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Natural divisors and the brownian motion

par EUGENIIUS MANSTAVICIUS*

RESUME. On propose un modéle du mouvement Brownien relatif aux di-
viseurs d’un entier, et on établit la convergence faible de la mesure associée
dans l’espace D [0,1]. On obtient un résultat analogue & celui obtenu par
Erdés pour les diviseurs premiers [6] (cf. [14] pour une démonstration).
Ces résultats et les recherches de Pauteur [15] étendent ’étude [9] de la dis-
tribution des diviseurs. Notre approche s’appuie sur les théorémes limites
fonctionnels en théorie des probabilités.

ABSTRACT. A model of the Brownian motion defined in terms of the natural
divisors is proposed and weak convergence of the related measures in the
space D [0, 1] is proved. An analogon of the Erdds arcsine law, known for
the prime divisors [6] (see [14] for the proof), is obtained. These results
together with the author’s investigation [15] extend the systematic study
[9] of the distribution of natural divisors. Our approach is based upon the
functional limit theorems of probability theory.

1. Results.

The distribution of the prime factors of an integer determines that of
the natural divisors. Therefore statements known for the primes often have
their counterparts. That was perfectly demonstrated by R.R. Hall and
G. Tenenbaum in monograph [9] for the normal orders of the k-th prime
factor px(m) and the k-th natural factor dx(m) of m € N. Let v,(...)
denote the uniform probability measure on the set Q, = {1,...,[z]}, Lu =
log max {u,e}, and Ly = L(Lg—-1) . Then one has

lim lim sup 1/,,( max )}szk(m) -kl >(1 +s)\/2kL2k) =0

n—0 g—oo n<k<w(
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and

1)
lim ].imsupuz( ma.x |L2dk(m) log, k| > (1+¢)+/2(log, k) L3k ) = 0.

N—=0 400

Here and in what follows w(m) and 7(m) denote the number of all differ-
ent prime and natural factors respectively. Moreover, after the change of ¢
to —e these limits (even with liminf instead of lim sup) are equal to one.
The same duality also holds for the sharpened estimates when the terms
ev2kLyk and £+/2(log, k) L3k are substituted by some asymptotic expan-
sions (c.f. [15]). In the paper [15] we extended the above mentioned results
into the Strassen functional form, that is, both of them were included into
more general relations for arithmetically defined stochastic processes. Pro-
ceeding along this way we can look for the duality in the functional limit
theorems for arithmetic processes. The most of such the processes so far
considered are defined in terms of additive functions. It means that the pro-
cesses are related to the prime divisors (see [1], [3], [4], [8], [12], [13], [16],
[19], [20] and other). We cannot give any reference concerning weak con-
vergence of processes defined in terms of the natural divisors. But several
results do indicate such a direction of possible investigations.

Let 7(m,u) = card{d € N : d|m,d < u}. It is known [9], [18] that

Ve (T(m,z?) — 7(m, z°) < ur(m)) = Fa(u), 0<s<t<l,

where = denotes weak convergence of distribution functions, F,;(u) is some
purely dicrete distribution function, and # — oo. This relation can be
interpreted as referring to the increments of the arithmetic process Y, :=
Yz (m,t) = 7(m,z?)/7(m) having trajectories in the space D:=D[0,1] of
real-valued functions on [0, 1] which are right-continuous and have left-hand
limits. Moreover, the remarkable asymptotic formula

= ZY(m t)=—arcsm\/_+o(1) : As(t) + o(1), 0<t<1,

m<m

which has been obtained in [5], shows the behaviour of the expectation of
the process.

In this paper we look for a counterpart of the process

Py 1= Pz (m,t) = \/Il_,ﬁ(w(m’ exp{(Lz)*}) — tLyz), 0<t<1,
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where w(m,v) := card{p — prime : p|m,p < v}, which ”simulates” the
Brownian motion W = W(t) given on some probability space {2, F, P}.
To be more precise, we will use some notations and concepts introduced in
the book [2]. Let p(:,:) denote the supremum metrics in the space D, D
be the Borel o-algebra in D with respect to p, and v, o 97! stand for the
measure on D defined by v,(X, € A) where A € D. Put u for the Wiener
measure P o W1, In 1970 P. Billingsley [3] proved the following result.

THEOREM B. The sequence of measures v, o ¢;1 weakly converges to the
Wiener measure 1 as £ — 00.

More general results can be found in the above cited papers on the
functional limit theorems.

Having in mind that statistically 7(m) behaves like the function 2™,
where ©(m) denotes the number of prime factors of m € N counted ac-
cording to their multiplicity, we will consider the limiting distribution of
the process

1
X, = X.(m,t) = —\/Lﬁ(logz 7(m,exp{(Lz)*}) — tLoz), 0<t<1,
with respect to the probability measure v, as ¢ — o0o. Denote u, =
v, o X71. In what follows the limiting passage 2 — oo is not explicitly
indicated.

