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Limit Theorem in the space of continuous

functions for the Dirichlet polynomial
related with the Riemann zeta-funtion

par ANTANAS LAURIN010CIKAS

RÉSUMÉ. Dans cet article on prouve un théorème limite dans l’espace des
fonctions continues pour le polynôme de Dirichlet

$$
où d03BAT (m) sont les coefficients du développement en série de Dirichlet de
la fonction 03B603BAT (s) dans le demi-plan 03C3 &#x3E; 1, 03BAT = (2-1 log lT) ½, 03C3T =

½ + log2 lT/lT, lT &#x3E; 0, lT ~ log T et lT ~ ~ lorsque T ~ ~.

ABSTRACT. A limit theorem in the space of continuous functions for the
Dirichlet polynomial

$$

where d03BAT (m) denote the coefficients of the Dirichlet series expansion of
the function 03B603BAT (s) in the half-plane 03C3 &#x3E; 1,03BAT= (2-1 lnlT)-½, 03C3T =

½ + ln2/ lT and lT &#x3E; 0, lT~ ln T and lT ~ oo as T ~ ~, is proved.

Let s be a complex variable and (8), as usual, denote the Riemann zeta-
function. To study the distribution of values of the Riemann zeta-function
the probabilistic methods can be used, and the obtained results usually are
presented as the limit theorems of probability theory. The first theorems
of this type were obtained in ~1~,~2~, and they were proved in [3]-[5] using
other methods. In modern terminology we can formulate it as follows. Let
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C be the complex space and let B(S) denote the class of Borel sets of the
space S. Let meas{A} be the Lebesgue measure of the set A and

......

where in place of dots we write the conditions which are satisfied by t. We
define the probability measure

THEOREM A. For u &#x3E; 2 there exists a probability measure P on (C, 13(C))
such that PT converges weakly to P as T ~ oo.

More general results were obtained in [6~. Let M denote the space of
functions meromorphic in the half-plane Q &#x3E; 2 , equipped with the topology
of uniform convergence on compacta. Define the probability measure

THEOREM B. There exists a probability measure Q on (M, B(M)) such
that QT converges weakly to Q as T -~ oo.

Note that the explicit form of the measure Q can be indicated, and,
obviously, Theorem A is a corollary of Theorem B.

The situation is more complicated when a depends on T and tends to 2
as T - oo, or cr = 2. It turns out that in this case some power norming
is necessary. Let lT &#x3E; 0 and let lT tend to infinity as T 2013~ oo, or lT = oo.
We take

The case iT = oo corresponds to 8T = 2 ~
The function

is called the characteristic transform of the probability measure P on the
space (C,13(C)) [7]. The lognormal probability measure on (C,B(C)) is
defined by the characteristic transform
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THEOREM C . The probability measure

converges weakly to the lognormal probability measure as T 2013~ oo.

Here if ~(s) ~ 0, a E R, then (a(s) is understood as exp{alog~(s)}
where log ~(s) is defined by continuous displacement from the point s = 2
along the path joining the points 2, 2 + it and (1 + it.

ivhen %T = 1 Theorem C was proved by A.Selberg (unpublished), see
also (8], and for different form of lT, it was obtained in [8]-(10], [5].
Now it arises the problem to obtain some results of the kind of Theorem

C in the space of continuous functions.

Let Coo = C U {oo} be the Riemann sphere and let d(si, S2) be a metric
on Coo given by the formulae

Here s, sl, s2 E C. This metric is compatible with the topology of Coo. Let
C(R) = C(R, Coo) denote the space of continuous functions f : R - Coo
equipped with the topology of uniform convergence on compacta. In this
topology, sequence C(1f8)} converges to the function f E C(R) if

as n -~ oo uniformly in t on compact subsets of R.

The functional analogue of the probability measure in Theorem C is the
measure

Does this measure converge weakly as T ~ oo to some probability measure
on (C(R), ,ri (C(II8)))? At this moment this question is open and it seems
to be very difficult.

