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Linear forms in the logarithms of

three positive rational numbers

par CURTIS D. BENNETT, JOSEF BLASS, A.M.W GLASS,
DAVID B. MERONK et RAY P. STEINER*

To Hassoon S. Al-Amiri upon his retirement

RÉSUMÉ. Dans cet article, nous donnons une minoration de la dépendance
linéaire de trois nombres rationnels positifs valable sous certaines conditions
faibles d’indépendance linéaire des coefficients des formes linéaires. Soit

A = b2 log 03B12 - b1 log 03B11 - b3log 03B13 ~ 0 avec b1, b2, b3 des entiers positifs et
03B11, 03B12, 03B13 des rationnels multiplicativement indépendants supérieurs à 1.
Soit 03B1j = 03B1j1/03B1j2 où 03B1j1, 03B1j2 sont des entiers positifs premiers entre eux
(j = 1, 2, 3). Soit aj ~ max{03B1j1,e} et supposons que pgcd(b1, b2, b3) = 1.
Soit

(b2 log03B13 + b3 log03B12)
et supposons que B ~ max{10, log b’}. Nous démontrons que, soit {b1, b2, b3}
est (c4, B)-linéairement dépendant sur Z (relativement à (a1, a2, a3)), ou
bien

3

où c4 et C = c1c2 log 03C1 +03B4 sont donnés dans les tables de la Section 6.
Ici nous dirons que b1, b2, b3 sont (c, B)-lineairement dépendants sur Z si
d1b1 + d2b2 + d3b3 = 0 pour certains d1, d2, d3 E Z non tous nuls tels que ou
bien (i) 0  |d2| ~ cB loga2 min{log a1, log a3}, |d1|, |d3| ~ cB log a1 log a3,
ou bien (ii) d2 = 0 et |d1| ~ cB log a1 log a2 et |d3| ~ cB log a2 log a3.

Nous obtenons en particulier c4  9146 and C  422321 pour tout B &#x3E;

10, et si B ~ 100 nous avons c4 ~ 5572 et C ~ 260690. Des informations
plus précises sont données dans les tables de la Section 6.

Nous démontrons ce résultat en modifiant les méthodes de P. Philippon,
M. Waldschmidt, G. Wüstholz, et al. En particulier, par un argument
combinatoire, nous prouvons que soit une certaine variété algébrique est de
dimension nulle, ou bien {b1,b2,b3} sont linéairement dépendants sur Z,
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avec de petits coefficients de dépendance. Cela nous permet d’améliorer le
Lemme de zéros de Philippon, nous conduisant au fait que le déterminant
d’interpolation reste non nul sous des conditions plus faibles.

ABSTRACT. In this paper we prove a lower bound for the linear dependence
of three positive rational numbers under certain weak linear independence
conditions on the coefficients of the linear forms. Let A = b2 log 03B12 -
b1 log 03B11 - b3 log03B13 ~ 0 with b1, b2, b3 positive integers and 03B11, 03B12, 03B13

positive multiplicatively independent rational numbers greater than 1. Let

03B1j = 03B1j1/03B1j2 with 03B1j1, 03B1j2 coprime positive integers (j = 1, 2, 3). Let

aj ~ max {03B1j1, e} and assume that gcd(b1, b2, b3) =1. Let

and assume max{10, log b’}. We prove that either {b1,b2,b3} is
(c4, B)-linearly dependent over Z (with respect to (a1, a2, a3)) or

3

where c4 and C = c1 c2 log 03C1 +03B4 are given in the tables of Section 6. Here
b1, b2, b3 are said to be (c, B)-linearly dependent over Z if d1b1 + d2b2 +
d3b3 = 0 for some d1, d2, d3 ~ Z not all 0 with either
(i) 0  |d2| ~ cB log a2 min{loga1,loga3}, |d1|, |d3| ~ cB loga1 loga3, or
(ii) d2 = 0 and |d1| ~ cB log a1 log a2 and |d3| ~ cB log a2 log a3.

In particular, we obtain c4  9146 and C  422,321 for all values of

B ~ 10, and for B ~ 100 we have c4 ~ 5572 and C  260,690. More

complete information is given in the tables in Section 6.
We prove this theorem by modifying the methods of P. Philippon, M. Wald-

schmidt, G. Wüstholz, et al. In particular, using a combinatorial argu-
ment, we prove that either a certain algebraic variety has dimension 0 or
{b1,b2,b3} are linearly dependent over Z where the dependence has small
coefficients. This allows us to improve Philippon’s zero estimate, leading
to the interpolation determinant being non-zero under weaker conditions.

In the 1930’s Gel’fond and Schneider independently studied linear forms
in the logarithms of two algebraic numbers in order to answer Hilbert’s
7th problem, a special case of which is: Is 2" transcendental? The study
of linear forms in the logarithms of more than two algebraic numbers is
far more complicated. The great pioneer work of Alan Baker came in the
1960’s. He proved that any finite set of logarithms of non-zero algebraic
numbers is linearly dependent over Q (the field of algebraic numbers) if
and only if it is linearly dependent over Q (the field of rational numbers).
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Moreover, he showed that if

is not zero and

then IAI can be explicitly bounded away from zero. He improved this in [1]
(in the case that bo = 0 and bi, ... , bn are rational integers) to:

for some explicitly computed large constant C. Here

Further, h(a) is the absolute logarithmic height of a, and for any field
K, K* denotes the multiplicative group of non-zero elements of K.

