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S-integral solutions to a Weierstrass equation

par BENJAMIN M.M. DE WEGER

RÉSUMÉ. On détermine les solutions rationnelles de l’équation
diophantienne y2 = x3 - 228x + 848 dont les dénominateurs sont
des puissances de 2. On applique une idée de Yuri Bilu, qui évite
le recours à des équations de Thue et de Thue-Mahler, et qui
permet d’obtenir des équations aux (S-) unités à quatre termes
dotées de propriétés spéciales, que l’on résout par la théorie des
formes linéaires en logarithmes réels et p-adiques.

ABSTRACT. The rational solutions with as denominators powers
of 2 to the elliptic diophantine equation y2 = x3 - 228x + 848
are determined. An idea of Yuri Bilu is applied, which avoids
Thue and Thue-Mahler equations, and deduces four-term (S-)
unit equations with special properties, that are solved by linear
forms in real and p-adic logarithms.

1. Introduction

In a recent paper [SWI] , my colleague R.J. Stroeker and I determined the
complete set of solutions in rational integers to the diophantine equation

The quartic diophantine equation (Q) can be seen as a model of an elliptic
curve. In our solution methods we did not use that viewpoint, but rather
worked algebraically. Recently N. Tzanakis [T] has shown how the elliptic
logarithms method of Stroeker and Tzanakis [ST], originally designed for
Weierstrass models of elliptic curves only, can be adapted to the situation
of a quartic model for an elliptic curve, and in fact he chose equation (Q)
as one of the examples to illustrate his ideas.
We stress that the problem of integral points on elliptic curves is not

a well defined problem, in contrast to the problem of rational points. Bi-

rational transformations between different models of the same curve do

respect the concept of rational point, but not that of integral point, in an
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essential way. Therefore one should speak of integral solutions to elliptic
equations, rather than of integral points on elliptic curves.
When Stroeker and I worked on equation (Q), we also computed (as kind

of a standard procedure when dealing with an elliptic curve) the Weierstrass
equation of the elliptic curve it represents, being

We did a limited search for integral solutions, and found that there is a
large, but of course finite, number of them. Thus we found it a natural

question to ask for all the integral solutions to equation (W), and the re-
marks in the previous paragraph show that this problem is entirely different
from that of solving equation (Q). This paper solves this problem, and in-
deed a bit more, since it turned out to be not too much additional work to
determine the complete set of rational solutions to (W) with only powers
of 2 in the denominators, i.e. the S-integral solutions for the prime 2.

For determining the integral solutions the method of elliptic logarithms
[ST] (see also [GPZ1], [S]) is efficient, if a basis for the free part of the
Mordell-Weil group is known. However, a general method for this lat-
ter problem has not yet been found. Moreover, a p-adic analogue of this
method, that would be needed for the S-integer solutions, is not yet fully
available, mainly due to the fact that there is not yet a fully explicit theory
of linear forms in p-adic elliptic logarithms, analogous to the excellent work
of S. David [D]. For the rank 1 case however this has recently been done
[RU]. When a lower bound for p-adic elliptic logarithms can be calculated
and the Mordell-Weil basis is known, then it is known how to proceed, see
Smart [S], and Gebel, Peth6 and Zimmer [GPZ2].
As we have a rank 2 curve here, for the S-integral solutions we have

to apply more or less classical ideas. One method would be to translate
the problem into Thue- and Thue-Mahler equations, and treating those
with diophantine approximation methods, such as in [TWI], [TW2]. An
alternative approach here is to use a new idea of Yuri Bilu [B], [BH], which
uses ’ordinary’ (non-elliptic) linear forms in logarithms, but bypasses the
Thue (-Mahler) equations. This last method is practical in our case, due
to the nice factorization over Q of the cubic polynomial in (W), and it is
this method we use in this paper. This seems to be the first time such a
method is used for S-integral solutions.
We did work out the details for the other methods (elliptic logarithms

for the integral solutions and Thue-Mahler equations for the S-integral
solutions) too, but as this yields only routine proofs of the same results, we
omit details of these proofs.
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As a general conclusion of this paper we might state that Bilu’s method
can be practical and efficient, also p-adically, but only in special cases.

All the computations reported in this paper have been done on a 486
personal computer. We used our own multi-precision routines; for the al-
gebraic number field data we used Pari 1.38.
We now state our main result.