In the proof of Theorem C an inportant role is played by the Dirichlet
polynomial
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where d,~ (m) denote the coefficients of the Dirichlet series expansion of the
function in the half-plane u &#x3E; 1 (see [11], [12] ) . Therefore the aim of
this paper is to prove the limit theorem in the space of continuous functions
for Su (s) . This theorem will be the first step to study the weak convergence
of the probability measure (1).
Now let log T, aT = 1/2 + and let
2 lT

Moreover we suppose that

for all U &#x3E; 0 as T --j oo. Here B denotes a number (not always the same)
which is bounded by a constant.

THEOREM There exists a probability measure P on (C(lI8), t3(C(It8))) such
that PT,ST converges weakly to P as T - oo.

Proof of the theorem is based on the following probability result. Let

Sl and be two metric spaces, and let h : Si -~ S2 be a measurable
function. Then every probability measure P on (81, B(8I)) induces on
(S2, Zi(S2)) the unique probability measure defined by the equality
Ph-’(A) = P(h-’A), A E B(82).
Now let h and hn be the measurable functions from Sl into S2 and

LEMMAl. Let P and Pn be the probability measures on (81,8(81)). Sup-
pose that Pn converges weakly to P as n - oo and that P(E) = 0. Then
the measure P,,hn 1 converges weakly to Ph-’ as n - oo.

Proof. This lemma is Theorem 5.5 from [13].
Let ~y denote the unit circle on complex plane, that is 1 = Is E C :1 s 1=

1 }.We put

where 7P = 1 for each prime p. With the product topology and point-
wise multiplication the infinite-dimentional torus 52 is a compact Abelian
topological group. Let P be a probability measure on 



319

The Fourier transform g(k) of the measure P is defined by the formula

Here k = (k2, k3, ...) where only a finite number of integers kp are distinct
of zero, and xp E -y.

LEMMA 2. Let be a sequence of probability measures on (Q, Ii(S2))
and let (k) } be a sequence of corresponding Fourier transforms. Suppose
that for every vector k the limit g(k) = lim gn(k) Then there exists

- 

n-oo

a probability measure P on (S2, j3(S2)) such that Pn converges weakly to P
as n ~ oo. Moreover, g(k) is the Fourier transform of P.

Proof. The lemma is the special case of the continuity theorem for compact
Abelian group, see, for example, [14].

Let

LEMMA 3. The probability measure QT converges weakly to the Haar
measure Tn on (S2, B(S2)) as T 2013~ oo.
Prooi The Fourier transform 9T(k) of the measure QT is given by

Here xp E q, k = (ki , k2, ...) . By definition of the Fourier transform of
probability measure on ~5~,13(S~~), only a finite number of kj are distinct
from zero. Since the logarithms of prime numbers are linearly independent
over the field of rational numbers, we find that
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We define the function hT : S2 ~ C(R) by the formula

Here pa 11 J~ means that pO: h but pc’+’ Then, clearly,

Let, for brevity,

and let

Let K be a compact subset of R. For every 6 &#x3E; 0 we define the set A~~ by

and we put

LEMMA 4. m(Ak(K)) = 0 for every E &#x3E; 0, K, and k G N.

Proof. By the Chebyshev inequality

Using the Cauchy formula, we have that

where L denotes the restangle, enclosing the set iK = lia, a E KI, with
the = O + it, and with two other sides parallel
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to the real axis. Moreover, we suppose that the distance of L from the set
iK is &#x3E; From this equality it follows that

Hence, having in mind the inequality (5), we obtain that

where ! I L is the length of L. From the definitions of and Sn ( Un +
z + iT) we have that, for z = u + iv,

Since

hence we find that

The properties of the Haar measure m imply the equality
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By a similar manner we find that

