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Equivalences Between Elliptic Curves
and Real Quadratic Congruence Function Fields

par ANDREAS STEIN

RÉSUMÉ. En 1994, le célèbre protocole d’échange de clefs de Diffie-
Hellman fut pour la première fois implémenté dans un cas où
l’espace des clefs sous-jacent n’a pas une structure de groupe :
en effet l’ensemble des idéaux réduits principaux d’un corps de
nombres quadratique réel n’est pas un groupe, mais néanmoins
possède ce qu’on appelle une infrastructure. Récemment, ce prin-
cipe a été étendu au cas des corps quadratiques réels de fonc-
tions sur un corps fini. Comme toujours, la sécurité du protocole
dépend d’un certain problème de logarithme discret (PLD). Dans
cet article, nous démontrons que pour les corps quadratiques réels
de fonctions sur un corps fini et de genre un, i.e les corps de fonc-
tions elliptiques sur un corps fini, ce PLD est équivalent au PLD
pour les courbes elliptiques définies sur un corps fini. Nous ex-
plicitons ici la correspondance entre ces deux PLD, et nous prou-
vons certaines propriétés n’ayant pas d’analogues dans le cas des
corps de nombres quadratiques réels. De plus, nous montrons
même que la structure de l’ensemble des idéaux réduits princi-
paux est plus proche de celle d’un groupe dans le cas particuliers
des corps de fonctions elliptiques sur un corps fini que dans le cas
général, bien que ce ne soit pas un groupe.

ABSTRACT. In 1994, the well-known Diffie-Hellman key exchange
protocol was for the first time implemented in a non-group based
setting. Here, the underlying key space was the set of reduced
principal ideals of a real quadratic number field. This set does
not possess a group structure, but instead exhibits a so-called
infrastructure. More recently, the scheme was extended to real
quadratic congruence function fields, whose set of reduced prin-
cipal ideals has a similar infrastructure. As always, the security
of the protocol depends on a certain discrete logarithm problem
(DLP).
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In this paper, we show that for real quadratic congruence func-
tion fields of genus one, i.e. elliptic congruence function fields, this
DLP is equivalent to the DLP for elliptic curves over finite fields.
We present the explicit corresponce between the two DLPs and
prove some properties which have no analogues for real quadratic
number fields. Furthermore, we show that for elliptic congruence
function fields, the set of reduced principal ideals is even "closer"
to a group than in the general case, but still fails to be a group.

1. Introduction

In 1976 Difrie and Hellman [6] introduced their well-known protocol for
exchanging a secret cryptographic key. Their scheme was based on arith-
metic in the multiplicative group IFp * of integers relatively prime to a large
prime p, but can be extended to a more general setting of a finite group G
such that ~G~ (= n) is large. Recently, Scheidler, Buchmann and Williams
[9] were able, for the first time, to exhibit a secure key exchange protocol,
similar in concept to that of Diffie-Hellman, which does not make use of
a group as the underlying structure. This scheme is based on the infras-
tructure (see Shanks [13]) of the principal ideal class of a real quadratic
number field. In [10], it is shown how the theory of real quadratic con-
gruence function fields can be used to produce a secure key distribution
protocol. The method is an extension of the ideas of Scheidler, Buchmann
and Williams. As always, the security of the protocol depends on a certain
discrete logarithm problem (DLP).

In [1), Abel shows that the DLP in a real quadratic number field 
can be solved in time subexponential in log A. Also, any algorithm for
solving the DLP can be used to find the regulator of this field. Knowledge
of the regulator, together with a technique due to Schoof [12], can then
in turn be used to factor A. Hence, the DLP for real quadratic number
fields is at least as difficult as the problem of factoring the integer A.
A corresponding result in real quadratic congruence function fields does
not guarantee a similarly high level of security, since the factorization of
polynomials is easy compared to the factorization of integers.

In this article, we prove that the DLP in real quadratic congruence func-
tion fields of genus 1, which we call (real) edliptic congruence function fields,
is equivalent to the DLP for elliptic curves. So far, the only known algo-
rithm for solving the DLP for elliptic curves is exponential (except for the
supersingular case). For real quadratic congruence function fields of large
genus, the DLP turned out to be of subexponential complexity (see [8]).
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The main results are stated in Theorem 7.3, Theorem 7.4, and also in
Theorem 4.2, Theorem 4.10. We first explain the properties of the set of
reduced principal ideals in elliptic congruence function fields (see also [17],
[18], or [19]). Then, we draw the connection to elliptic curves by combining
the results in elliptic congruence function fields with formulae derived from
Adams and Razar [2]. We explicitly give the one-to-one correspondence
between the set of reduced principal ideals of an elliptic congruence function
field and the group (P) B {P} where P denotes a IFQ-rational point P on the
corresponding elliptic curve. Furthermore, we give answers to the following
questions which are important for the equivalence:

. Does the set of reduced principal ideals form a group? (Theorem
4.10)

. Is there a computable relation between the distance function bi and
the index i? (Theorem 4.2)