THEOREM 1. The only rational solutions to the Weierstrass-equation

of which the denominators of x and y are powers of 2, are the following 43:

2. Preliminaries

We rewrite the problem of rational solutions to (W) with powers of 2 as
denominators to the equation

where x, y E Z and k E We may assume that

since if is a solution with 4 ~ x 1, then also (ix,ky,k -1)
is a solution.

The right hand side of (~V’) being a square, thus being &#x3E; 0, implies

Let d be the squarefree part of x - 22k+2 such that the sign of d equals the
sign of x - 22k+2. Then d is also the squarefree part Of X2 -f- 22k+2x - 53 · 24k+2~
and it has the same sign. Now, by (W’) we can write
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for some u, v E Z&#x3E;o. Further, 22~+3)(x - 22k+2) _ (x2 + 2~+~ - 53 .
24k+2) = 45 . 22k+2, hence :J:d E f 1, 2, 3, 5, 6,10,15, 30~. Substituting the
first equation into the second we find

Equation (2) is of the type X2 - 6Y’ = dZ2.
If d E f -30, -10, -3, -1,2,5,6,15}, then this equation has no solutions,
as is easily shown.

If d  0 and k = 0 then -(2 + 6B/6)  x  4, which only leaves the
solutions with x = -16, -14, -11, -2, 2, 4. It follows that if k = 0 then we
may assume that x &#x3E; f - 2 + = 13.

If d E {-6, -2,10, 30} and k &#x3E; 1 then x - 22k+2 = du2 and (1) imply
that u is odd. It follows that ord2(3 - 22k+1 + dU2) = 1, hence the left
hand side of (2) has 2-adic order equal to 2. But ord2(dV2) is odd, which
is contradictory.

If d = -5 and k &#x3E; 1 then we find from (2) that 25u’ =- -5v2 (mod 16).
Since -5 is not a quadratic residue (mod 16), this implies 2/u and 4~v,
leading to a contradiction with (1).

If d = 3 and k &#x3E; 1 then clearly 3~v, hence put v = 3w. Then (2) leads
to (2 2k+l + u2)2 - 6(22k+1)2 = 3w2. By (1) we infer that u is odd, and then
we see that 1 - 3w2 (mod 8), which is impossible.

Finally, if d = 1 then we derive from (2) that

where a, b E Z with 0  a  4k + 3 and 0  b  3. This system is equivalent

This immediately shows that I  a  4k + 2.
If 2  a  41~ + 1 then u is even, hence 4 ~ x, which contradicts (1). If

a = 1 then 0  v = 3b - 24k+133-b, which implies 24k+1  32b-3 C 27, and
thus k = 0. Clearly the only solution in this case is (u , v) = (3, 3), leading
to the solution with x = 13. Hence we may assume that a = 41~ + 2, and
thus

If b = 0 then U2 =- 2 (mod 3), which is impossible.
If b = 2 then 3~u, so put u = 3t, Then we obtain 2 2k+l + 3t2 = 3.2 4k+l + 1,

which is impossible (mod 3).
If b = 1 then again 3~u, so we put u = 3t, leading to 3(t2 - 1) =

22k+l (2 2k - 1), and it follows that + 1)(t - 1). By t &#x3E; 0 there is an
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integer a &#x3E; 0 such that t = :1:1 + a22k. This implies 22k-1= 3a~ «-~, which
is easily seen to have only one solution: a = = 1, leading to t = 3, so
that (u, v) = (9, 87), leading to x = 97/22.

If b = 3 then we have U2 - 1 = 3 - 2 2k+l (9 22~ - 1), and it follows
that + 1)(u - 1). By u &#x3E; 0 there is an integer a &#x3E; 0 such that
u = :1:1 + a2~~, and this implies 22k-1 = a~, which is easily seen to
have only three solutions: a = 6, k = 0 and a = 8, k = 0, both implying
(u, v) = (7, 53), and leading to the solution with x = 53, and a = 7, k = 1,
implying (u, v) = (29, 863), leading to the solution with x = 857/22.

This completes the treatment of the case d = 1.

3. Bilu’s idea

We now have the following situation:

for some u, v E Z&#x3E;o, and with either k = 0, d E ~3,10, 30~, x &#x3E; 13, or
k &#x3E; 1, d = -15, --(2 + 6~)22~  x  2 2k+2. We factor equation (4) over
Q(~) for ~ a root of x2 = 6, and one of its factors can be written as

where a is squarefree, d is the squarefree part of and a is determined

up to squares of the fundamental unit 5 + 2~. Thus there are only a few
possibilities for a, and we have to find them all.