For the rest of the paper, we will assume that bo = 0 and bl, ... , bn are
rational integers.
From these results, one can derive upper bounds on the size of the so-

lutions of many Diophantine equations by a function C dependent upon C
and the particular equation (see e.g., [26], [28] and [8]); the smaller the
value of C, the smaller the potential solution set (though C(C) is typically
very large). For this (and other) reasons, many mathematicians have spent
the better part of the last 25 years in an attempt to decrease the value of C
and extend Baker’s work to other contexts (e.g., the theory of linear forms
in p-adic logarithms [24], [38], [39], [6], and elliptic logarithms [25], [23],
[27~).
By 1990 successive work by Baker, Waldschmidt and others, ~l], [29], [3]

had reduced C to n 2n+l (24e 2)n220D n+2 . The next major breakthrough,
the use of algebraic groups and algebraic varieties, was developed in the
1980’s. Impetus for this work came from Nesterenko [20], who used deriva-
tions on polynomial rings to study the zeros of certain E- functions. Later
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Brownawell and Masser [4] developed this idea further and Masser [15] and
Masser and Wiistholz [16], [17], [18] replaced the idea of derivations by the
use of ring homomorphisms. Wüstholz [34] developed these ideas further
in our setting and achieved significant results on zero and"multiplicity"
estimates that were later refined by Philippon [21] and Denis [5]. The

explicit application to the theory of linear forms in logarithms was given
by W3stholz [35], [36], [37] and Philippon and Waldschmidt [22]. Finally,
Baker and Wüstholz [2] and Waldschmidt [32] combined the new ideas with
the previous methods of Gel’fond &#x26; Baker and Schneider, respectively (for
bo = 0 and all are rational integers). Baker and Wiistholz obtained
C = 18(n + 1)!nn+1(32D)’~+Z log(2nD). This is currently the best result
known and is an improvement on Waldschmidt’s independent 1993 paper
[32] by a factor of approximately 

Recently, Michel Laurent [11], [12], [13] developed a new technique, In-
terpolation Determinants; this replaces (and is somewhat analogous to) the
construction of an auxiliary function. In the case of two logarithms with
bo = 0, Laurent, Mignotte and Nesterenko [14] obtain C  50 if b’ &#x3E; 16 and

C approaches 15.2 as b’ approaches infinity, where b’ = log + ug (in thelog a2 log al
case that al and a2 are rational numbers greater than 1, and all logarithms
are principal). This was a significant improvement on the previous bound
of 270 given by Mignotte and Waldschmidt [19]. Unfortunately, in both
papers log b is replaced by (log b’)2. In the case bo = 0 and n &#x3E; 2 Wald-
schmidt [33] obtained upper bounds on C by this method. Again log b’ is
replaced by (log b’)2, though this can be circumvented at the expense of a
larger value of C [32].
As already noted, to obtain solutions of certain Diophantine equations,

one needs smaller values of C. This motivates our study of linear forms
in the logarithms of three algebraic numbers. (All our assumptions will be
motivated by such considerations.) As Gel’fond [7, page 177] stated in 1952,
non-trivial effective estimates for linear forms in three or more logarithms of
algebraic numbers would lead to great advances in the theory of numbers,
in particular the computation of explicit bounds for the solution set of
certain exponential Diophantine equations. Indeed, he showed how to apply
these ideas to the solution of Thue equations. At that time, the necessary
estimates were known for the case of two logarithms but the transition to
three logarithms presented considerable difficulty and had not been carried
out. Baker’s insight provided the original method and solution for the case
of three logarithms (and the more general case involving n logarithms). The
purpose of this paper is to concentrate on the particular case of linear forms
in the logarithms of 3 positive rational numbers with integer coefficients
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and bo - 0. The treatment of the general case (n &#x3E; 3, logarithms of
algebraic numbers, and algebraic coefficients) by interpolation determinants
is considered by Lisa Elderbrock in her Ph.D. dissertation. For n = 3, an
extra D5 is needed, but the constant is reduced by approximately D3.

Often, bounding solutions of Diophantine equations involves bounding
the coefficients of the logarithms in the resulting linear forms; see [26]
for several examples. If these coefficients satisfy a linear dependence rela-
tion over Z with "small" coefficients, then we usually obtain much sharper
bounds on the size of solutions (to the Diophantine equation) than those
provided by bounding the linear form in logarithms away from 0. Conse-

quently, we will always assume that the coefficients of the linear form are
not "strongly linearly dependent" over Z.

To simplify matters, we assume that fal, a2, a3l is a multiplicatively
independent set of positive rational numbers and that is a set
of coprime integers. Let A = bl log al + b2 log a2 + b3 log a3 ~ 0. If all

- 1, 2, 3) are positive, then A &#x3E; bl log al + b2 log a2. Using [14],
we can bound A "far" away from 0 in this (two logarithm) case. Simi-

larly if all bj log aj are negative, can be bounded "far" away from 0.

Furthermore, since bj log O!j = -bj we can assume that each of

al, cx2, a3 strictly exceeds 1, that bl, b2, b3 are all positive integers with
highest common factor 1, and

A = b2 log a2 - b1log al - b3 log a3 ~ 0;

moreover, we may assume that b2 log a2 &#x3E; max{bllog aI, b310g a3}.
Let ai , a2, a3 be real numbers greater than or equal to e; without loss of

generality, let a3. Let

and B &#x3E; log b’. We say that b3} is (c, B)-linearly dependent over Z
(with respect to (~1,~2 a3)) if

for some rational integers not all 0 with either
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THEOREM A. Let A = b2 log a2 - b110g a1 - b3 log a3 0 with bl, b2, b3
positive rational integers and a1, a2, a3 positive multiplicatively indepen-
dent rational numbers greater than 1. Let aj = with aj1, aj2
coprime positive integers ( j = 1, 2, 3). = 1, 2, 3)
and assume that =1..Let

and B &#x3E; max{10, log b’}. THEN either (104, B)-linearly de-
pendent over Z (with respect to (al, az, a3)) or

where C = 4.5 x 105 .

Theorem A follows at once from the more technical theorem:

THEOREM B. Let A = b2log a2-b1 log log a3 # 0 with 61, b2, b3 POS-
itive integers and al, a2, a3 positive muItiplicatively independent rational
numbers greater than 1. Let aj = with ajl, aj2 coprime positive
integers (j = 1, 2, 3). = 1, 2, 3), and assume that

=1. Let b’ = ( b2 + -)(- + assume that
log al log a2 log a3 log a2

B &#x3E; maxBo, log b’}. Either is (c4, B)- Iinearly dependent over
Z (with respect to (aI, a2, a3)) or

where c4 &#x26; C = Cl C2 109 P + 6 are given by Table 2 in Section 6.