~ Is there a relation between the number of reduced principal ideals
and the order of (P)? (Theorem 6.4)

~ Let Q E (P) B {P}. Can the corresponding reduced principal ideal
be easily computed? Conversely, let r be a reduced principal ideal.
Can the corresponding point be easily computed? (Theorem 7.3)

The underlying structure of the key exchange protocols in [9] and [10] is
the set of reduced principal ideals. In either case, this set does not form
a group; however, it is "almost" a group. For elliptic congruence function
fields, we will prove (Theorem 4.8) that the set of reduced principal ide-
als is even "closer" to a group, but it still fails to be a group (Theorem
4.10). Furthermore, for real quadratic congruence function fields of arbi-
trary genus and for real quadratic number fields, we expect (see [22], [4],
[17]) that the distance function is asymptotically linear in almost all cases,
i.e., there is a real number y, 1  y  2, such that

For any elliptic congruence function field K, it is true (Theorem 4.2) that

where m denotes the period of a reduced principal ideal. Thus, we have
(Corollary 4.3) that

where R is the regulator of K. There exist no analogues for (1.1) or (1.2) in
real quadratic number fields. It is an open question whether it is possible to
construct any series of real quadratic number fields with these properties.
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In Sections 2 and 3 of this paper, we present the arithmetic of reduced
ideals in real quadratic congruence function fields of arbitrary genus. The
situation in elliptic congruence function fields is described in Section 4. The
connection between elliptic curves and real quadratic congruence function
fields is drawn in Section 5 and 6. In Section 7, we outline the one-to-one
correspondence and the equivalences.

2. Real Quadratic Congruence Function Fields

In this section, we present the situation as described in [16], [17], [19],
[10] and [21]. Basic references for this subject are [3], [5], and [20].

Let k = Fq be a finite field of odd characteristic with q elements. A
quadratic congruence junction field K over the finite field k of constants is a
quadratic extension of the rational function field k(~), i.e. K = 
where D E k [x] is a squarefree polynomial. Let K be a real quadratic
congruence function field. Then, K = k(x)(VD), where D E k[x] is a

squarefree polynomial of even degree whose leading coefficient is a square
in k* = kB{0}. For a = E K ( u, v E k(x) ), denote by a = u-vv’Ï5
its conjugdte. The ring of integers of Kis ~7 = and the unit group
E of K/k is of the form E = k* x (e), where E E K is a fondamental unit
of K.
We know that the the infinite place ~oo of k(x) splits completely in

K, so that ~oo = q3l ’ q32 where j3i and ~2 are the infinite places of
K/k. If and denote the two normed extensions of the negative
degree valuation vqy from to K, we define the natural number R :=

vq3l (e) ~ _ (f) I ~ 1 as the regulator of K/k with respect to D.
A result of F. K. Schmidt [11] shows its connection with two further

invariants, namely the ideal class number h’ and the divisor class number
h,

If we denote by Co the group of all divisor classes of degree 0, then h is
defined to be its order. Furthermore, if g denotes the genus of k, then

It can be seen form [21] or [5] that the completion of k(x)
with respect to is the field of power series in the variable llx and the
completions of K with respect to j3i and ~2 are isomorphic to k(x)q3_.
This means that = k((1fx)). We fix one of the
two places at infinity by letting ~1 be the place which corresponds to the
case where Ui = 1. Also, K is a subfield of k«1jx)). Elements of K
can then be considered as Laurent series at q3l in the variable If
a = K* with Cm ~ 0, we denote the degree, the absolute
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value, the sign and the principal part of a by deg(a) = m, lal = 
sgn(a) = cm, and cixi, respectively. For negative m we set
LaJ = 0. Put deg(0) _ -oo and 101 = 0. It follows that the regulator R is
the degree of the fundamental unit, i.e. R = deg(e).

The continued fraction expansion (Baby steps) of an element a E K is
defined recursively by the formulae ao = a, ao = = 

= for i E No. We say that the continued fraction expansion of
a is quasi-periodic if there are integers v &#x3E; vo &#x3E; 0 and a constant c E k*
such that

The smallest positive integer v-vo for which (2.1) holds is called the quasi-
period of the continued fraction expansion of a. The expansion of a is called
periodic if (2.1) holds with c = 1. The smallest positive integer v - vo for
which (2.1) holds with c = 1 is called the period of the continued fraction
expansion of a. It is well-known that, in the periodic case, the quasi-period
divides the period, and that they both start at the same index. We easily
derive the following
REMARK 2.1. Let a E K and c E k. Then, we have that

where aj denote the partial remainders of a.

3. Reduced Ideals and Continued Fractions

Let a E K be an element of the form a = (P + where 0 ~
and Q~~D - P2). Put Qo = Q, Po = P, ao = d = L VDJ,

Q-1 = (D - ro = 0. We compute Qi, Pi, ai, ri E k[x] for i E N by
using the formulae

and find that ai = (Pi + where Qil(D - Pz). We notice that
deg(ri)  deg(Qi) for i &#x3E; 0.

