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On approximation by Lüroth Series

par KARMA DAJANI ET COR KRAAIKAMP

RÉSUMÉ. Pour x ~]0, 1] , on note pn/qn la suite des convergents de
la série de Lüroth associée, et on définit par 03B8n = qnx - pn, n ~ 1

ses coefficients d’approximation. Dans [BBDK], on détermine
la fonction de répartition limite de la suite (03B8n), en utilisant
l’extension naturelle du système ergodique sous-jacent au dévelop-
pement en série de Lüroth. Nous montrons ici que cela peut être
fait sans cette considération. Plus précisément, nous démontrons
que pour tout n, la répartition de 03B8n coincide avec la répartition
limite. On étudiera aussi la répartition pour presque tout x de
la suite (03B8n, 03B8n+1)n~1, ainsi que celles issues de suites telles que
(03B8n + 03B8n+1)n~1. On obtiendra que pour presque tout x, la suite
(03B8n, 03B8n+1) possède une fonction de répartition continue et sin-
gulière. On observera de plus que 03B8n et 03B8n+1 sont positivement
corrélés.

ABSTRACT. Let x ~ (0,1] and pn/qn, n ~ 1 be its sequence of
Lüroth Series convergents. Define the approximation coefficients
03B8n = 03B8n(x) by 03B8n = qnx - pn, n ~ 1. In [BBDK] the limiting
distribution of the sequence (03B8n)n~1 was obtained for a.e. x using
the natural extension of the ergodic system underlying the Lüroth
Series expansion. Here we show that this can be done without
the natural extension. In fact we will prove that for each n, 03B8n is
already distributed according to the limiting distribution. Using
the natural extension we will study the distribution for a.e. x
of the sequence (03B8n, 03B8n+1)n~1 and related sequences like (03B8n +
03B8n+1 )n&#x3E;1. It turns out that for a.e. x the sequence (03B8n, 03B8n+1 )n~1
is distributed according to a continuous singular distribution func-
tion G. Furthermore we will see that two consecutive 03B8’s are

positively correlated.

Manuscrit regu le 6 octobre 1995.
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1. Introduction

Let x E (0,1], then

where an &#x3E; 2, n &#x3E; 1. J. Lfuoth, who introduced the series expansion (1)
in 1883, showed (among other things) that every irrational number x has
a unique infinite expansion (1) and that each rational either has a finite or
an infinite periodic expansion, see also [L] and [Pe]. The series expansion
(1) of x is called the Liiroth Series of x.

Dynamically the Lüroth series expansion (1) of x is generated by the
operator T : [0, 1] 2013~ [0,1], defined by

(see also figure 1), where [g J denotes the greatest integer not exceeding 6.
For x E [0,1~ we define a(x) : := + 1, ~ ~ 0; a(0) := oo and 

for n &#x3E; 1. From (2) it follows that Tx = al(al - 1)x - (al - 1),
and therefore

- - - --

Putting

where ql := ai ; qn = al (al -1) · · ’ 2, it follows from
(3) that

From an &#x3E; 2 and 0  1 it follows that the series from (1) converges
to x. We will write

In [JdV], H. Jager and C. de Vroedt showed that the stochastic variables
... , an(x), ... are independent with = k) _ for 1~ &#x3E; 2,

and that T’ is measure preserving and ergodic with respect to Lebesgue
measure. Here and in the following An will denote Lebesgue measure on
R n. From the ergodicity of T and Birkhoff’s Individual Ergodic Theorem a
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number of results were obtained, analogous to classical results on continued
fractions, e.g.

Here and in the following a.e. will be with respect to Lebesgue measure.

FIGURE 1. The map T

In view of (4) it is natural to define and study the so-called approximation
coefficients On = 1, defined by

As in the case of the regular continued fraction these 8’s give an indication
of "the quality of approximation of x by its n-th convergent Pn/qn", see
also [JK]. (In case of the regular continued fraction one defines On :=
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1, where pn/qn is the n-th regular convergent of x). Note
that the absolute value signs are in fact superfluous here. In view of (4)
one has

Putting T.~ := it follows from (2) and (5) that

We say that Tn is the future of x at time rt. Similarly is

the past o f x at time n. Putting Yo := 0, from (6) one sees that On is

expressed in terms of both the past (viz. an) and the future. Therefore,
in order to obtain the distribution of the sequence for a.e. x the
natural extension of the ergodic system ((0,1], Bi, À1, T) (here ~31 is the

collection of Borel sets of (0,1]) was constructed in [BBDK].

THEOREM 1. ([BBDK]) Let Q := ~0,1~ x ~0,1~ and 82 be the collection of
Borel sets Let T : 0 -+ Q be defined by

then the system

is the natural extension of ([0, 1], B1, "B1, T~ .
Moreover, ([0, 1] x [0, 1], L32, A2, T) is Bernoulli.

From this theorem we have the following lemma.