In comparison, Baker and Wustholz [2] obtain

’"

with C  1.5 x 1012 , where b = = 1,2,3}.
Part of the technical difhculties to prove this theorem occur in Section 3.

They arise when we try to take full advantage of the weak linear depen-
dence. If we remove such assumptions, the easier portion of Section 3 yields
a constant C (in both Theorems A and B) that is 8 times the value stated.
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Clearly, the result of Baker and W3stholz is much tighter than our the-
orems in terms of the parameters; so it is much nicer both theoretically
and for large values of log b and log b’ (since we have an extra log b’ in our
result). (Thus our table is only for log b’  106 . ) However, in many cases
our result is more useful for applications, for example when solving certain
Diophantine equations.
Our proof follows Laurent’s original idea [11]. In Section 2.2, we consider

the real-valued determinant of a certain matrix; this is akin to Baker’s auxil-
iary function but (as in the case with Schneider’s method) avoids "multiplic-
ity" estimates caused by derivatives. In Section 2.3, we use the Maximum
Modulus Principle to obtain an upper bound on this determinant (assuming
that our non-zero linear form-actually a modification thereof-is "close"
to 0). In this we improve the estimates of [33, Chapter 9] in the case of
three logarithms. In Section 2.4 we give a lower bound on the absolute
value of the determinant using an inequality of Liouville (assuming that
the determinant is non-zero). In Section 2.5, we combine these results to
obtain a contradiction ( to a modified linear f orm being close to 0) under
appropriate assumptions on certain parameters. Consequently we deduce
that our modified linear form is not too close to 0.

In Section 3, we take fuller advantage of the theory of algebraic varieties
in 3-space. We considerably refine the general theory of "zero" estimates
in this setting by a careful analysis of the intersections of translates of
hypersurfaces under the group 02+ x Q:. Our contribution here is to use sets
of different cardinalities to lower the dimension of certain algebraic sets and
to eliminate one key case by a combinatorial argument. As a consequence
of this analysis, we are able to deduce that our determinant is non-zero
under considerably weaker hypotheses than had been used previously.

In Section 4, we determine constants that fit all our required specifica-
tions, and in Section 5 we show how these result in bounding our origi-
nal linear form sufficiently away from 0. Finally, in Section 6 we provide
computer-generated tables to complete the proof of Theorem B (and so
Theorem A). These tables will be useful for anyone wishing to solve Dio-
phantine equations that lead to linear forms in three logarithms.

Acknowledgements: It is a great pleasure to thank Alan Baker for greatly
encouraging us to pursue this line of research specifically for three loga-
rithms and Michel Waldschmidt for having previously provided us with a
preprint of [33] which made it possible. We are also grateful to Michel
Waldschmidt for finding a "howler" in an earlier version of this paper, and
for suggesting improvements of a rough draft of the original manuscript.
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We have been fortunate to receive the support of both throughout. We also
owe a great thank you to Paul Voutier for the many hours he spent check-

ing our results. We are especially grateful to him for pointing out a more
felicitous proof of Lemma 2.2 for the case A  0; our original proof resulted
in an increase in the constant in the table by a factor of approximately 2
when A was negative.

Sl. Background Definitions and Lemmata.

Throughout the paper we will use IAI to denote the cardinality of a set
A. We will also use [a] to denote the greatest integer less than or equal to
a real number a. So [a]  a  [a] + 1.

1.1. A Combinatorial Fact.

We will need the following combinatorial result from [14] (where their K
corresponds to our K2, and their S to our ST):

LEMMA 1.1. [14, Lemme 4]. Let K, L, R, S, &#x26;T be positive rational inte-
gers and N = K2L. Let In = ~(n - 1)/K~~(1  n  N) and (rl, ..., rN) be
a sequence of integers belonging to the set 10, .. , R -1}. Suppose further
that N  RST, and for each r E {0, ... , = ST. Then

1.2. Algebraic Geometry.

Throughout, if K is a field, we use K[X, Y, Z] for the ring of polynomials
(over K) in the commuting variables X, Y, Z. If P C K[X, Y, Z], we write

for the variety generated by P, i.e.,

Any such set is also called an algebraic set.

We will need some background from algebraic groups. We will confine
our attention to subgroups of G = Q+ x Q+ x Q*, where the operation
(denoted by +) is addition on the first two coordinates and multiplication
on the third; so
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A subgroup of G that is an algebraic set (the set of common zeros of a family
of polynomials {P(X,Y, Z) : P E P} ) is called an algebraic subgroup. Any
algebraic subgroup of G has the form U x (*, Lf x {1} or Lf x for

some vector subspace of Q2 and positive integer m, where Tm is the
multiplicative group of m’h roots of unity [9]. For simplicity, we write To
for ~"‘ . An algebraic set ~S is said to be irreducible if it cannot be written
as the union of two algebraic sets properly contained in S. Every algebraic
set can be written uniquely as a finite union of irreducible algebraic sets [9,
Corollary I.1.6~, and these constituent irreducible algebraic subsets of S are
called its irreducible components. It is possible to define the dimension of an
irreducible algebraic set so that points have dimension 0, Q3 has dimension
3 and if V, 5 V2 with Vi, V2 irreducible algebraic sets, then dim VI 
dim V2 (see, e.g., [10, Chapter 2]). These definitions coincide with the usual
intuitive ideas: irreducible curves have dimension 1, irreducible surfaces
dimension 2. The dimension of an algebraic set is just the maximum of the
dimensions of its irreducible components.