If we define Bl = 1 and
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then we get

The case a = ..JJ5 plays an important role. We collect some properties
of it in the following Remark.

REMARK 3.1. The continued fraction expansion of a = ..JJ5 is periodic with
period n and quasi-periodic with quasi-period m. We know that Qs E k* if
and only if s = Am (s, A E No) . Furthermore, e = fundamental
unit of K, and the regulator R of K/k with respect to i7 satisfies R =
deg(0m+1 ) .
A subset a of D is an (integral) ideal if both a+a and 0 - a are subsets

of a. If a is generated by a single element /3 E K, i.e. a = (Q) = (3D, we
call a a principal D-ideal. We will only be considering principal (integral)
ideals. For ,0, q E ~7, we denote by [ 0, y~ ] the module Rk~~~ + 7k [x]. Let
a be an (integral) ideal. Then there exist polynomials S, P, Q E k[x] with
QI(D - P2) such that

The set { SQ, S P + is called k [x] -base of a. If we set sgn (S) =
sgn(Q) = 1, then S and Q are unique. a is called primitive if S can be chosen
to be 1. Each ideal a has an adapted k [x] -base, meaning that there exists a
k [x]-base { SQ, S P + S ~} with deg(P)  deg(Q). The conjugate ideal
of a is given by a := {a ; a E a}. We now give the formulae (see [17],
[19] or [10]) for the product of two primitive ideals, ai = + B/D],
for i = 1, 2, given in adapted form with sgn(Qi) = sgn(Q2) = 1. To find
a primitive ideal c = [ Q , P + and a polynomial S E such that

ala2 = (S)c, where QI(D - P2), deg( P )  deg( Q ) and sgn( Q ) = 1 =
sgn( S ), we compute

where U, V, W E are such that S = UQ1 + VQ2 + W( Pi + PZ ) .
A primitive ideal a is called reduces, if there exists for a a k[x]-base of

the form { Q, P + such that I P - JD I  IQI  P + If we let

sgn(Q) = 1, then this reduced base representation is unique.
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Let a1 = [Q,P+VD-] be a primitive ideal. Then the continued fraction
expansion of a = (P + yields a sequence of primitive ideals ai =

yz_1, Pi-l + (i E N) with the quantities defined in (3.1). We have
that Q00i E D and that

It follows that

(3.6)

Properties of reduced ideals are summarized in the following Lemma (see
[17] or [19]):

LEMMA 3.2. Let al = [Q, P + be a primitive ideal. In the above

notation, the following properties hold.

a) al is reduced if and only if  ~ 
b) ai is reduced for i &#x3E; deg(Q) - 1 deg(D) + 2}.
c) If aj is reduced for some j e N, then ai is reduced for all i &#x3E; j, and

a reduced k[x] -base for ai is given by { Qi_1, Pi-1 + 
d) If aj is reduced and Pj-1 + its reduced k[x]-base, we

have IPj-ll = 1 JDI, 1  IQ j-11  I VDI and sgn( Pj-1 ) = 
Even the two highest coefficients of Pj-l and JD are equal. Fur-

thermore, we get 1  [ :5 [ and laj-lQj-ll = IVDI [
e) If b is reduced and equivalent to a,, then b = aj for a j E N.

If we set t1 = D = 1, then t1 is reduced by Lemma 3.2 a). By
developing the continued fraction expansion of a = VD with the formulae
in (3.1), we obtain a sequence of reduced principal ideals (r2)zEy This

sequence is periodic, i.e. tm+i = ri (i &#x3E; 1), where m denotes the quasi-
period of a = VD (see [17], or [19]). More generally, we have

It follows from Lemma 3.2 e) that the sequence contains all reduced

principal ideals. By (3.5), we get ri = (Oi) for i E N. If ri = [ Q;-i , Pi-i +
then its conjugate ideal is given by fi = [ Q;-i , From

[17] or [19], we conclude that
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The distance of t, is defined to be 6; = 6(r,) = deg ( 7Ji ). Note that the
distance bi is an integer-valued function which is only defined for reduced
ideals and strictly increases as i increases. By Remark 3.1, we get for the
regulator: R = 6m+1 , or, more generally,

By Lemma 3.2 d), (3.2) and (3.3), we have 61 = 0 and

Let i, j be arbitrary, positive integers. By using the formulae in (3.4),
we are able to find a polynomial S E and a primitive ideal c such
that tirj = ( S )c. We apply the continued fraction algorithm to ci = c =
[Q’, P’ + ~lD]. We denote by P’, Q~ and 0( the quantities appearing in
the continued fraction expansion of a’ _ (P’ + as defined in (3.1)
and (3.2). By Lemma 3.2 b), it is guaranteed that, after a finite number of
steps, we obtain a reduced ideal equivalent to ci = c. Let 1 be minimal such
that cl is reduced. From Lemma 3.2 e), we deduce that Cl = tk for a k e N.
Therefore, we define an operation * (Giant step) by setting = rk .