In Q(~) we denote conjugation by a bar, so Z = -~. We have the following
decompositions:

with 2 + ~, 3 + ~, 1 + ~ and 1 - ç being non-associated primes.
Let 7r be a prime dividing a. If it divides also a, then it divides 
- 2 k2+, so 7r = 2 + g or 7r = 3 + ç. If 7r does not divide a, then by
dV2 = we see that ord1r(d) has the same parity as ord1r(a), which
is 1, since a is squarefree. Thus divides d. Hence we find, using also that
a &#x3E; 0, that

for p, q, r, s, t E {O, 1}, with (s, t) ~ ( 1,1 ~. Since d is the squarefree part of
Na = 2q3r( -5)s+t, we find that actually d = Na. This leaves the following



286

possibilities (where we sometimes take the freedom of adding a multiple of
2 to p):

We get rid of the cases a = 8 ~ 3~, a == 18 d= 7 ç, a = ~3 + 2~, by noting
that the quadratic equation obtained from comparing the coefficients of ~
in x+2 2k+l + 22k+13ç = + B~)2 (from inserting ~3 = A + B~ in (5)) is
impossible (mod 5). For example, in the case a = ~3 + 2~ this equation is
2A2 + 6AB + 12B2 = 22k+13, which is equivalent to (2A + 3B)2 + 15B2 =
22k+23, which is impossible modulo 5.

For a = 3 - ~, 4 + ~, 6 - ~, 9 - 4~ we take in (5) the conjugate in Q(~).
Then we have to replace ~3 by # (which is allowed because it is a variable),
and replace the parameters a and ~ by their conjugates Q and -~.
Thus we are left with only four values for a, namely a = 3 + ç, 4 - ç, 6 +

~, 9 + 4~, and for each of them we have the case of ~ remaining as it is, and
the case of ~ replaced by -~.
Now we eliminate x from (3) and (5), and we find

the ± corresponding to the cases as described in the preceding paragraph.
Bilu’s idea (cf. [B], [BH]) now is that this equation, multiplied by d, factors
over the quartic field K = ~(~), where 1b satisfies 7P2 = da. Then from
the four different conjugates of these factors we can eliminate the variables
u E Z and (3 E ~(~), and obtain a four-term (S-) unit equation with special
properties.

4. The quartic field for d = 3

Let 0 be a root of x4 - 6x2 + 3 = 0. Then 0 = -6(} + (}3, ç = 3 - 82 satisfy
~2 = 3a = 3(3 - ~), ç2 = 6. The has discriminant
27648 = 210 33, integral basis f 1, 0, (}2, 83~, trivial class group, Galois group
D4, a set of fundamental units is
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and r¡-lX-1 = 5+2~ is the fundamental unit of the quadratic subfield Q(~).
We have the following relevant decompositions into primes:

There is a nontrivial Q(~)-automorphism Q of K, defined by u0 = -0. I1
acts as follows on the numbers defined above:

From (7) with 1 - ~ in the right hand side we find, by (6) and k = 0,
that

and hence we find for its two factors

for some a, b, c E e Z . On multiplying it follows at once that
2c = 1, which is impossible.
From (7) with 1 + ~ in the right hand side we find, by (6) and I~ = 0,

that

and hence

for some a, b, c, d E Z. It follows at once that a = 2, b = 4,
(c, d) = ( 1, 0) or (0, 1) , n = -m - 3. Because of symmetry we may disregard
without loss of generality one of the cases for (c, d). So we take c = l, d = 0,
and hence we obtain

where-y = p2q4r,X-3 = 48-I-9B-9682-39B3, and 77/X = -1-29~-4B2-~-283.
Notice that we intend to show that there are only the following solutions
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to(8):

5. The quartic field for d = 10

Let 0 be a root of x4 - 8x2 -f- 10 = 0. Then 0= -89 + 83, ~ _ -4 + BZ
satisfy 1/;2 = l0a = 10(4 - ~), ~2 = 6. The field K = Q(1b) = Q(0) has
discriminant 92160 = 211325, integral basis {1, B, B2, 83~, trivial class group,
Galois group D4, a set of fundamental units is

and q = 5 + 2~ is the fundamental unit of the quadratic subfield Q(~). We
have the following relevant decompositions into primes:

There is a nontrivial Q(~)-automorphism Q of K, defined by u0 = -0. It
acts as follows on the numbers defined above:

From (7) with 1 - ç in the right hand side we find, by (6) and k = 0,
that

and hence

for some a, b, c, d, e E 7~ &#x3E;_ o, l , m, n E Z . It follows at once that 2d = 1, which
is impossible.