LEMMA 1. For almost all x the two-dimensional sequence

is uniformly distributed over S2 = [0, 1] x [0, 1].
The distribution of the sequence now follows from lemma 1.

THEOREM 2. For almost all x and for every z E (0, 1] the limit
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exists and equals F(z), where

Taking the first moment, theorem 2 yields that for a.e. x

where ((s) is the zeta-function.

Remarks. In fact one needs not use the natural extension to study the
distribution of the sequence (B",)n&#x3E;1· Since

see also (2), it follows that

and therefore (6) yields that

i.e. the distribution of the sequence can be obtained from

([0, 1], B, À, T) .

It was pointed out by one of the referees that Lemma 1 and Theorem
2 above can also be obtained as simple Corollaries of a strong result by
J. Galambos, see [G], Theorem 6.2. Furthermore, using (6) and Galambos’
Theorem 6.2, one can calculate the exact distribution of each of the 
not only the limiting distribution.

In fact, from (9) and the fact that Tn is uniformly distributed on the
unit interval for each n, one has

thus we see that F from (7) is the distribution function for each 0n. As a
corollary we also have that E(8n) = 2 (~(2) - 1) = 0.322467. - - .
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In this paper we will study the distribution for a.e. x of the sequence
and related sequences like (On + We will show that

two consecutive 8’s are positively correlated.

2. On the relation between 0n and 0n+1
From (6) and (9) it is natural to define the Q, given by

Obviously one has

(10)

Putting

one finds

For (x, y) E VA,B one has ~Y(x,y) _ (Bx 1, Ax - 1) (where 1/A  x 
1/(A - 1)). Hence putting

yields

Thus we see that w maps the rectangle VA B onto the line segment LA,B,
which has endpoints and ( ~A-iy~s-y , A11 ) ~ Notice that from

(10) and (11) one has

and E 8, where

see also figure 2.
Notice, that from (6) it follows that always
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FIGURE 2. The set

Note that figure 2 shows that a Vahlen-type theorem as one has for the
continued fraction (see [JK]) is not possible for Lfuoth Series. That is,
there does not exist a constant c  1, such that for every x one has

(recall that for continued fractions always 0  8n(x)  1 and
 1/2). However, it is also clear from figure 2, that

and

We have the following proposition, which follows directly from lemma 1
(see also theorem 2 with z =1/2).
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PROPOSITION 1. For almost all x one has with probability 3/4 that 8n  2
and with probability 7/8 that

Furthermore, given that On  1/2 one has with probability 5/fi that 
1/2. The same holds when On and 0n+1 are interchanged.
Remarks. In view of (12) it is obvious that for a.e. x two consecutive 0’s are
NOT independent. In fact proposition 1 suggests that two consecutive are

positively correlated. That this is the case almost surely is shown in section
3.2. The situation here is similar to that for the regular continued fraction;
there Vahlen’s theorem suggests that two consecutive O’s are negatively
correlated. This is indeed the case as was shown by Vincent Nolte in an
unpublished document, see also [N].

3. On the distribution of (On, 
In this section we will show in 3.1 that for almost all x the sequence

(On, is distributed according to a continuous singular distribution
function G. Before stating the result we first recall the definition of a
continuous distribution function, see also [T], p. 20. In 3.2 we will study
for a.e. x the distribution of the sequence (0n + which will then
be used to show that two consecutive 0’s are positively correlated.

3.1. A continuous singular distribution function.

DEFINITION 1. A distribution function G is said to be continuous singular
if it is continuous and if there exists a Borel set S with Lebesgue measure
zero such that tcG(S) =1. Here J-LG denotes the Lebesgue-Stieltjes measure
determined by G.
We have the following theorem.

THEOREM 3. For almost all x and for all (zi, z2) E [0,1~ x [0, 1] the limit

exists and equals G(zi, Z2), where G is given by

Finally, G is a continuous singular distribution function with support B.
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Proof. The first assertion follows from (6), (9) and lemma 1. In order to
show that G is a continuous distribution function we have to show, see also
[T], section 2.2 :

(i) G(XI,X2) - 1 as min(xI,x2) - 00.
(ii) For each i E {1,2}, G(xi, X2) -~ 0 as Xi - -00.
(iii) G(xi, X2) is continuous.
(iv) Let a = (a1, aZ), b = (bl, b2), where ai  bi, i E ~1, 2~ and put

(a, b] := fX = (XI,X2) E R2 : ai  xi :5 bi, i E fl,2}}.

Then for each cell (a, b] C R2 we must have

where

Notice that (i) and (ii) follow from the definition of G; clearly G is monotone
in each of its coordinates, and in case Xi  0 (for i E f 1, 2}) one has that
G(Xl,X2) = 0. In case 1 it follows that G(Xl,X2) =1. That G
is continuous clearly follows from (13). In order to prove (iv) we introduce
for A, B &#x3E; 2 a function GA,B : Q - R, given by

where VÂ,B(Ç,17) is as in (14). Notice that

It is now sufficient to show that for all A, B &#x3E; 2 and each cell (a, b] C ~
one has

Fix A, B &#x3E; 2 and let

and = := (B - 1)~, 7r2(Ç,1/) = 7r(A,B),2 := ~, one has the
following, possibly overlapping, cases.