LEMMA 3.3. In above situation, we have

where f = deg(S) E Z and 2 - deg(D)  f  0.
(see [17], Theorem 11.5.1, or [19], [10])
As in [10], we define

DEFINITION 3.4. The discrete logarithm problem (DLP) for real quadratic
congruence function fields is given as follows: For any reduced principal
ideal t, find t5(t), 0  6(r)  R.

4. Elliptic Congruence Function Fields

Here, we apply the results of the previous section to real quadratic con-
gruence function fields of genus 1. These fields are called elliptic congruence
function fields.

Let K = where deg(D) = 4, g = 1, and sgn(D) a square
in k*. Let m be the quasi-period of the continued fraction expansion of
a = v’Ï5. We now consider the sequence of reduced principal ideals (ti)iEN,
starting at tl = [1, Then,
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where the first is its reduced base, and the second its

adapted base, i.e. Ei-, = Q;-i /sgn(Q;-i), sgn(Ei-1) = 1, and 
Pi-1 mod Ei-1. From Lemma 3.2 d), we derive that deg(Qi-,) = 0 or 1.
Obviously, if deg(Q;-1 ) = 0, then, by Remark 3.1 and (3.7), we know that
i = and that = [ 1, VD] = rl . Let i be such that deg(Q;-i ) = 1;
thus, the adapted base of r; is given by

where e;- i , 1~ . This means that E; -i = is a monic polynomial
of degree 1, and F;-i = is a constant polynomial.

PROPOSITION 4.1. Let (ri)iEN be the sequence of reduced principal ideals
starting at ri = 1, Then, we have f or the adapted base of -ci:

where fi-i E k.
From the following theorem, we can conclude that the distance is equal

to the index in one round of the continued fraction expansion of a = VD.
There is no analogue for this result in real quadratic number field. Fur-

thermore, this theorem is one important step to prove the equivalence of
the DLP for real quadratic congruence function fields of genus 1 and that
for elliptic curves.

THEOREM 4.2. In the continued fraction expansion of a = we have

for the distance ði = 6(ri) of a reduced principal ideal ri that

Proof. By Lemma 3.2 d) and the above remarks, we conclude that deg (a ; ) =
deg(v’D-) - = 2 - 1 = 1 for j = 1, ... , m - 1. By inserting this in
(3.10), we see that for i = 2, ... , m + 1:

COROLLARY 4.3. In the situation of Theorem 4.2, we get for the regulator
R of K/k with respect to i~ that

Proof. It follows easily from Theorem 4.2, since R = 



84

COROLLARY 4.4. In the situation of Theorem 4.2, let i &#x3E; 2 be such that

i = Am -f- io, where A E No and 2  io  m. Then,

Proof. By {3.9), we know that AR + Thus, by Theorem 4.2
and Corollary 4.3, we have for io &#x3E; 2 that

COROLLARY 4.5. If deg{D) = 4, then the discrete logarithm problem (DLP)
can be formulated as follows: given any reduced principal ideal r = ri, where
1im;,findi.
Proof. This is clear, since, by Theorem 4.2, 6(r) = = i for 2  i  m.

Next, we will show that the r2, ... , is "almost" a group
under the Giant step operation.

For any i, j E N, we proceed as in the previous section. If ri = tl = (1),
then ti*tj = tj and = bj = If rj - r1 = ( 1 ) , then ti*tj = ri
and * = bi = 8i + bj . Now, let r1 be given in adapted
form. Then ri = [x + ei-1, fi-i + and rj = [x + ej-1, + 

with fZ-1, ej-l, E k. First, we compute S’, Q’ P’ E k[x] such that
= ( ,S ) c = ( S ) [Q’, P’ + yID] by making use of the formulae in (3.4).

Then, we set ci = c, and, with the continued fraction algorithm, we obtain
Cl = rk = rk, + bj + f and f = deg( 8i ) - deg (S).
We distinguish between three cases.
case 1: Let e;-i . Then, by (3.4), we get

where U = ej-1), V = -U and W = 0. It is easy to see that

deg(Q[)  deg(Q’) = 2. Thus, by Lemma 3.2 a), C2 = [Q’, Pl’+ JD] is
reduced, i.e. I = 2 and ri * rj = C2. Also, by Lemma 3.2 d), deg(ai) +
deg(Q’) = 2. It follows from (3.2) and (3.3) that

This means that

case 2: Let ei-i = and 0. Then, S = 1, Q’ = (x+ei_1)2
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and P’ EE + D)/( fi_1 + 1;-1) mod Q’. We proceed as in case 1,
and obtain ri * rj = C2 = tk, f = 0, and

case 3: Let ej-, and fi-i + fj-l = 0. This is equivalent to tj = tie

Thus,

THEOREM 4.6. In the continued fraction expansion of a = VD, we have
for the distances 6i = 6(ti), 6j = 6(rj), and 8k = 6(rk) = 6(ri * tj), that

REMARK 4.7. For 1  i  j  rn + 1, we see from {3.8}, that rj = ti, if
and only if j = m - i + 2 Let tj = tie Then i -~ j = m + 2. For 111 A’j - 1 1
we have that

and f or j = m + 1, i. e. i = 1, we have that

We conclude that if 2  i  j  m + 1 and i + j  m + 1, then rj ~ ti. For
1  i  m + 1, we have, by (3.7), that rj = ti, if and only if j = Am - i + 2

The following Theorem shows that the set of reduced principals ideals
has "almost" a group structure, and, especially, there exists "almost" an
associative law. However, we are not able to generalize this for arbitrary i
and j.

