUCTION

Let G = be a strictly increasing sequence of integers with Go = 1.
Then every non-negative integer n has a (unique) proper G-ary digital
expansion

with integer digits 0 provided that

for 0. The sum-of-digits functions sG(n) is given by

and the aim of this paper is to get an insight to the distribution of sG ~n),
i.e. to the behaviour of the numbers
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It is also very convenient to consider a related sequence of (discrete) random
variables XN, N &#x3E; 0, defined by

Expected value and variance of X N are given by

There is a vast literature concerning asymptotic properties of EXN and
VXN and on the distribution of XN.

Asymptotic and exact formulas for EXN are due to Bush [3], Bellman
and Shapiro [2], Delange [5], and Trollope [20] for q-ary digital expan-
sions and due to Peth6 and Tichy [17] and Grabner and Tichy [12, 13] for
G-ary digital expansions with respect to linear recurrences. Correspond-
ing formulas for higher moments and for the variance VXN can be
found in Coquet [4], Kirschenhofer [15], Kennedy and Cooper [14], Grab-
ner, Kirschenhofer, Prodinger, and Tichy (11~, and in Dumont and Thomas
(7J .
The asymptotic distribution of X N and related problems are discussed

in Schmidt [19], Schmid [18], Bassily and Katai [1], and in Dumont and
Thomas [8].
The main purpose of this paper is to prove asymptotic normality (of

the distribution of XN) by the use of generating functions, where it is also
possible to derive a local limit law. (A similar approach was used in [6].)

2. RESULTS

In the present paper we will deal with basis sequences G = which

satisfy specific finite or infinite linear recurrences.

2.1. Finite Recurrences. In the first case we will make the following
assumptions:

1. There exist non-negative integers ai, 1  i  r, such that (for j &#x3E; r)

2. 

3. Forall j &#x3E;randlkrwehave
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In section 3 we will show that the above assumptions imply that the char-
acterictic polynomial

has a unique root a of maximal modulus which is real and positive (i.e. all
other roots a’ of P(u) satisfy  a) and that

for some constant C &#x3E; 0.

.Remark. Usually (e.g. see [12]) it is assumed that a2 &#x3E; ~ ~ ~ &#x3E; ar &#x3E; 0
j

and that G j + 1 for j  r. In this case all assumptions are
i=l

satisfied. (Furthermore, P(u) is irreducible and a is a Pisot number.)
If the sequence of ai,1  i =5 r, is not decreasing then the situation is more
complicated, e.g. if al = ar =1 and ai = 0 for i ~ l, r then condition 3. is
satisfied, too. However, if r = 4, al = a3 = a4 = 1, and a2 = 0 then 3. is
violated.

2.2. Infinite Recurrences. In the second case our starting point is

Parry’s a-expansion of 1 (see [16])

where a &#x3E; 1 is a real number and ai, i &#x3E; 1 are positive integers. (In the
case of ambiguity we take the infinite representation of 1.) The sequence
G = is now defined by

If we further set

and

then

and it follows that zo = 1/a &#x3E; 0 is the only singularity on the circle of
convergence izi = zo, which is a simple pole. Hence

and so we are in similar situation as above.
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2.3. Asymptotic Properties. First we state a theorem concerning ex-
pected value and variance of X N (defined) in ( 1.1 ) . Actually this statement
is more or less a collection of well known facts (see [5, 17, 13, 15, 7, 10~).
More precisely, much more is known about the following 0 ( 1 )-terms. There-
fore we will not present a proof.

Theorem 2.1. Suppose that G = satisfies a finite or infinite linear
recurrence of the above types. Set

and let 1/a(z) denote the (analytic) solution u = 1/a(z) of the equation

for z in a sufficiently small (complex) neighbourhood of zo = 1 such that
a(l) = a. Then

and

where

and

Our main result concerns the distribution properties of XN. We prove
asymptotic normality in the weak sense and provide a local limit law.

Theorem 2.2. Suppose that G = satisfies a finite or infinite linear
recurrence of the above types. If a254 0 then for every 6 &#x3E; 0

uniformly for all real x as N -~ oo.
Furthermore

uniformly for all non-negative integers k as N - oo.