In this setting, we define the bidegree of a polynomial P(X, Y, Z) E
Q[X, Y, ] to be at most (Do, DI) if P(X, Y, Z) = with

= 0 whenever i + j &#x3E; Do or k &#x3E; Dl. Let de-

note the set of polynomials in Q[X, Y, Z] of bidegree at most (Do, Dl). For
any subset E of Q x Q, let be the set of all maps from E to Q.
Consider the Q-linear map

which maps each P E Q[X,y, Z] to the restriction to E of the polynomial
map from Q3 to Q induced by P. For each pair of non-negative integers
(Do, Dl), let

If E is the smallest algebraic set containing E, then as reSE and resË have
the same kernels, we obtain

If Do and Dl are not too small, then H(E; Do, Di ) coincides with the value
at the point (Do, D1) of a polynomial whose (total) degree is n = dim(E):



106

This polynomial is called the Hilbert-Samuel bihomogeneous polynomials of
E. We denote by l-t(E; Do, D1) the product of n! and the homogeneous
part of the Hilbert-Samuel bihomogeneous polynomial of E of total degree
n evaluated at (Do, D1). So

We will require the following facts:

LEMMA 1.2. With the above notation:

(i) 
(ii) Let U be an algebraic subset Q2 of dimension and m be a non-

negative integer. If the subgroup Tm of (Jt has dimension then

(iii) If V is a non-empty algebraic subset of G and g E G, then V + g is an
algebraic set of the same dimension as V and

(iv) If H is an algebraic subgroup of G and E is a finite non-empty union
of translates of H in G, then E is an algebraic subset of G and

(v) If v and X are algebraic subsets of G and E = Ig E G : g + 1~ C X},
then E is an algebraic set. Moreover, if X is defined by polynomials of
bidgree at most (Do, D1 ), then so is E.

(vi) If E is a non-empty algebraic subset of G defined by polynomials of
bidegree at most then

Part (i) is obvious (see [33, Chapter 8]). Parts (ii)-(vi), are Proposi-
tion 8.3, Lemmas 8.11, 8.12, 8.13, and Proposition 8.14 of [33], respectively.
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1.3. The Multiplicity of a Zero.

Let Ko and I be positive integers and 4&#x3E;1,... , ~7 be analytic functions in
C. Let (l~z, ~ni) ~1  i  I ) be pairs of non-negative rational integers whose
sum is at most Ko. Let il, t2 E C and for each i E ~1, ... , )7}, let

Further let (j) : 1  j  I } be a set of elements of (C 2 .
Let N denote the set of non-negative rational integers and for each

(k, m) E N 2, let 11 (k, m) 11 = k + m. We define 8(Ko,I) to be the minimum
value of as «k1,ml)... (k1, mz)) ranges over all
I-tuples of elements of N2 which are pairwise distinct with ml , ... , 
Ko .

LEMMA 1.3. [33, Lemma 9.1]. The function of one complex variable x
given by:

has a zero at x = 0 of multiplicity at least 8(Ko,I).

We now slightly modify the proof of [33, Lemma 9.2] and get an improved
lower bound on 

LEMMA 1.4. Let and I be positive rational integers with Ko &#x3E;
998, L &#x3E; 18, and (Ko + 2)2L/4 &#x3E; 1 &#x3E; .lSKa L. Then

Proof : The smallest value for the sum + ... + is
reached when we choose successively, for each integer n = 0,1, ... all the

points in the domain

and stop when the total number of points is I. Now
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Hence the number of points that we get by varying n between 0 and, say,
A - 1 (with A &#x3E; Ko ) is

Moreover, if A is maximal such that this number is at most I, then

_ _, 1 a _,

Now A is maximal such that

Note that, as desired,

Finally, we need to show that

Since we need only establish that
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Since the function J(x) = ( x~)x - 3L ( Ko+1 )2 is decreasing as x increases
in the indicated range (x &#x3E; (.15)Ko2L), we need only check the truth of
the inequality at the maximum value of I. Our inequality holds when
I = (Ko + 2)2L/4 provided that

Since Ko &#x3E; 998, the righthand side is at most (.239)L + k. Hence the

inequality holds if (.011)L &#x3E; k. Our assumption that L &#x3E; 18 guarantees
this. D

1.4. A Liouville Inequality.
We will need the following special case of an inequality that dates back

to J. Liouville. (For a fuller account, see [33, Chapter III]).

LEMMA 1.5. [33, Lemma 3.14]. Let be non-zero rational num-

bers; say a~ = with ajl, coprime rational integers (j = 1, 2, 3).
= 1, 2, 3). Let f (X,Y, Z) e 

be such that 0. Ki, K2 and
K3, then

1.5. A Product of Factorials.

The purpose of this section is to derive a lower bound for (k!). The
proof we give was kindly suggested to us by Paul Voutier.

LEMMA 1.6. For any integer K &#x3E; 6, we have

Proof : A well-known and easy consequence of Stirling’s Formula is
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Hence

By the Euler-Maclaurin Summation Formula,

Therefore

Hence, in order to prove the lemma, it suffices to show (for K &#x3E; 6) that

This will certainly hold if

for K &#x3E; 6, proving the lemma. 0
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S2. Analytic Results.

2.1. P reliminary Definitions.

Let be multiplicatively independent rational numbers greater
than 1; let ai = with ajl,aj2 coprime positive rational integers
(j = 1, 2, 3 ) . and assume (without loss of gen-
erality) that a3. Let bl, b2, b3 be positive rational integers with
gcd(bl, b2, b3 ) = 1. Let A = b2 log a2 - bl log al - b3 log a3 ~ 0 with
b2 log a2 = maxf bj log aj j = 1, 2, 3}.
Let K and L be positive integers, and N = K2 L. Let i be an index such

that mi, li) runs through all triples of integers with 0  K - 1,
So each number 0, ... , K - 1 occurs

KL times as a ~Z, and similarly as an mi; and each number 0, ... , L - 1
occurs K2 times as an ~.

