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A generalization of the LLL-algorithm
over euclidean rings or orders

par HUGUETTE NAPIAS

RÉSUMÉ. De nombreux réseaux célèbres (D4, E8, le réseau K12 de Coxeter-
Todd, le réseau de Barnes-Wall, le réseau 039B24 de Leech, les réseaux 2-
modulaires de dimension 32 de Quebbemann et de Bachoc, ... ) sont munis
de structures algébriques sur divers anneaux euclidiens, entiers d’Eisenstein
ou quaternions de Hurwitz, par exemple. Les procédés usuels de réduction,
et en particulier l’algorithme LLL, deviennent plus performants lorsqu’on
les adapte à ces structures,

ABSTRACT. Numerous important lattices (D4, E8, the Coxeter-Todd lat-
tice K12, the Barnes-Wall lattice 039B16, the Leech lattice 039B24, as well as
the 2-modular 32-dimensional lattices found by Quebbemann and Bachoc)
possess algebraic structures over various Euclidean rings, e.g. Eisenstein

integers or Hurwitz quaternions. One obtains efficient algorithms by per-
forming within this frame the usual reduction procedures, including the
well known LLL-algorithm.

1. Introduction.

The LLL-algorithm for basis reduction, one of the most important and
useful algorithm in the geometry of numbers, due to Lenstra, Lenstra,
Lovdsz [9] can be generalized to Euclidean rings or orders. Many lattices
built with codes over rings or orders have an algebraic and additive struc-
ture. We present here a new version of the LLL-algorithm which reduces
a basis (or a system of generator vectors) while preserving the algebraic
structure of the lattice.

We can apply it to the ring of the integers of the five quadratic imaginary
fields ~(~), ~(~), ~(~), Q( ..;::::7), Q(B/~H). the Hurwitz order
9R and a maximal order of the quaternion algebra ramified at 3 and oo.
The lattices can be given via a basis or a set of generators (in the case of
a set of generators, this reduction avoids using the Hermite Normal Form
algorithm).
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2. The LLL-algorithm over a Euclidean ring (or order).

First, we fix some notation. We denote by A a Euclidean ring contained
in a iield K: CM number field or quaternion field over a number field,
which can be identified to a vector space Rm, endowed with an involution

n

(7 : x 1-+ We equip with the Hermitian product z.y = E xp yp. We
p=i

assume that the Norm map N : x 2013~ x I = sends K in R and A in
Z.

Here, we are interested in the case where the field K is commutative
(when K is a skewfield, the notion of a determinant has no sense, but we
can substitute for it the reduced norm).

Definition.

The basis bI, b2, ... , bn of a lattice A is called A - LLL-reduced if

where the vectors b* (1  r  n) and the elements of (1 ~ s 
r  n) are 2nductively defined in the Gram-Schmidt orthogonalization
process f9~, and the two reals CI and C2 are such that 0  G1  C2  1.

Remarks: The constant C2 depends on Cl, it can be replaced by any
value strictly bigger than CI but it must be strictly smaller than 1 to

make sure that the algorithm terminates. The constant CI is equal to
sup{inf {N(y - E and depends on the field K ~8~.
In the following, the Hermitian norm br.br will be denoted by Br (1  r 
n).

PROPERTIES.

Let 61,62~ - bn be an A-LLL-reduced basis of a lattices A. Then,
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v) More generally,, for a systems of linearly independent vectors Xl, x2, ... , Xt
o f A,

For the proof of these properties, see [12].

Remark: Most of the time, the lattices we considered have "integer" en-
tries ( "integer" means elements of A). So, we generalize the version of the
LLL-algorithm [5] which runs with elements of Z. We have the following
proposition:

PROPOSITION.

We set dp = 1 ~ p  n and do = 1. Let be Ar,s for

s  r and

Ar,r = dr. For s  r fcxed, we define the sequence up by uo = br.bs and
for all p such that 1  p  s,

Then A,,., and up E A and Ar,s .

For the proof of this proposition, see (12j .

Remarks: In the case where the field K is commutative, the elements dp
are also equal to 

The sequence is defined in such a way that it can be used when
K is a skewfield.

At the beginning of the algorithm, we compute the up (1 ::; p  n) instead
of using the Gram-Schmidt orthogonalization process.

So, we have for a basis two new conditions of A-LLL-reduction equivalent
to the previous ones:
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When the lattice A is given via a set of generators, the Hermitian norms
of some vectors bs are equal to zero. The definition of dp is replaced by

In this case, we no more have the equivalence between the conditions b)
and b’). So, we implemented the algorithm using the first two previous
conditions of A-LLL-reduction and the Gram-Schmidt orthogonalization
process.

We give the two algorithms, the first for a basis, and the second one for an
arbitrary set of generators.

First algorithm:

Input: A basis b~ (1 ~ p  n) of a lattice A.

Output: An A-LLL-reduced basis.

Init: Set r := 2, := 1, do :=1, di := bl.bl.

Computing up : If r  goto Finished?.

Otherwise: set rmax := r for s = 1,..., r set u := bs.br, for t = 1, ... , s - 1
set u := if s  r set U, if s = r set d r:= u.dt-, I J

Reduction: Execute REDI(r, r - 1).
A-LLL-condition: If drdr-2+ I 1 execute SWAPI (r),
set r := max(2, r -1) and goto Reduction.
Otherwise: for s = r - 2, ... 1 execute REDI(r, s) and set r := r + 1.
Finished? If r  n goto Computing up else terminate.