THEOREM 4.8. In the continued fraction expansion of a = VD, we have
for reduced, principal ideals ti, rj with 2  i, j  m + 1 and i + j  m + 1
that
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Proof. From Remark 4.7 we derive that tj # tie Since i + j  m + 1, we
know from Theorem 4.6 and Theorem 4.2 that

Also, we have that 8(tri * tj) = 6k. Thus, k = i + j, and the result
follows.

REMARK 4.9. For 2  i  m + 1, we have that

For example, let i = 2. We conclude that there exist two elements r such
that t2 * r = ri = (1), namely r = and r = rm. Now, we will see, why
there is no group structure.

THEOREM 4.10. In the continued fraction expansion of a = VD, let i, j E
N with 2 ~ i, j ~ m + 1 such that i + j = m + io, where 2  io  m. Then,

and 6(r; * = 

Proof. For io = 2 the assertion follows from Remark 4.7. Let io &#x3E; 3.

First, we see from Remark 4.7 that -cj =A Thus, by Theorem 4.6, 6k =
* = 8i + 8j. Since 2  i, j  m + 1, we have, from Theorem 4.2, that

6k = i -~- j = m -~- io . We apply Corollary 4.4 to obtain 6k = = 

and conclude that k = i + j -1.
For general i and j, we develop the corresponding rules.

THEOREM 4.11. In the continued fraction expansion of a = vl"D-, let i =

Am + i1 and j = ~um + ji be such that 2  il, jl  m and A, p E No. Then

Proof. By (3.7), we get = r; with 2  21, m. Thus, the
result follows from Theorem 4.8 and Theorem 4.10.

5. T he Quartic Mo del of an Ellipt ic Curve

In this section, we develop the quartic model of an elliptic curve E over
a finite field k and show the connection between E and the corresponding
real quadratic congruence function field of genus 1. We follow the notation
of [2].

Let E be an elliptic curve over the finite field k = Fq of odd characteristic.
We may, and will, assume E to be given in short Weierstrass normal form
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where A = -4A3 - 27Bz ~ 0. Let K = k(v, w). We consider the additive
group of all k-rational points on E

with the point at infinity

as the identity with respect to the usual group law on E.
Let P = (a, b) ~ O be any k-rational point on E, i.e. P E E(k) B {C~}.

We define

and let c _ - 4A - 3 a2 . Thus the curve

is a plane quartic model for E with two points 0 and P at infinity. D =

DP E k~x~ is a monic squarefree polynomial of degree 4, and K = k (x) (y) =
is a real quadratic congruence function field of genus 1 with

respect to D = = 

Conversely, let K = k (x) (VD) be a real quadratic congruence function
field of genus 1. We also require that the characteristic is different from 3.
Then D is a squarefree polynomial of degree 4 where sgn(D) is a square in
k*. Without loss of generality, we assume D to be of the form in (5.3), i.e.

Otherwise, we use linear transformations to obtain D’ E k[x] such that D’
has the requested form, under which the ring of integers does not change.
We define

and A :== 2013~c - 4 a2 , B := b2 - a3 - Aa. These formulas yield an elliptic
curve E such that E is given by the equation in (5.1) and a k-rational point
P := (a, b) E E(k) B (O) on E. This means that (5.2) and (5.4) provide a
birational equivalence between E and EP. Again, the function fields are
equal, i.e. K = = k(v,w).

In this situation, we know that the divisor class number h, and the genus
g of K are absolute invariants of K, whereas the ideal class number h’, and
the regulator R are relative invariants with respect to the ring of integers
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.~7. Furthermore, there is a bijection of sets between E(k) and the zero class
group Co (see for example [15]). In particular, it follows that

If Q 0 0, P is a point on E, then we also denote the equivalent point
on Ep by Q. To distinguish between the two curves, we write for the
coordinates Q = C~ lies on E or Ep , respec-
tively. We also let xQ be the value under the transformation (5.2)
and vQ be the value under the transformation (5.4). The conjuga-
tion in K = yields a bi-regular k-morphism of EP(k), given by
Q = -yQ) for Q 0 0, P, and V = P, P = 0.
DEFINITION 5.1. We define the discrete logarithm problems (DLP) for el-
liptic curves over finite fields as follows: given an elliptic curve E over a
finite field k, and two k-rational points Q and P on E such that Q I - P
(l E 1~1), find the integer 1.