Let R, S and T be positive rational integers with RST &#x3E; N = 

2.2. The Interpolation Determinant.

The rest of Section 2 is an adaptation of Laurent’s method of interpola-
tions (see [13] or [14]). With the above definitions, let

where Sj, tj are non-negative integers less than R, S, T, respectively, such
that runs through N distinct triples.

Suppose that these N distinct triples can be chosen so that A # 0. Let
b1, b2, b3 E Z+, and let {31 = bi /b2, ~3 = b3/b2. Recall

Let

Let
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where

and

Since s;, b2, L and I A are all positive, I  A/2 S, we have

where x = Now decreases in (0, oo) and tends to 1 as
x --&#x3E; 0+ by L’H6pital’s rule. Hence 10ij (  1.
We wish to bound A away from 0. As a first step we bound A’ away from

0. Under appropriate assumptions, we now show that A’ &#x3E; 1/ pKL, for an
appropriate p &#x3E; e. (We will use the Proposition 2.1 to show a similar result
for IAI in Section 5.)

PROPOSITION 2.1. Suppose that K &#x3E; 500 and L &#x3E;_ 20. With the above

0, then A’ &#x3E; 1/ pKL provided

We will establish Proposition 2.1 by reductio ad absurdum. We will first
obtain an upper bound on ~ [ (assuming that A’  1); the key tool will
be an application of the Maximum Modulus Principle and the results in
Subsection 1.3. We will next derive a lower bound on ~0~ (assuming that
A 0 0) using Liouville’s inequality (Subsection 1.4); however, assumption
(2A) forces the lower bound to exceed the upper bound. This contradiction
establishes the Proposition.

2.3. The Upper Bound for JAI.
In this subsection, we prove:
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and similarly for ( tj b2+Sj mi b1). Hence, using the multilinearity of determi-
nants, we obtain that

By (2.2), (2.3), and the definition of A; , it follows that

Since EN- 1 Ai = 0, we deduce that

So, by expansion of this determinant as a "polynomial" in A’, we obtain
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where N = {0,1, ... , N -1 } and AI is the determinant of the matrix 
whose (i, j ) entry is

where

Let

Then, letting w¡(x) = gives

By the Maximum Modulus Principle, if were analytic, then
xii

,-- --I

Define G1 = LRN/8, G2 = LS’N/8 and G3 = Now, by Lemma 1.1
and the fact that Ài = 0, we obtain

Similarly ~r(~) ~ ~3+~302. Since 0152l and a3 exceed 1, we deduce
that
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if A  0; that is, we have an extra 1.001 in the upper bound. Hence, for
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Using (2.7), the equality
the definition of b, and that

2.4. A Lower Bound for ~.
Under the assumption that A # 0, we use Lemma 1.5 to establish

LEMMA 2.3. With the above assumptions and notation,

Proof: Consider the polynomial

where ,,

and a ranges over tne elements ot tne symmetric group on lv letters; as

usual, denotes the signature of u. Clearly A = P ( al , a2 , a3 ) . By
Lemma 1.1,



117

Hence

Now

and since ’ I

Consequently, (2L) follows at once from (2.8). 0

2.5. Synthesis.

By (2U) and (2L), we deduce that

This simplifies to

Since log aj &#x3E; 0 ( j = 1, 2, 3 ) , substituting aj for aj and using
the definition of G~ ( j = 1, 2, 3), we get a contradiction to the assumption
~A~~  1 if inequality (2A) holds. This establishes Proposition 2.1. 0

Our next goal is to put conditions on R, S, T, K and L to ensure N = K2 L
distinct triples can be chosen so that the resulting A is non-zero.
Equivalently, so that the N x RST matrix resulting from all triples has full
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row rank. By row reduction, as in (2.2) with qo and ~o both replaced by
0, this occurs if and only if the matrix with (i, j) entry (r~ + +

has full row rank. That is, if and only if : the only
polynomial EiÀixkiymizli having all tj+Sj33, as

roots (0  r~  R; 0  s;  S; 0  t~  T ) is the zero polynomial. This
concerns polynomials with X and Y degree at most K -1 and Z degree at
most L - 1.

S3. Row Rank.

In this section we prove a result about zeros of polynomials that guar-
antees that the full row rank is attained (except under propitious cir-
cumstances when better results are possible). Here is where we heavily
use algebraic groups. Our zero estimate is similar to Philippon’s Zero
Estimate ([33, Chapter 8]) but requires a close analysis of the intersec-
tions of translates of hypersurfaces under the group q+ x Q:. It allows
us to both eliminate the need for E3 and take El and E2 to be sets of
very different sizes. We will establish (under mild conditions) that either

satisfies a linear dependence relation with small integer coef-
ficients, or the only polynomial of prescribed bounded degree having all

(r~ + + s~~3, (j E 10, - )~ 2013 11) as zeros is the zero
polynomial, where /3~ = (j = 1, 2, 3). Specifically:
We define b2, b3} to be (R, S, T)-linearly dependent over Z if there

exist E Z not all 0 such that dlbl + d2b2 + d3b3 = 0 with 
and Id11, Id31 ~ S; and if d2 = 0, then Id11 ~ T and Id31 ~ R.

THEOREM 3. Suppose that K, L, R, S, T, R1, Si, T1, R2, s2, T2 are positive
integers greater than or equal to 3, and that K &#x3E; 2L, Rl + R2  R,
S, + S2  S and Tl + T2  T. Further assume that R1 without loss
of generality. IF

and

THEN either b2, b3} is (R, S, T)-Iinearly dependent or the only polyno-
mial P(X, Y, Z) E Y, Z] (with degx P, degy P  K -1 and deg z P 
L - 1) having {(r + S/31,t + 0  r  R - 1, 0  s 

5’2013 l,O~~~T’-l}as roots is the zero polynomial. In the latter case,
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the K2 L X RST matrix with (i,j) entry tjb2+-Sjb3)a ki )( mi l 1 2’
has row rank equal to K2 L. Consequently, for an appropriate subset of K2 L
columns, the resulting matrix has determinant A that is non-zero.