(I)  and
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(Ia) m(a1, a2)  
Notice that the monotonicity of 7r2 as a function of its first coordina-
te yields that

and therefore m(ai, b~) = a2), from which it follows, by defini-
tion of 

(Ib) meal, a2) = m(bi, a2).
In this case one has

(II) m(al, bz) = rrz(bl, b2), which implies that ~r2(al, b2)  7rl(al,b2), which
in turn yields that

But then we only can have that

from which it at once follows that

(III) m(b1, a2)  m(b1, b2) : see case (I).

(IV) = ?~(&#x26;i~2) : see case (II).

In order to show that = 1, or equivalently that = 0, it is
sufficient to show that for each cell (a, b~ C !1, for which

one has that b~) = 0, which is equivalent with

Notice that we may assume that (a, b] is contained in Sk for some k &#x3E; 2,
where 

, ,

Obviously there are only finitely many values of A and B such that LA,B n
Sk ~ 0. Let A and B two such values, then (a, bJ either "lies above" LA,B
or "below" LA,B. Let Ll = U(a, b) be the collection of all pairs (A, B) for
which (a, bJ "lies above" LA,B.
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Clearly one has

where a* := (ai,0) and b* := (bl, a2). For (A, B) E Ll we now define LÀ B
by 

A,B

then

from which the theorem foUows.D

3.2. On the correlation between 0n and 0n+1. In section 2 we saw
that it is likely that 9n and are positively correlated. In order to show
this, we first give some definitions.

where E(Bn) is the expectation of On, as given in (8) and V(Bn) is the vari-
ance of On, defined by

The numerator of 0n+1) equals the covariance of On and
8n+1.

DEFINITION 3. Let X and Y be two stochastic variables. Then the covarian-
ce C(X, Y) of X and Y is given by

Notice that C(X,Y) &#x3E; 0 indicates that whenever X (resp. Y) is bigger
or smaller than its mean E(X) (resp. E(Y)), the same is likely to hold for
Y (resp. X ), i.e. X and Y are positively correlated. Similarly C(X, Y)  0
tells us that X and Y are negatively correlated. In case C(X,Y) = 0 we
say that X and Y are uncorrelated. One has that

X and Y are independent # X and Y are uncorrelated,

but the converse does not hold in general.
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THEOREM 4. For almost all x one has that

and therefore On and are positively correlated a.s.
Since E(On+,) and E(0fl) = one has

Notice, that from theorem 2 one has that F has density f , where

Taking second moments thus yields

But then it follows from (8) that

In order to find E(0n0n+1 ) we will determine E((0n + 6n+1)2), since

Hence we find for Luroth series that

From (6) and (9) one has

and from the definition of LA,B it follows that

From lemma 1, (16) and (17) we have the following theorem.
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THEOREM 5. For almost all x and for every z E (0, 2~ the limit

exists and equals S(z), where S is a continuous distribution function with
density s, given by

Here (z) is the indicator functions of the interval (a, #], i. e.

Theorem 6 now at once yields that

But then

and therefore the first assertion of theorem 5 is immediate. It follows that

8n and 8n+1 are indeed positively correlated.D

Notice that the proof of theorem 6 can easily be adapted to derive the
distribution for a.e. x of the sequence (On - We leave this to the

reader, but mention one - surprising - case : one has that the probability
P(On  On+l) that 8n is smaller than 0n+1 is 0.391... , i.e. has the

tendency to be smaller than its predecessor. To be more precise, we have
the following proposition.

PROPOSITION 2. For almost all x one has that
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Proo f . From (6) and (9) it follows that 0n  0n+1 is equivalent with

But then lemma 1 yields that 1  j  N : 0j(z)  
exists for a.e. x, and equals a~D), where D is given by

see also figure 3. The proposition now follows from

where 1 is Euler’s constant and O(x) = r,(x)lr(x) -Ei

FIGURE 3. The set D
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Final remarks. Recently Jose Barrionuevo, Bob Burton and the present
authors generalized the whole concept of L3roth Series, see also [BBDK] .
A new class of series expansions, the so-called Generalized Lüroth Series (or
GLS), was introduced and their ergodic properties were studied. Examples
of these GLS are the recent alternating Lüroth Series, as introduced by S.
Kalpazidou and A. and J. Knopfmacher, but also familiar expansions like
r-adic expansions (for r E Z, r &#x3E; 2). Although #-expansions are not in
this class, it turned out that many important ergodic properties of these
expansions can be obtained using the appropriate GLS-expansion, see also
[DKS].
Here we only want to mention that the approach of this paper can be carried
over to GLS-expansions. In order to keep the exposition clear and easy we
only dealt with the "classical" Liiroth expansion. Details are left to the

reader, see also section 3.1 of [BBDK].
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