21

In section 3. we collect some preliminaries which will be used in sections 4.
and 5. for the proofs of (2.2) and (2.3).

3. PRELIMINARIES

3.1. Finite Recurrences. We will first collect some basis facts which will
be needed in the sequel.

Lemma 3.1. Suppose that Go, G1,... , Gr-1 are positive, that Gj =
aigj-i for j &#x3E; r, where 0, 1  i  r, and that 1 :

r 

ai i4 0} =1. Then the characterictic polynomial P(u) = ur - has
i=l

a ’Unique root of maximale modulus which is real and &#x3E; 1. Furthermore, I

for a real constants C &#x3E; 0 and some 6 &#x3E; 0.

Proo f . First we show that P(u) has a unique positive real root a &#x3E; 1 of
r

maximal modulus. Set G(u) = 1- ajuj. Then G (u) is
j=l

strictly increasing for real u &#x3E; 0. Since G(o) = 0 and lim G(u) = oo there’ 

uniquely exists uo &#x3E; 0 with G(uo) = 1. Since Gn is strictly increasing we

have and consequently uo  1. Furthermore, G’ (uo ) =

Thus, a = 1/uo &#x3E; 1 is a simple root of P(u).

then

Furthermore, if lul = uo uo then the gcd-condition 1 :

ai 0 0} = 1 implies that

Consequently, there are no roots of P(u) other than a with modulus &#x3E; a.
Next it is clear that Gj has a representation of the form (3.1) for

some real C. We only have to show that C &#x3E; 0. For this purpose define

for j &#x3E; r. Then is multilinear and monotonic in all vari-
ables. Furthermore, Gr_1) = Gj and = aj.
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Hence, by setting t we obtain

ThusC&#x3E;0. D

Lemma 3.2. Suppose that G = (Gj)j&#x3E;o satisfies the above conditions 1. -~.

has digits

Suppose that n has the digital expansion

has digits

Proof. Since kgj-i + m  aigi we obtain for 1  z’  i by condition 3.

Thus, El (n) = aj-1 for j - i  I  j. Similarly,

implies = k and consequently = El (rn) for 0  t  j - i. This
completes the proof of the first part.

wehavefor0iL-j
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which gives = El (n) for j  1  L. Finally

provides fj(n’) = k and = ei (m) for 0  1  j.

Next let

and set

and

Lemma 3.3. For j &#x3E; r we have

Proof. First observe that the set {~ e Z : 0  n  ( j &#x3E; r) can be
represented as a disjoint union of the form

Thus by Lemma 3.2

which provides (3.2).

Corollary. We have

in which G(z, u) is defined in Theorem 2.1 and
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3.2. Infinite Recurrences. In the case of digital expansions which are
related to Paxry’s a-expansion we have similar properties.
Lemma 3.4. ([13]) Let G = given by (2.1). Then a finite se-
quence (,Eo, Cl 7... of nonnegative integers constitute the G-ary digits

I if and only if

for k = 0, l, ... , L, where " " denotes the lexicographic order.
Remark. Note that (3.3) implies that Lemma 3.2 holds for the infinite case,
too.

As above let

By using (3.3) (or the corresponding version of Lemma 3.2 for the infi-
nite case) we obtain a similar representation of B(z, u) as in Corollary of
Lemma 3.3 in the case of finite recurrences.

Lemma 3.5. ([13]) We have

in which G(z, u) is defined in Theorem 2.1 and

3.3. Composition. A similar procedure which led us to recurrences for
bj,k (resp. to generating function identities in Corollary of Lemma 3.3 and
to Lemma 3.5) can also be used to extract aNk from = aG; k.
Lemma 3.6. Suppose that

is the G-ary digital expansion of N, where j
Then
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Proof. By Lemma 3.2 (which is also valid in the case of infinite recurrences)
we have

Thus (3.4) follows. 0

4. GLOBAL LIMIT LAW

The first step is to obtain proper information of 

Proposition 4.1. Suppose that G = satisfies a finite or infinite
recurrence of the above types. Then

unif ormly for z contained in a sufficiently small complex neighbourhood of
zo = 1 as j --~ oo, where a(z) is defined in Theorem 2.1 and C(z) is an

analytic function with C(l) = C resp. C(1) = C’.