Under condition (2A) of Proposition 2.1, this will yield our lower bound
for A’.

To prove Theorem 3, we argue by reductio ad absurdum. Let ~j =

Without loss of generality, P(X, Y, Z) can be written as a product of dis-
tinct irreducible polynomials PI, ... , Pn (none of which is a scalar multiple
of Z). Let .~o = V(P) = Uf V(Pi) : :1  z  nl, the set of zeros of P. Let

(Zo - (1) = (Y(Pz) - (1). Letting (A1, ... , An) range
over all n-tuples of pairwise disjoint subsets of El whose union is we see

(by DeMorgan’s Laws) that Zl = o~) .
Note that, by hypothesis, E2 C If is not (R,8,T)-linearly
dependent, then the projection of Ej onto the first two coordinates is a
one-to-one map (j =1, 2); i.e., if tj = 0  r  0 

~  ~, 0  t  T,}, then ~ = (R, +1)(~ + 1)(T, + 1) (j = 1,2).
Throughout we let Do = 2(K -1) and D, = L -1, and assume (without
loss of generality) that Ri  T1.
We wish to establish that the non-empty algebraic set ,~1 has dimension

0. This will follow from a series of lemmas in the next section:

3.1. The dimension of ,~l is 0.

If dim Zi &#x3E; 0, then for some partition f A,,... , of we must have

d.imCi &#x3E; 0 for i E {I, ... , n~, where Ci = n(7’EAi (V(Pi) - (1).

PROPOSITION 3.1.1. Under the hypotheses of Theorem 3, the number of
elements lying on a common tine is bounded by

unless {&#x26;i,&#x26;2?&#x26;3} is dependent.

Proof: Suppose the number of elements of t, lying on a common line i of
slope m is greater than M and that is not (Ri , Si , Ti )-linearly
dependent. By the pigeonhole principle, there exist L71, - - - , 0’6 ~ E1 all
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lying on i such that

Simple slope calculations now imply

Case A: m  oo. We shall further assume that 7i,... a4 are chosen
such that 182 - I is minimal with respect to ri = r2 and that [r4 - r3 ~ [
is minimal with respect to S3 = s4. Since m = finite, it2 11 1
follows that It2 - I is also minimal with respect to rl - r2 . Similarly,
lt4 - t3 is minimal with respect to s3 - s4. We have

Clearing denominators and remembering that /31 - b and /?3 = ~, we
obtain the equation 

b2 b2

By the minimality of s2 - sx in the choice of ~1 and 02? we know that for
each r with 0  r  Ri , there are at most s 1 sl  different s’s2 1 
such that there exists t E {0,... with (r + 8/31, t + s,Q3 ) E . However,
since m  oo, there is at most one such t for every pair, (r, s). Hence,
all together there are at most 2R+.)CSi+1) points of Ei on . By our182-811
assumption, we have that
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Exchanging the roles of r and s in the above argument, we also obtain that

(since Rl  Ti) and

Since m # oo, we have r4 - r3 ~ 0. If t2 = tl, then we have

We deduce that if m ~ oo (and hence s2 - 0), then is

(R1, Sl, Tl )-linearly dependent. This contradiction arose from our assump-
tion that the number of points of Ei lying on l is greater than M.
Case B: If the slope were infinite, we would then have

Hence

Therefore b2, b3} is (Rl, Sl, Tl)-linearly dependent, thus proving Propo-
sition 3.1.1. D

If Pi has bidegree (1, o), for each E Ai, Q is a line. Since
1 and Ci = no-EAi (V (Pi) - ~), all u E Ai lie on the same translate

of the line Hence, by Proposition 3.1.1, = M. Let
K = where A = {z E ~1, ... , n} : Pi has bidegree (1,0)}. Then

- 

.,..--

Since P has bidgree at most (Do, Di), we Do . Further, since
I E, I &#x3E; ~M (by (3.4)), the complement of A is non-empty. We note an
essential difference between the elements of A and its complement. Write

for translation by cr E G; i.e. (X + + 2? 3) where
~ _ (~1~ ~2~ ~3).
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LEMMA 3.1.2. Let P2 (X, Y, Z) be an irreducible polynomial other than Z,
and E ~1 7’. = then Pi has bidegree
(1, 0).

Proof : If V (Pi o tu) = V (Pi o to’,), then Pi o to’ = cPi o t,, for some c E ~* .
We first show that degz Pi = 0.

Write

(7 = (r + + ~/?3,~~~) (r’ + + s’ Q3 , al’ ag’ a§ ) .
Examining the term with l maximal so that ~ 0 for some j, k and
j + 1 is maximal subject to l being maximal (if there is more than one such
( j, k ), choose any of them), we must have

and hence c = (a’-" )1. Next we examine the coefficients of the
highest order term of Pi with Z power equal to 0. That is, we look at the
coefficient maximal with respect to 0. If no such term

exists, then we have that Z divides Pi contrary to our hypothesis. If more
than one such term exists, choose any of them. In this case, we obtain that
c = 1. Hence 

I I ..1 .

Since is multiplicatively independent,.e = 0. Therefore
degz Pj = 0.

We now shew that Pi is indeed linear in X and Y. Since Pi 
if But

degz Pi = 0, so (xo, Yo) + Z (ui - u[ , u2 - ~2 ) (where u = (~1,0-2,~3)) is
contained in the variety Wi of Q2 defined by Pi (viewed as an element
of Q[X, Y]) . Since Wi passes through infinitely many points of the line
(xo, Yo) + 32 2013 we obtain by Bézout’s Theorem [9, Corol-
lary 1.7.8] that Wi is this line. Hence Pi has bidegree (1, o) as claimed. 0

Our next task is to bound IAi if i ~ A. So suppose that i ~ A is fixed.
Assume that 2. We now show that Ci = u) is one-
dimensional. Let 11i = {T1, ... , and (for j = 1, ... , ni) 1-(,j denote the
hypersurface V (Pi o tT~ ) . By Lemma 3.1.2 we have that the hypersurfaces
?C 1 and 1-£j2 are not equal whenever jl  j2 , j 1, j2 E 1, ... , There-

fore, n x2 )  1. Since dim Ci &#x3E; 0, we must in fact have that
dim(1íj1 n x32 ) - 1 (and Cj is a component of the intersection, and so
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has dimension 1). Thus 1. It follows from the generalization of
B6zout’s theorem ([9, Theorem 1.7.7]) that ?ti1 n ?ti2 has at most N2 irre-
ducible components, where Ni = deg Note that Do + Dl - /1,.