6. Continued Fractions and Orders of Points

In the notation of the previous section, we require the additional condi-
tion that the order of P = (a, b) is different from 2, i.e. b ~ 0. Furthermore,
we assume Q to be a k-rational point on E such that Q 0 P and that the
characteristic of k is different from 2 and 3. Note that we always have
D = f7P and D = DP. We now draw a connection between the addition
on E and the continued fraction expansion of a = As in [2], we define:

DEFINITION 6.1. Let Q E E(k) be such P. We set

By (5.3), (5.4) and the definition of Q, we get O that

and

Since k is a finite field, we know that the continued fraction expansion
of f Q (Q ~ P) with respect to D = i7P = is periodic and quasi-
periodic.
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We develop the continued fraction expansion of B/D, and obtain a se-
quence of elements ao = v’Ï5, al, a2, ... , where, by (3.1), we have written
cxi-1 = + (i &#x3E; 2) with Qi-i E k[x]. The continued
fraction expansion of v’Ï5 is periodic and quasi-periodic with quasi-period
m = mP. As in Section 3, we compute the sequence of reduced principal
ideals (ri)iEN, starting at ri = fl = [1, This sequence is periodic
with period m, i.e. = ri (i &#x3E; 1), and we have ri = + 

If we explicitly refer to the continued fraction expansion of an element
/3 E we write (i &#x3E; 1) for the partial remainders. Note
that = ai (i &#x3E; 1).
LEMMA 6.2. In the continued fraction expansions of fo and v’Ï5, we have
that

In particular, the continued fraction ezpansions of fo and VJ5 have the
same quasi-period m and the same period.
Proof. By (5.2) and (6.2), we see that 2/(’} - VJ5 = x2 - 3a E k(x]. Thus,
the continued fraction expansion of VJ5 differs from that of only in
the first term, i.e.

Then, by Remark 2.1, we follow that

The proof of this lemma is the corrected proof of Corollary 4.4 of [2].
We now state an important result which is due to Adams and Razar [2],
Theorem 4.2.

THEOREM 6.3. Razar) Let E be an elliptic curve over a finite
field k with characteristic different from 2, and let P E E(k) B (O) with
ord(P) ~ 2. Then P on E has finite order and the continued fraction
expansion pure quasi-periodic with quasi-period m(f 0). Further-
more,

THEOREM 6.4. Let E be an elliptic curve over a finite field k with char-
acteristic different frorra 2, 3. Let P E E(k) be such that P :A 0, and let
ord(P) ~ 2. Then,

where m is the quasi-period of VD, and R denotes the regulator of the field
with respect to D = 
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Proof. From Theorem 6.3 we derive that the continued fraction expansion
of 10 is pure quasi-periodic with quasi-period and that

By Lemma 6.2, we know that m = m(fo). Thus,

The second equality follows immediately from Corollary 4.3.
This means that we have a connection between the order of the subgroup

of E(k) generated by P, i.e. #(P) = m + 1, and the number of reduced
principal ideals of D, i.e. #{ri, ... , = m. The question is whether
there is a correspondence between i P and ri for each i E No. We will see
that the answer to this question is more important for the equivalences
between DLPs (see Section 7) than Theorem 6.4.

7. Equivalences

First, we need an important relation between ai and Jip which is proven
in [2]. Here, f,p denotes the function f Q for Q = i P. Remember that

2, 2, 3, and that liP is only defined 1.

THEOREM 7.1. (Adams f1 Razar) Let E be an elliptic curve over a finite
field k with characteristic different from 2, and let P E E(k) B f 01 with
ord(P) 0 2. For all v E 1  v  ord(P) -1 there exist pv E k* such
that 1

COROLLARY 7.2. If P is a point on E with ord(P) ~ 2, then we have, in
the continued fraction expansion of ao = that

where ci E k*. More general, we have that

where CÀm+i E I~ * .

Proof. We see from Theorem 7.1 by changing indices i := v + 1 that

by Lemma 6.2.

1 We mention here that sometimes in the literature the notation pw (a) := a, is used to express
the v-fold composition of 5p with itself, where p(a) = 1 /(a - 
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Let i be arbitrary such that 2  i  m. We denote the coordinates of
i P on Ep by

where E k. Note that 0, ~. From Corollary 7.2, we know that
lip = Ci . with ci E k*. By (6.1) and (3.1), this relation is equivalent
to

, . - - -

where P;-i , Qi-l E and ri = JD]. · Comparing rational
and irrational part on both sides leads to

Thus,

The second equality follows by an easy ideal operation. In particular, the
first k [x]-base is the reduced of ri. Since E l~, the 

+ is the adapted of ti (see Proposition 4.1). We
notice that it is easy to compute the ideal from xi and yi, and, conversely,
to compute i ~ from the adapted k[x]-base of ri.