From (7) with 1 + ~ in the right hand side we find, by (6) and k = 0,
that

and hence we find again (9) for some a, b, c, d, e E 7~ ~ o, l , m, n E Z. Now it
follows at once that a = 4, (b, c) = (2, 0) or (1, 1) or (o, 2), d = 1, e = 1,
m = 0, 1 + n =- 1 (mod 2). Because of symmetry we may disregard without
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loss of generality one of the cases (2, 0), (0, 2) for ( b, c) . So we take either
b = 2, c = 0 or b = 1, c = 1, and hence we obtain

where 1 equals 11 = P4 q2rl r2 = -710 - 820 + 31082 - 6683 or 12 =
p4qlq2rlr2 = 970 - 3420 - 61082 + 23483. Notice that we intend to show
that there are only the following solutions to (10):

Solutions for y = ~y2 occur in pairs, because al2 = 12f3X3, so if (1, n) is a
solution, then so is (3 - 1, 3 - n).

6. The quartic field for d = 30

Let 0 be a root of X4 - 12X2 + 30 = 0. Then 0= -120 + (}3, ç = 6 - BZ
satisfy 1/;2 = 30a = 30(6 + 6), ç2 = 6. The field K = Q(1b) = Q (0)
has discriminant 276480 = 211335, integral basis {I, 0, 02, 83~, trivial class
group, Galois group D4, a set of fundamental units is

and 1]-1 = 5 + 2~ is the fundamental unit of the quadratic subfield Q(~).
We have the following relevant decompositions into primes:

There is a nontrivial Q(~)-automorphism Q of K, defined by QB = -B. It
acts as follows on the numbers defined above:

From (7) with 1 - ~ in the right hand side we find, by (6) and k = 0,
that
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and hence

for some a, b, c, d E E Z. It follows at once that 2c = 1, which
is impossible.
From (7) with 1 + ~ in the right hand side we find, by (6) and k = 0,

that

and hence we find again (11) for some a, b, c, d E z~o, 1, m, n 6 Z. It follows
at once that a = 4, b = 4, c = l, d = 1, m = 0. Hence we obtain

where -/ = p4q4TIT2 = 690 + 1629 -12092 - 6(J3. Notice that we intend to
show that there are only the following solutions to (12):

Solutions occur in pairs, because ay = ’If.3, so if (1, n) is a solution, then so
is (3 - l, -n).

7. The quartic field for d = -15

Let 0 be a root of X4 - 2X3 - 3x2 + 4x - 2 = 0. Then 0= -17+300+
1292 - 803, ~ = 2 + {} - ()2 satisfy 1/;2 = -15(9 + 4~), ~2 = 6. The
field K = Q(1b) = Q(0) has discriminant -8640 = -2~3~5, integral basis

82, 83~, trivial class group, Galois group D4, a set of fundamental units
is

and c-’ = 5 + 2~ is the fundamental unit of the quadratic subfield Q(~).
We have the following relevant decompositions into primes:
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There is a nontrivial Q(g)-automorphism u of K, defined by u0 =1- 0. It
acts as follows on the numbers defined above:

From (7) with 1 - ~ in the right hand side we find, by (6), that

and hence we find

for some a, b, c, d, e E E Z. It follows at once that 2d = 1, which
is impossible.

From (7) with 1 + ~ in the right hand side we find, by (6), that

and hence we find again (13) for some a, b, c, d, e m, n E 7~ . It follows
at once that a + b = 4k + 2, c = 4, d = 1, e = 1, m = -k + 1. Because of
symmetry we may assume a  b. Note that

and that u is odd (because of (1) and (3)), and a + b &#x3E; 6 (because k &#x3E; 1).
Comparing pl-adic values, noting that ordpl (30) = 2, it follows that a =
2, b = 4k. Hence we obtain

with 7 = p2 q4rlr2’6 = -81 + 1200 - 3982 - 8483, and 7r = p2E 1= -2 + 82,
satisfying xux = 4. Notice that we intend to show that there are only the
following solutions to (14):
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8. Linear forms in real logarithms
In the cases d = 3,10, 30 we need only ’real’ arguments. We treat equa-

tions (8), (10) and (12) as follows. Write them as

where ( = q/x, h = m if d = 3, and = x, h = n if d =10, 30. We apply
the Q(~)-automorphism a to (15), using d, u E Z, # E Q(~), so that and =
d, uu = ~~cr/? = ,Q. On further noting that -1j;, a£. = sE-1, o~~ = 
where s = 1 if d = 3,30 and s = -1 if d = 10, and writing 6 = u7, we
obtain