We will now establish three lemmas which will allow us to bound IAi/.

LEMMA 3.1.3. Assume all of the above hypotheses and notation. If Ci is
a component of1-li1 n n n ?-~j4, and Tj2 - Tj, - Tj4 -’ (with
Tjl, ... , Ti4 E Ai), then -,rj (Ci) is a component of1ti¡ n 1ti2.

Proof: Let v E Ct. Since Tj 1, ... , Tj4 E we know

From these equations, we deduce

yielding that -,,, (v) E ?~~1. Similarly

and hence also. Therefore, C 
1 n 1tj2’

implying that t, (Ci) is a component of n 1-ij2.
This proves Lemma 3.1.3. D

LEMMA 3.1.4. With the above assumptions and definitions, if a, a’ E Ai
and tcr( Ci) = tr, (Ci), = (1’.

Proof : Let F = ~g E G : Ci + g = which is an algebraic subgroup of G
by Lemma 1.2(v). Hence F = Ll xTm for some vector subspace U of Qf and
m &#x3E; 0. If (Ci) = (Ci), then a - u’ E F. If a 54 ~’, then as (ai , cx2, a3 ~
is multiplicatively independent, it follows that m = 0. Moreover, since the
projection of ~iZ onto the first two coordinates is one-to-one, the projection
of ~’ is a non-zero element of U; so dimU &#x3E; 1. Hence 2, a
contradiction. D
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LEMMA 3.1.5. With the above notation and hypotheses, the set ~12 cannot
contain N2 -f- 1 distinct pairs such that is a non-zero

constant independent of j .

Proof : Suppose otherwise. By Lemma 3.1.3, for each such pair, -Tll (Ci)
is a component of 1tjl 1 n 1-(,j2. Since we know that 1-(,jl n 1íj2 has at most

components, the pigeonhole principle implies either for some j ; 1 we
have tTjl-Tl1 (~Z) - or there exist j and j’ such that

In the former case, we have that = (Ci), and in the latter case,
we have tril (Ci) = tT., (Cz). Since if j j’, we get a contradiction31 31 1

to Lemma 3.1.4. Hence Lemma 3.1.5 is true. 0

We now have the tools to bound To do so, we will count the total
number of possible differences for the pair Then we will count
the number of distinct pairs of elements of the set Ai. By comparing these
and using the pigeonhole principle, we will be able to find a bound.

Recall Since 0 ~ r  Ri, 0  s  Sl , and 0  t  Ti ,
the number of possible non-zero values for 7j2 where E ~1z is
at most

On the other hand, the number of distinct ordered pairs of distinct elements
of Ai is 1 ) . Thus if

we would obtain a contradiction to Lemma 3.1.5 by the pigeonhole princi-
ple. Hence,

Applying the quadratic formula, we have:

Since 1  4~V? ~ this reduces to
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This is the bound we want for Since Do + and

n - K  )Do + Dl (since there are at most )Do factors with Z-degree 0
not having bidegree (1,0)), we have

Hence, by (3.1.1) and (3.1.2),

and 0  K  Do. This right-handside is clearly maximal when = 0. Since
and &#x3E; 8(2K+L-2)2,

inequality (3.1.3) is impossible. Hence dimZ1 = 0. 0

3.2. Proof of Theorem 3.

We first show that (under the hypotheses of Theorem 3) there exist a
vector subspace Lf of Q2 of dimension 0 and a subgroup of Q* of
dimension 61 with 60 + 61  2 such that

Proof: Write Do for 2(K - 1) and Dl for L - 1. Let H(E, Do, D1) be
the homogeneous part of p! times the Hilbert-Samuel polynomial of total
degree p (= dim E). By Lemma 1.2 (i) &#x26; (ii), 7-L(G, Do, Dl) = 3DoD1 and

+ H(U x Therefore it suffices to
show that

for some H ~ G an algebraic subgroup of G (then H =1,t x T,). For each
~ E 0 x Qx ~*, let (X where

7rl, Jr3 denote the natural projections onto the respective coordinates.
We will for when Z C 0 x Q x ~*.

Let .~o = V (P) denote the set of zeros of P, and Zi = (1),
the set of common zeros in G of the polynomials P o (U1 E £i) , each
of which has bidegree  (Do,Dl). Note that since E1 + E2 C Zo, we
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have E2 C Let Z2 = ~2) C 21. Then 0 E Z2, and
Z2 is an algebraic subset. Since dim Zl = 0, dim ,2 = dim 21. Let Vo
be a common irreducible component of .~1 and Z2 of this dimension. So

vo g ~2 = Thus for all T E E2, we have T + Vo C Let

Let H = (g E G : g + Vo = Vo)
and Xo = {g + Vo : g E E}. Then Vo and each of the elements of Xo are
algebraic subvarieties of the same dimension as Z, (by Lemma 1.2(iii)).
They are also contained in ,~1 and so Xo is finite. Clearly H is a subgroup
of G and E is closed under th (translations by h) for all h E H. Hence
there is a bijection E/H ~ Xo. Thus E is a finite union of translates of
H. Now H is an algebraic subset and so an algebraic subgroup of G. Since
0 0 Vo ~ G, we have G. By Lemma 1.2(v) E is an algebraic subset of
G which, like is defined by polynomials of bidegree  (Do, Dl). Since
E is a finite union of translates of H, Lemma 1.2(iv) gives

Since E is defined by polynomials of bidegree  (Do, Dl ), we have (by
Lemma 1.2(vi)) 1i(G, Do, Dl). Finally, since E2 g E we
have

This establishes the claim. 0

Now H = Lf x Q* (respectively Lf x = {g E G : Vo + g = Vol as
m = 0 (or m # 0) for some vector subspace Lf of Qf of dimension bo, where
Vo is a common irreducible component of Z, and Z2 of dimension 0.