For i = m +1, we have i P = 0, lip = 10’ and rm+ 1 = ri = [1, 
We summarize this in the following:

THEOREM 7.3. Let E be an elliptic curve over a finite field k with char-
acteristic different from 2, 3, and let P E E(k) be such 0, and

2. Then, there is a one-to-one correspondence between the sets
2  i  m + 1} and ~~1, ... , rm~ as follows: Let Q E f i P : 2  i 

such that 2  1  m + l.

where x Q and yQ denote the coordinates of Q on Ep. Conversely, let
r E fril ... , Then, t = ri for a l such that 1  1  m. be given
in adapted f orm with respect to Proposition 4.1.

where e, f E k, and (-e, f ) denotes the point Q on Ep.
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We illustrate the meaning of Theorem 7.3. For i = 2, ... , m + 1, we
denote the point i P on E, Ep, respectively, by (vi, wi), (xi, y2).

We now state the main result concerning the equivalence between the
DLP for elliptic curves and the DLP for real quadratic congruence function
fields of genus 1.

THEOREM 7.4. The discrete logarithm problem f or real quadratic congru-
ence function fields of genus 1 with characteristic different from 2, 3 can be
solved in polynomial time if and only if the discrete logarithm problem for
elliptic curves over finite fields can be solved in polynomial time.
Proof. Here, we use Theorem 7.3 and Theorem 4.2. First, we assume that
we can solve the DLP for real quadratic congruence function fields of genus
1 in polynomial time. Let E be an elliptic curve over a finite field k given,
as in (5.1), in short Weierstrass normal form

where A = -4A3 - 27B’ ~ 0. Let P = (a, b) E E(k) be such C~.
The case that P has order 2, is trivial. Therefore, let ord(P) 0 2. Under
the birational transformation (5.2), we obtain the curve

E and E~ are birationally equivalent, and the field is a real

quadratic congruence function field of genus 1 with respect to D = 
Let m be the quasi-period of the continued fraction expansion of D,
and let R be the regulator of k(x)(v/’D-) with respect to D. Denote by

... , the set of reduced principal D-ideals starting at [ 1, ..Ji5].
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Let Q E E(k) such that Q = t ~ ~, where 1 E N, 2  1  ord(P). By
Theorem 6.4, we know that ord(P) = m + 1 = R. If 1 = m + 1 = R,
then Q = C~, and, by Theorem 7.3, this means that the corresponding
reduced principal ideal is [ 1, B/D] ] = r1. Thus, by assumption, the
computation of I = R can be done in polynomial time, since tl = rm+1 and
R = (see (3.7) and (3.9)). Now, 0, P, i.e. 2  1  m. Our
aim is to compute I in polynomial time. We see from Theorem 7.3 that Q
corresponds to the reduced principal ideal r = [ x - x (2, where

rQ = rl, and x ~ and y denote the coordinates of Q on Ep . By 5.2, rQ
can be computed from in polynomial time. From Theorem 4.2, we have
1 = 61 = b (~ ~ ) . Thus, by assumption, 1 can be computed in polynomial
time.
We now assume that the discrete logarithm problem for elliptic curves

over finite fields can be solved in polynomial time. Let K = k(x)(~) be a
real quadratic congruence function field of genus 1, where D is a squarefree
polynomial of degree 4, and ~7 = Without loss of generality (see
Section 5), we assume D to be of the form

Let E~ be the curve given by

The birational transformation in 5.4 yields an elliptic curve E in short
Weierstrass normal form

and a point P := (a, b) E E(k) B I 0}, such that E and Ep are birationally
equivalent. Let m be the quasi-period of the continued fraction expansion
of VD, and let R be the regulator of with respect to D. Let
R = 2 (the case R = 2, i.e. m = 1, is trivial). Denote by

... , I rm I the set of reduced principal D-ideals starting at r, = [1, 
Let r be a reduced principal 0-ideal, i.e. t E ~rl, ... , If r =

[ 1, ] = rl, then, by (3.7), tl = rm+,, and, by Theorem 6.4, 6 (r) =
6(rm+l) = R = ord(P). Thus, by assumption, the computation of 6(r) can
be done in polynomial time.

Now, let r = ri such that 2  1  m. Our aim is to compute 6 (r) in
polynomial time. We compute the adapted ofrin polynomial time
(see [17]), and obtain r = [ x + e, f + ], where e, f E k. From Theorem
7.3, we conclude that r corresponds to the point Q = (-e, f ) on Ep . By
(5.4), the coordinates of Q on E can be computed in polynomial time.
Furthermore, we know that Q = From Theorem 4.2, we get 1 = 61.
Thus, by assumption, b(r) = 6(ri) = 1 can be computed in polynomial time.
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Note that Theorem 4.2 is also very important for the proof of this the-
orem. For real quadratic congruence function fields of higher genus, there
exists no direct relation between 6i = 6(ti) and i. We state the equiva-
lence in terms of polynomial time algorithms, but the proof of Theorem 7.4
shows that only the transformations and the computation of the adapted
base contribute to the equivalence. In fact, any fast method for solving one
of the discrete logarithm problems gives rise to a fast solution of the other
one, and the DLP for real quadratic congruence function fields is at least
as difficult as the DLP for elliptic curves. Known methods for solving the
DLP for elliptic curves, except supersingular elliptic curves, are of expo-
nential complexity. Note that we "shift" the DLP for a group to the DLP
in a non-group.