Adding (15) to (16), using that I + h is always odd in the case d = 10 and
s =1 in the cases d = 3, 30, so that sj+h = s, we find

and thus we have eliminated the unknown ¡3.
Now we notice that the quartic field K is totally real. We choose two

embeddings of K into R, denoting elements in one of these embeddings
without primes, and in the other one with primes, such that 0  8  01.
Note that by u : 0 - -8 this determines all four embeddings, and also note
that now an embedding of Q(~) into R has been fixed.
We thus have two different manifestations in R of equation (17), one

written again exactly as (17), and the other one being

Hence now we can eliminate the unknown u from (17) and (18), and thus
get

For convenience we write this four term unit equation as I +II = III + IV.
Now an important observation is that I x Il = sy6 and III x IV = sy’6’

are constant. Bilu’s original idea is to solve I from the quadratic equation
I2 - (III + 7V)7 + lð = 0. We use a somewhat simpler idea, and work
directly with (19). Namely, of the pair I, II only one can be large in
absolute value, and the same holds for the pair III, IV. So we either have
two of the four terms being large and two small, in which case we can apply
the theory of linear forms in logarithms, or all four terms are bounded, in
which case we can easily determine the solutions by hand.
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In each of the cases we look carefully at the signs of I, II, III, IV, and
thus determine which one is the largest in absolute value. We find:

In each case we distinguish four subcases:

Note that half of the subcases lead to contradictions, e.g. if d = 3, 1 odd,
then ~7j~ &#x3E; III, so then only subcases 3 and 4 occur.

Put cl = 1761 + 1,’b’l. In subcase 1 we now have

Then we find

Analogously, in subcase 2 we find

And in subcase 3 we find

Finally, in subcase 4 we find
 .......... ·/1 I I . , I ....
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The left hand side of each of these inequalities (20) - (27) is of the form
leA - 11 [  ~ ~ ~ , where A is a linear form in logarithms of algebraic numbers,
namely

where Al = llog + hlog 1(/(’1, A2 = llog + hlog 1((’1. Put N =
The theorem of [BW] implies the existence of an absolute

constant C such that

We will show that combining this with the appropriate equation from (lU)
- (27) leads to an absolute upper bound for N. For example, if d = 3,
subcase 1, then I is even, and we have III &#x3E; IIIII &#x3E; From these

inequalities it follows at once that there are only finitely many solutions
with 1 &#x3E; -4, and if 1 G -5, then N = -1, and cIIII-1IIIII-1  0.5. This

last inequality implies  1.39~ - 1) ~ so (20) and
(28) imply

Using J7Y7J &#x3E; JIVI and N = -l we compute constants C2, C’3 such that

In general, for each of the inequalities (20) - (27) we find by (29) and (30),
for large enough N, that

with c3 = + log(1.39ci). Hence we obtain by (28)

which at once implies an absolute upper bound for N.
A similar procedure works in all cases. We give some details for each case

below. We give in each case a condition to ensure that the right hand side
of the appropriate inequality from (20) - (27) is  0.5, which fails for only
finitely many easily determined 1, h. Sometimes we have to make a further
distinction between N = III and N = lhl. In the column marked ’inequ.’
we indicate which inequality we used to derive log I X Y I &#x3E; c2N - for

X = I, II, Y = III, IV. The constant C is computed directly from [BW],
noting that we have linear forms in 3 logarithms of algebraic numbers in a
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field of degree 8. The constant No is the upper bound for N following from

(32).
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9. Real reduction

To reduce the upper bound No for N we use computational diophantine
approximation techniques, as in previous sections. Let us write the linear
form A as A = 00 + + h02 - We take C = 1044, which is a bit larger than
N02. We introduce the lattice F = EZ2 } and the point y given by

Here [.] stands for rounding to an integer. Then we define A E Z by

We computed 00, ~1~2 to sufficient precision. To 10 decimal places they
are:

Note that for the 16 different linear forms there are only 6 different lattices.
Using the Euclidean algorithm we can easily compute a lower bound for

the distance d(r, y) from y to the nearest lattice point in F. Then we have
Vd(f,y)2 - NJ. Further, notice that

~ , /

If d(1’, y) is large enough, this gives an explicit lower bound for which

together with (31) yields a reduced upper bound for N.
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The details for each case are as follows.
I , , I ,,- I - Y ,

Finally we checked equation (19) directly for all N  30. This revealed
only the known solutions, listed already in previous sections. This com-

pletes the treatment of the cases d = 3, 10, 30.