{0} and m = 0, and {(xo, yo, zo)} = Vo, then (xo, yo, z) E 1Jo for
all z E ~* . So 1, a contradiction.

_ 

IfU # {0}, let E U) ( 0 ) and Then 

Vo. Thus dim Vo &#x3E; 0, a contradiction. Hence H = {0} 
with m 0 0.
Now if (xo, yo, zo) E Vo, then Vo. Consequently,

m = 1, and H is the trivial group. Thus (3.2.1) becomes (R2 + 1)(SZ + 1)

S4. Numerical Constants.

In this section, we follow standard procedures to obtain numerical con-
stants that satisfy the conditions of both Theorem 3 and Proposition 2.1.

Let Cl, C2, C3 &#x26; c4 be real numbers greater than 1; and suppose that
2c2. Let
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and assume that ( B ° &#x3E; ) B &#x3E; max( Bo , log b’ . We will assume that Bo &#x3E; 10.

Let
.,....,. r , ,

Note that is (R, S, T)-linearly dependent over Z if and only if it
is (C4, B)-lineaxly dependent over Z (with respect to (a,, a2, a3)).

Let

PROPOSITION 4.1. With the above definitions, condition (2A) holds as do
the hypotheses of Theorem 3 provided that

and

where Bo &#x3E; 10 and e  p  9, and the two terms involving B° are omitted
if B° is not known.

Proof : We first show that b  b’ (provided that e3~2c4 ) and hence
log b  B.
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By definition,

Hence it suffices to prove that

By Lemma 1.6, the right hand side exceeds so the desired inequality
certainly holds if c4  
That the hypotheses of Theorem 3 hold (under suitable assumptions on

the constants cl ... c4 for these values of and L-
see below) follows by grubby school arithmetic. Specifically, .K &#x3E; 2L since

2c2. Moreover, since c3 &#x3E; 1 and 1 ( j = 1, 2, 3), we have that
conditions (3.1) and (3.2) both hold provided that

Since B &#x3E; Bo &#x3E; 10, this is obviously the case.

Inequality (3.4) certainly holds provided that

Now C2/ci  .0002, so we merely require that c3 &#x3E; 2(2.0002)~c~.
So we take

Note also that c3 &#x3E; 3, so 3.

Next we want R2 &#x3E; 3. For this we need only insist that R &#x3E; R1 + 4.
Since 1 ( j - 1, 2, 3) and B &#x3E; Bo, it suffices that

Similarly S2 &#x3E; 3 and T2 &#x3E; 3, assuming (4.3).
Finally, we note that condition (3.3) holds provided that
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An easy verification shows that

satisfies both conditions (4.3) &#x26; (4.4), since Bo &#x3E; 10 and 1.

Moreover, e3~2 c4  ci if (4.5) holds, since c2  8, and Bo &#x3E; 10, and
ci &#x3E; 21, 000.

Consequently, with the value of c4 given by (4.5) (in terms of ci, c2, Bo),
and the indicated values for Rl, RZ etc., we are guaranteed full row rank and
hence a K2 L x K2 L submatrix of determinant A 0 0 (Theorem 3). Now
to get that ~A‘ ~ &#x3E; 1/ pxL, we need to satisfy inequality (2A) of Section 2.
To satisfy this inequality, if we assume that K &#x3E; 1, 000 (which occurs if

cl Bo &#x3E; 1, 000 since 1 ( j = 1, 2, 3)), it suffices that

since B &#x3E; log b and 1°; t 1. That is

We claim that

if B &#x3E; 10, 20, 000, C2  8 and e _ p  9. For the right hand side of
the above is at most
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i.e., at most 1.21. However, B&#x3E; $1--° &#x3E; 1B6. This establishes the, B ’ Blogp - g B
claim. Hence (4.6) certainly holds provided that

where B° &#x3E; B; in the case that no BO is given, the three terms with B°
in them are omitted. Since cl &#x3E; 2 x 104 and Bo &#x3E; Bo &#x3E; 10, the last
three terms on the right hand side of (4.7) add up to at most .00005. So
substituting for the value of c4 from (4.5) in (4.7) we see that inequality
(4.7) holds if

where the two terms involving Bo are omitted if no Bo is known. If we
let ci = c2 /x (with x a positive real number less than 0.0002), then this
condition becomes

(with the B° terms omitted if no BO is known). This is certainly true if

(with the B° terms omitted if B° is not known). This establishes Proposi-
tion 4.1. C7

Subject to the above constraint (4.8), we wish to minimise the constant
2

C = ci c2 log p = :;-log p where e  p  9. Tables (obtained by computer)



131

are provided in Section 6 for various values of (B°, and B° . Substituting
5 for p yields:

For the case that Bo is extremely large, we have only the constraint

The minimum for C occurs when x = .000103, C2 = 3.109, ci = 30,182,
and cl c2 log p  1.51 x 105 .

S5. A Lower Bound for IAI.

We have shown under the above constraints that A’ &#x3E; 1/pKL. Since

it follows that

We now deduce that

where 6 is small and defined below.

and note that
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(similarly for S and T replacing log at by log a2 and log a3, respectively).

Hence, to establish that exp(-(clc2log p)A), it is enough to prove
that

The same upper bound holds for log(eLS) and log(eLT). By definition,

J - 

In the limiting case, 6 = 0, of course. A table for various values of Bo
(obtained using a computer) is provided in the next section.
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S6. Tables.

TABLE 1

TABLE 2

We are most grateful to our graduate student, Timothy W. 0’Neil, for
providing us with these tables.
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