REDI(r, ): Set q := := br - qbs, Ar,s := qds, for t =
1)... s -1 set Ar,t := Àr,t s- Q’as,t and return. 

,

SWAPI(r): Interchange br and br_1 and if r &#x3E; 2 for s = 1, ... r - 2
interchange and A,-,,,, set A := Ar,r-1, Ar,r-1 := A,,r-li for s -
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For a E K, the symbol means the nearest element of A (in the sense of
the norm) to a.

Second algorithm:

Input: A set of generators bp (1  p  n) of a lattice A.

Output: An A-LLL-reduced basis.

Init: Set r : 2, rmax := 1, bi := bI, B1 := bl.bl.
Gram-Schmidt: If r  rmax goto Finished?.

s-1

Otherwise: set rmax := r, for s = l~ ... ~ r - 1 set := br.bs - 2: ar,tiis,t
t=1

Reduction: Execute RED ( r, r -1 ) .
A-LLL-condition: If Br  (CZ - execute SWAP(r), set
r := max(2, r - 1) and goto Reduction.
Otherwise: for s = r - 2, ... 1 execute RED(r, s) and set r := r + 1.
Finished? If r  n goto Gram-Schmidt else terminate.

RED(r, s): set q := 1 bT := br-qbs, := ILr,s -q, for t = 1, ... , s-1
set Ar,t := ILr,t - qJLs,t and return.

SWAP(r): Interchange bT and bT_ 1 and if r &#x3E; 2 for s = l, ... , r - 2
interchange /Lr,s and set JL := := 
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The running time of these two algorithms is the same as the ordinary
LLL-algorithm over Z or R. For the proof of the validity of these algorithms,
see [5] and [12].

Remarks: Both algorithms were implemented on a SPARC 20. To save
time, we worked with real numbers. However, rounding errors may occur
which can generate some instabilities.

3. Applications.

3.1. Application to the ring of Gaussian integers, the ring of
Eisenstein integers and the Hurwitz order.

We denote by Z[i] the ring of Gaussian integers (i2 = -1), the

ring of Eisenstein integers (j2 + j + 1 = 0) and 9A the Hurwitz order
-I+i 2 ] (the unique maximal order of the quaternion algebra ram-

ified at 2 and oo, with i2 = -1, j2 = -1 and ij = -ji = k, which
contains Z[I, j, k]).

Definition.

A basis bp (1  p  n) of a lattice A is called (resp. Z[j], resp.

rot)-LLL-reduced when,

[Ci is the usual constant which occurs in the Euclidean algorithm.]

Ch. Bachoc obtained three lattices denoted by BC32, BC4o, BC48 ([1],
[2]) with codes over in relative dimensions 8,10,12. The bases
are not composed of minimal vectors. We applied to them the following
process: flR-LLL-reduction and permutation of the vectors of the reduced
basis to order in the increasing way the diagonal elements (which represent
the Hermitian norms) until we obtain a basis of minimal vectors. After one
iteration for BC32, two for BC40 and three for BC48, the previous process
stops. We give the Hermitian diagonals before 9Jt-LLL-reduction and after
each iteration. [Note that we cannot prove a priori that such a process will
stop.] ]
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Using the scalar product (x, y) _ Trd(x.y), where Trd(x) is the reduced
trace of x, we can build these lattices over Z. The usual LLL-algorithm
together with permutations of the bases vectors does not yield a basis of
minimal vectors for BC4o nor for BC48.

3.2. Two lattices of ranks 10 and 40 over 7G( 1+~-7~.
Definition.

A basis bp (1  p  n) of a lattice A is called 
when,

We consider two lattices which have a structure over ] (the
lattice of rank 10

found by G. Nebe and W. Plesken [13] and rediscovered by Ch. Bachoc [2],
realizes the maximal Berge-Martinet constant known in dimension 20, the
second one is an extension

of the first). Replacing rot by 7G(1+2-7~ 1 in the previous process, we obtain
a basis of min-
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imal vectors for the lattice of rank 10 (after 8 iterations), but not for the
other (after 101 iterations, 34 minimal vectors appeared).

In the following table, we give the diagonal elements of the lattice of
rank 10 before

and after each iteration.

For the lattice of rank 40, we give the diagonal elements before Z[ 
LLL-reduction

[5 20, 9ao] (i.e. the 20 first elements have a Hermitian norm equal to 5 and
the 20 others a Hermitian norm equal to 9) and after the 101st iteration
(434 ~ 53 ~ 63~ . Considering a matrix of the lattice of rank 10 with minimal
vectors, we can build a matrix of the lattice of rank

40 which has minimal vectors, but not Z[ HF]-LLL-reduced (the previous
process brings some no shortest vectors).

3.3. A lattice of rank 20 over ~3.

In the quaternion field ramified at 3 and oo, Q~[i, j,1~], with i2 = -1, j2 =
-3 and i j - - ji = k, we denote by rot3 a maximal order w, w’] with
w = ---~ and w’ = iw, which contains 

Definition.

A basis bp ( 1  p  n) of a lattice call ed 9R3-LLL-reduced when,
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G. Nebe builds a unimodular lattice of rank 20 which has an algebraic
structure over 9X3, generated by 40 vectors and stable by SL2(41) (pri-
vate communications). Using the second algorithm, we obtain a 
reduced basis. With the previous process, we find a vector of Hermitian
norm 12. Considering the scalar product (x, y) = we build a
lattice over Z, with a vector of norm 8. But we cannot prove that this lat-
tice is extremal in the sense of the theory of modular forms since it might
contain vectors of norm 6.
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