Proof. Firstly, let Gn satisfy a finite linear recurrence of the above type.
Then 1- = urP(u"1), where P(u) is the characteristic polynomial.
Thus = 0. Furthermore, since  0 for real and non-

negative z, u there exists an analytic function (for z in a sufficiently
small complex neighbourhood of zo = 1) with G(z, 1/a(z)) = 0 and a(1) _
a. Similarly we have G(l, a-’) = 0 and ’9 G(z, u)  0 in the case of
infinite linear recurrence. Thus, there also exists an analytic function a(z)
with = 0 and = a.

In both cases there exist analytic functions 
such that

for z, u in a complex neighbourhood of zo = 1, uo = a. Since 1/a = 1/a(1)
is the unique (and simple) zero of G(l, u) = 0 on the circle lul = 1/a
and since there are no zeroes for Jul  1/a the function G1(z,u) can be
analytically continued to Jul  (for some sufficiently small e &#x3E; 0) if
z varies in a (sufficiently small) neighbourhood of zo = 1. Withoug loss of
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generality we may assume that 11/a(z)1 ~ 1/a + E/4. Hence, R1(z,u) can
be analytically continued to the same region and we obtain for Jul  1/a+e

where C(z) = -a(z)P(z,1/a(z))/G1(z,1/a(z)). Finally, by Cauchy’s for-
mula we get

with some 9 &#x3E; 0. This completes the proof of Proposition 4.1. CJ

With help of Proposition 4.1 and Lemma 3.6 we can prove asymptotic
normality Observe that

is the characteristic function of XN.

Proposition 4.2. Suppose that a2 54 0 and set I-ZN = EXN and 0,2 =
VXN. Then for every E &#x3E; 0 we have uniformly for (logN)1/2-ë

Proof. Set f (z) = loga(ez) in an open neighbourhood of z = 0. Then we
have

with
rem 2.2). Hence, by using Proposition 4.1

in an open neighbourhood of t = 0 in R. Now suppose that
.,-v

with jo &#x3E; jl &#x3E; ... &#x3E; jL-1 and ei &#x3E; 0 is the G-ary expansion of N. Then
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by Lemma 3.6 and the trivial estimate we have

Now observe that

and that

Hence

Let c &#x3E; 0 be a (small) real number and let x be defined by
j",. Then ~   j-’ and consequently

Since jo = (log N)/(log a) + 0(1) this implies (4.2) directly 
(log N)ë/3. Furthermore, since

for I  (log N)1/2-ê and a sufficiently small c &#x3E; 0 we finally
obtain the full version of (4.2). 0

We can now use Proposition 4.2 to prove the first part of Theorem 2.2.
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Proof. Set

Then by Esseen’s [9, p. 32] inequality we have

Choosing T = (log N)1/2-E we directly obtain from Proposition 4.2 and by
applying the estimate

for (log N)-2 that

Hence, (2.2) follows. 0

5. LOCAL LIMIT LAW

In order to prove a local limit law for XN, i.e. the second part or Theo-
rem 2.2, we need more precise information on the behaviour of bj(z).

Proposition 5.1. Suppose that G = satisfies a finite or infinite
recurrence of the above types. Then there exist 17 &#x3E; 0 and J &#x3E; 0 such that

uniformly for It I  q, where C(z) and a(z) are as in Proposition l~.l, and

uniformly forq  

Proof. Obviously, (5.1) follows from (4.1) for some r &#x3E; 0.
For the proof of (5.2) we just have to observe that u)1 I  

1 if H  1, z 54 1, and Jul  1/a. Hence, by continuity there exist 6 &#x3E; 0 and
T &#x3E; 0 such that ~1 - G(u, I &#x3E; T uniformly for (real) t with 17  ~t~ I  7r

and (complex) u with Thus, is analytic (and therefore
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bounded) in this range and we obtain

with some 6 &#x3E; 0. C7

With help of Proposition 5.1 it is possible to derive asymptotic expan-
sions for via saddle point approximations.