From the definition of the contour L it follows that

for z = u + iv E L.Then (8) together with (2) and the well-known estimate

where /0 is the Euler constant, yields

for n &#x3E; no. Here we have used the inequality 0   1, n &#x3E; no,
which follows trivially from the multiplicativity of (rrt) and from the
inequality 0   l, n &#x3E; no, implied by the formula [11], [12]

From the asumption on lT we deduce that, for n &#x3E; no,
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Thus,

Consequently, in view of (

Hence, for m  n,

Therefore, from (9), (13) and (14) we have that
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Repeating the proof of Lemma 3 from [10) and taking into account (10), 1
we see that 

, , ,

Consequently, this and (15) give the estimate

From this, (6), (7) and (11) we find that

for every E &#x3E; 0 and k G N. Thus it follows from the definition of the set
that

The lemma is proved.
Proof of Theorem. We will deduce the theorem from lemmas 1, 3 and 4.
Let

converges to

as T 2013~ oo, and let E denote the e"2, ...) I of elements of Q such
that 

-

does not converge to some function h(t; eiTl, eiT2 , ...) as T --+ 00. In order
to prove the theorem we must show that m(E) = O-Since Q is compact, it
is separable. Consequently [13], E E B(Q).

Let EI denote the set ezT2 , ...) } such that
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does not converge to some function h(t; ei’Tl, ei’T2, ...) as T 2013~ oc. We will
prove that m(EI) = 0. First we consider the sequence hn(t; ei’Tl, ei’T2, ...).

Note that there exists a sequence of compact subsets of R such
that 

--

Kj C and if .K is as compact of R then K C Kj for some j . Let

Then

is a metric in C(R) .
Since C(R) is a complete metric space, we have that every fundamental

sequence is convergent. Thus it follows from the definition of the funda-
mental sequence that

Thus, by Lemma 4,

From the definition of the function hT, using the estimates of types (13)
and (14), we find that

uniformly E R and in ei’T2 , ...) E 9. Therefore, in view of ( 16) ,
m(EI) = 0.
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We have shown that there exists a function h such that for almost all

. , . ,

uniformly in t on compact subsets of R. Similarly as above in the case of
the variable t it can be proved using the Cauchy formula that for almost
all (ei7"l, ... ) E S2 the relation (17) is valid uniformly in Ti on compact
subsets of R, uniformly in 72 on compact subsets of I~, .... Since the family
of sets of m-measure one is closed under countable intersection, hence we
have that (17) is true for almost all (ei7"l, eiT2, ... ) E Q uniformly in t on
compact subsets of R, the convergence being uniform in 7j on compact
subsets of R, j = 1, 2, ....

Since, for every M &#x3E; 0,

in view of the estimate

we have that h(t; ei’T2, ...) ~ oc for almost all ei’T2, ...) E 9.
The relation (17) and the uniform convergence imply that for almost all

(ei’TI, ,.. . ) E 9

uniformly in t on compact subsets of R. This yields rri(E) = O.The latter
equality together with Lemmas 1 and 3 proves the theorem.

!!:I..
Now let nT = T s .
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COROLLARY. There exists a probability measure P on (C(R), 13 (C(R)))
such that PT,SnT converges weakly to P 00.

Proof Let K be a compact subset of R. Denote by ZT(it+iT) the diference

Let CT = (log 1T) -’.Then

In view of the Cauchy formula

where L is the contour similar to that in the proof of Lemma 4. Hence we
find by the Montgomery-Vaughan theorem for trigonometrical polynomials
[15], [12] that

From this and from (18) we deduce that

as r 2013~ oo. Clearly, from the definition of the metric p, for E &#x3E; 0,
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By (19) the second integral in the latter formula is o(T) as T 2013~ oo, and
the first integral trivially is BET T. Hence and from (20)

as oo for every E &#x3E; 0. Thus, the corollary follows from Theorem
and Theorem 4.1 from [13]: Let (S, p) be a separable space and Xn and

D P

Yn he S-valued random elements. If and p(Xn, Yn) ---+ 0, then
D 
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