COROLLARY 7.5. The time needed to solve the discrete logarithm problem
for real quadratic congruence functions fields of genus 1 with characteristic
different from 2, 3 is polynomially equivalent to the time needed to solve
the discrete logarithm problem for elliptic curves over finite fields.

REFERENCES

[1] C. S. ABEL Ein Algorithmus zur Berechnung der Klassenzahl und des Regu-
lators reellquadratischer Ordnungen. Dissertation, Universität des Saarlandes,
Saarbrücken (Germany) 1994.

[2] W. W. ADAMS &#x26; M. J. RAZAR, Multiples of points on elliptic curves and
continued fractions. Proc. London Math. Soc. 41, 1980, 481-498.

[3] E. ARTIN, Quadratische Körper im Gebiete der höheren Kongruenzen I, II.
Math. Zeitschr. 19 (1924), 153-206.

[4] H. COHEN, A Course in Computation Algebraic Number Theory. Springer,
Berlin 1994.

[5] M. DEURING, Lectures on the Theory of Algebraic Functions of One Variable.
LNM 314, Berlin 1973.

[6] W. DIFFIE &#x26; M. E. HELLMAN, New directions in cryptography. IEEE Trans.
Inform. Theory 22, 6, 644-654, 1976.

[7] E. FRIEDMAN &#x26; L. C. WASHINGTON, On the distribution of divisor class
groups of curves over finite fields. Theorie des Nombres, Proc. Int. Number
Theory Conf. Laval, 1987, Walter de Gruyter, Berlin and New York, 227-239,
1989.

[8] A. STEIN, V. MÜLLER, &#x26; C. THIEL Computing discrete logarithms in real
quadratic congruence function fields of large genus. Submitted.

[9] R. SCHEIDLER, J. A. BUCHMANN &#x26; H. C. WILLIAMS, A key exchange pro-
tocol using real quadratic fields. J. Cryptology 7, 171-199, 1994.

[10] R. SCHEIDLER, A. STEIN, &#x26; H. C. WILLIAMS, Key-exchange in real

quadratic congruence function fields. Designs, Codes and Cryptography 7,
(1996), no. 1/2, 153-174.



95

[11] F. K. SCHMIDT, Analytische Zahlentheorie in Körpern der Charakteristik p.
Math. Zeitschr. 33 (1931), 1-32.

[12] R. J. SCHOOF Quadratic fields and factorization. Computational Methods in
Number Theory (H. W. Lenstra and R. Tijdemans, eds.,). Math. Centrum
Tracts 155, 235-286, Part II, Amsterdam 1983.

[13] D. SHANKS, The Infrastructure of a Real Quadratic Field and its Applica-
tions. Proc. 1972 Number Theory Conf., Boulder, Colorado, (1972), 217-224.

[14] D. SHANKS, On Gauss’s Class Number Problems. Math. Comp. 23 (1969),
151-163.

[15] J. H. SILVERMAN, The Arithmetic of Elliptic Curves. Springer, New York,
1986.

[16] A. STEIN &#x26; H. G. ZIMMER, An Algorithm for Determining the Regulator
and the Fundamental Unit of a Hyperelliptic Congruence Function Field. Proc.
1991 Int. Symp. on Symbolic and Algebraic Computation, Bonn (Germany),
July 15-17, ACM Press, 183-184.

[17] A. STEIN, Baby step-Giant step-Verfahren in reell-quadratischen Kongruenz-
funktionenkörpern mit Charakteristik ungleich 2. Diplomarbeit, Universität
des Saarlandes, Saarbrücken (Germany) 1992.

[18] A. STEIN, Elliptic Congruence Function Fields. Proc. of ANTS II, Bordeaux,
1996, Lecture Notes in Computer Science 1122, Springer (1996), 375-384.

[19] A. STEIN &#x26; H. C. WILLIAMS, Baby step Giant step in Real Quadratic
Function Fields. Unpublished Manuscript.

[20] H. STICHTENOTH, Algebraic Function Fields and Codes. Springer Verlag,
Berlin (1993).

[21] B. WEIS &#x26; H. G. ZIMMER, Artin’s Theorie der quadratischen Kongruenz-
funktionenkörper und ihre Anwendung auf die Berechnung der Einheiten- und
Klassengruppen. Mitt. Math. Ges. Hamburg, Sond. XII (1991), no. 2.

[22] H. C. WILLIAMS &#x26; M. C. WUNDERLICH, On the Parallel Generation of
the Residues for the Continued Fraction Algorithm. Math. Comp. 48 (1987),
405-423.

Andreas STEIN
FB 9-Mathematik
Universitat des Saarlandes
66041 Saarbrücken

Germany
e-mail: andreas~math.uni-sb.de