Proposition 5.2. We have

uniformly f or all j, k &#x3E; 0.

Proof. We again use Cauchy’s formula

Since

we just have to evaluate

it follows that there

exists a constant c &#x3E; 0 such that e-Ct2 q. Hence,
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Finally,

This completes the proof of Proposition 5.2. 0

Finally Proposition 5.2 and Lemma 3.6 can be used to complete the proof
of Theorem 2.2.

L-1

Proof. As in the proof of Proposition 4.2 we suppose that N = E el Gj,
1=0

(with jo &#x3E; j1 &#x3E; ... &#x3E; jL-1 and el &#x3E; 0) is the G-ary expansion of N.
Furthermore, let e &#x3E; 0 be a (small) real number and let x be defined by
...- . ... _.. . ,_,
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where we have used p N = + O(1) and a 2 = jou2 + O(1). Hence, from

we obtain

If jð/2logjo then we have for 1  x

which finally gives

This completes the proof of Theorem 2.2.



32

REFERENCES

[1] N. L. Bassily and I. Kátai, Distribution of the values of q-additive functions on polynomial
sequences, Acta Math. Hung. 68 (1995), 353-361.

[2] R. Bellman and H. N. Shapiro, On a problem in additive number theory, Ann. Math. 49
(1948), 333-340.

[3] L. E. Bush, An asymptotic formula for the average sum of the digits of integers, Am. Math.
Monthly 47 (1940), 154-156.

[4] J. Coquet, Power sums of digital sums, J. Number Th. 22 (1986), 161-176.
[5] H. Delange Sur la fonction sommatoire de la fonction "Somme de Chiffres", L ’Enseignement

math. 21 (1975), 31-77.
[6] M. Drmota and M. Skalba, The parity of the Zeckendorf sum-of-digits-function, preprint.
[7] J. M. Dumont and A. Thomas, Digital sum moments and substitutions, Acta Arith. 64

(1993), 205-225.
[8] J. M. Dumont and A. Thomas, Gaussian asymptotic properties of the sum-of-digits func-

tions, J. Number Th. 62 (1997), 19-38.
[9] C.-G. Esseen, Fourier analysis of distribution functions. A mathematical study of the

Laplace-Gaussian law, Acta Math. 77 (1945), 1-125.
[10] J. Gajdosik, Kombinatorische Faktorisierungen und Ziffernentwicklungen, thesis, TU Wien,

1996.

[11] P. J. Grabner, P. Kirschenhofer, H. Prodinger, and R. F. Tichy, On the moments of the
sum-of-digits function, in: Applications of Fibonacci Numbers 5 (1993), 263-271

[12] P. J. Grabner and R. F. Tichy, Contributions to digit expansions with respect to linear
recurrences, J. Number Th. 36 (1990), 160-169.

[13] P. Grabner and R. F. Tichy, a-Expansions, linear recurrences, and the sum-of-digits func-
tion, manuscripta math. 70 (1991), 311-324.

[14] R. E. Kennedy and C. N. Cooper, An extension of a theorem by Cheo and Yien concerning
digital sums, Fibonacci Q. 29 (1991), 145-149.

[15] P. Kirschenhofer, On the variance of the sum of digits function, Lecture Notes Math. 1452
(1990), 112-116.

[16] W. Parry, On the ,03B2-expansion of real numbers, Acta Math. Acad. Sci. Hung., 12 (1961),
401-416.

[17] A. Pethö and R. F. Tichy, On digit expansions with respect to linear recurrences, J. Number
Th. 33 (1989), 243-256.

[18] J. Schmid, The joint distribution of the binary digits of integer multiples, Acta Arith. 43
(1984), 391-415.

[19] W. M. Schmidt, The joint distribution the digits of certain integer s-tuples, Studies in pure
mathematics, Mem. of P. Turan (1983), 605-622.

[20] H. Trollope, An explicit expression for binary digital sums, Meth. Mag. 41 (1968), 21-25.

Institut f3r Algebra und Diskrete Mathematik
TU Wien
Wiedner Hauptstrasse 8-10/118
A-1040 Wien, Austria
E-maid : drmotaotuvien . ac . at