10. Linear forms in p-adic logarithms
In the case d = -15 we need almost only ’p-adic’ arguments. We start

with equation (14), analogous to the beginning of our treatment in the
previous sections, as follows. We apply the Q(~)-automorphism Q to (14),
using u E Z, 0 E Q(~), so that Qu = /3. On further noting that
cro = -1b, a7r = 47r-1, = ~-1, and writing b = Q7, we obtain

Adding (14) to (33), we find

and thus we have eliminated the unknown /3.
At this point the main difference with the previous sections becomes

apparent, since now, due to the fact that 7r is not a unit, the product of the
two factors in the right hand side of (34) is not constant, but is a constant
times 4k . The idea now is that, though this is large in the archimedean
sense, it is small in the 2-adic sense, so that we can try to transform the
arguments of the previous sections from the real to the 2-adic realm.
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It is not difficult to show that the Galois closure of the quartic field
K can be embedded into Q2(~), so that we can embed K into the field
Q2(~) in two different ways (remember that 6 is defined by 62 = 6). We
denote elements in one of these embeddings without primes, and in the
other one with primes. Then we have two different manifestations in Q2(~)
of equation (34), one written again exactly as (34), and the other one being

Again we can eliminate the unknown u from (34) and (35), and thus get a
four term S-unit equation I + II = III + IV, namely

For the 2-adic number ~o+~i2+~22~+... we use the notation O.aoala2 - - - -
We choose conjugates as follows:

Then the following is true:

And if x E Q2(~) is written as x = a + b~ for a, b E Q2, then x’ = a - b~,
so that x - x’ = 2b~, and ord2(x - x’) = ord2(b) -~- 2. With x = II, x’ = IV
it follows that ord2(I - III) = ord2(IV - II) &#x3E; 2k + 2, hence

where l~o - 2 - ord(y’) - 2 . Notice that here we have a linear form in
2-adic logarithms in disguise. It will be made explicit later on.
Now we apply the theory of linear forms in p-adic logarithms of algebraic

numbers. In fact, using
.. I. 1 1 -

Yu’s theorem [Y] implies
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(we omit details, but note that we used the result Yu mentions in his Section
0.1, on page 242 of [Y]).

To obtain an upper bound for the variables k and inj from (37) and
(38), we also need to study the complex embeddings of K. So now we

interpret equation (36) as an equation in complex numbers, where we choose
conjugates as follows:

So we have I, II E R, and III, IV E C are complex conjugates. Using
11["’1 = 2, = 1 we find

since /6 = -90(V6- - 1). This inequality implies 3.3781-2~  38.618’

2k, and we obtain the inequality

From log Jr /2 = 0.93 ... , logq = 2.17... log(-y) = 7.39 ... we immedi-
ately obtain that if k &#x3E; 6 then -k  n  0, hence max~k, = k.

Inequalities (37) and (38) thus immediately imply

11. p-adic reduction

In this final section we reduce the bound (39) by making use of p-adic
computational diophantine approximation techniques, applied to inequality
(37). Put A’ = 1092 1/11" If k &#x3E; 1 then (37) implies

Notice that A’ = + k log2 7r/7r’ + nlog2 T//T/’, where we computed

So if we put A = A’/ log2 7//7/ = + kol + n then it happens that /&#x3E;1
are in Q2 and are integral, in fact

And we obtain from (40) that
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For a positive integer M, let 0(14) be the unique rational integer satisfying
0   2~ and 0(p)) ~! /I- Consider the lattice r = E

Z2 } and the point y given by

Then it follows that if and only if

for a z E Z. So the distance d(r, y) from y to the lattice r can be at most
ýk2 + n2, which is bounded by (39). On the other hand, for each p this
distance can be computed easily by the Euclidean algorithm. In fact, we
can reach a contradiction when we choose p so that 2~‘ is of the magnitude
of the square of the upper bound.

We took p = 204, and computed k2 + n2 &#x3E; d(r, y) &#x3E; 2.0409 x
103°. This contradicts (39), and it follows that 1 = 203,
which with (41) yields a reduced upper bound, namely k  102.

Next we took u = 18, and computed d(r, y) &#x3E; 153.05, which
contradicts k  102. Hence the upper bound reduces further to k  9.

Finally it’s trivial to determine the solutions with k  9, and our proof
is complete.
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