THEOREM 1. The sequence of measures p, weakly converges to the Wiener
measure (.

The corollaries presented below follow from the relation
Ve (0(X2) <u) = P(p(W) <u),

valid for each p-almost everywhere continuous functional p:D— R. They
describe new features of the sequence di(m).

COROLLARY 1. For each fixed 0 < s<t<1,

Ve (Xo(m,t) — Xo(m,s)) <u) =

Hence if s = 0 and ¢t = 1, we have the central limit theorem for the
additive function log, 7(m) belonging to the Kubilius class H (see [9]).
But if 0 < ¢t < 1, then log, 7(m,t) is only subadditive. That shows new
direction of possible investigations, e.g. to extend the probabilistic number
theory to the class of subadditive functions.
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COROLLARY 2. Foreach0<t<1,

[2 [* y?
Ve (Onggtt){,(m,s) < u) = E[—oo exp{——ﬂ}dy

and for u > 0,

Vs (On<1ta.<x1 | Xz(m,t)| < u) ~ l/z( max |log, k — Ladi(m)| < U\/sz)

< 1<k<7(m)
4 S (-1)*F (2k + 1)%x?
= 7rk2=%2k+1 e"p{“ 82 |

The last assertion can be compared with the above mentioned estimates
of the law of iterated logarithm ([9], [15]) illustrated by (1).

Let in what follows As(u) be extended to R by equalities As(u) = 0
when u < 0 and As(u) =1 when u > 1.

COROLLARY 3. We have

Ve (meas{O <t <1:log,7(m,exp{(Lz)’}) > tLoz} < u) = As(u).

Now, since the points ¢t = t; = Lad;(m)/ Loz are the jumps of the tra-
jectories considered, calculating the Lebesgue measure in the last relation
we obtain certain sums of the quantities

Ld;+q1(m)
L 2= .
@ ( Ld;(m) )/ Loz
Even the estimate (1) is not sufficient to simplify the sums of the ratios (2).

The following statement of P. Erdés [6] indicates that a more simple form
of the arcsine law may be valid for the natural divisors.

THEOREM E. We have
vz (card{k < w(m) : Lopr(m) < k} < uLsz) = As(u).

Proof. see [14].

The counterpart of this Erdos theorem is our next result. Let It denote
the characteristic function of the set {y : y > 0}.
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THEOREM 2. We have

3) Uz(u):= v,,( z —1,-I+(log2j — Ladj(m)) < (L2)uL2:z:> = As(u).
j<(m)

The proof is similar to that given in [14] for Theorem E.

2. Proof of Theorem 1.

The trajectories of X, (m,t) will be approximated ”for almost all m” by
1z (m,t). By the general theory [2] the assertion of Theorem 1 will follow
from Theorem B and the estimate

(4) Vo (p(¥z, Xz) 2 €) = 0(1)
for each £ > 0.

To prove (4), at first we observe that foreach ¢, 0<t<1,

(5) Xo(m,t) < Ag(m,t) = \/Ill_za:.(log26(m,exp{(Lz)t})—tLgm),

where 6(m,v) = card{d € N : d|m, p(d) < v} and p(d) denotes the maximal
prime divisor of d. On prime numbers the additive functions w(:,v) and
log, 6(-,v) coincide, hence (see [12])

(6) Ve (p(z, Ag) > €) = 0(1)

for each ¢ > 0. Thus, the relations (5) and (6) yield the required upper
estimate of X, (m,t) in terms of ¢, (m,1).

The lower estimation is based upon ideas suggested in Exercises to Chap-
ter 1 of the book [9]. If 7(m,u,v) := card{d : d|m, d > u, p(d) < v}, then
we have [9]

(7) 2¢0m%) < r(myu) +7(myu,0), w921,

and

(8) %E‘mﬂm’u’v) < (Lz)exp{ - ei—Z}
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uniformly in 1 < u,v < z with some positive ¢ > 0. The last estimate
follows from the following inequalities

Z T(m,u,v) < Z % < zu> H(l —-p)"‘l)"l <

m<z d>u p<v
p(d)<v
<L zexp { — ALz + Zp)"‘l},
plv

where A = ¢/Lv with some ¢ > 0.

Now we divide the interval [0,1] into N := [(L2z)/(Lsz)?] equal parts
of the length v := N~1. For the values of y := exp{(Lz)’} we choose the
checkpoints

uy := exp{(Lz)*"}, 0<k<N.

When y € [uk, uk+1], from (7) we obtain
9 T(m,y) > 7(m,uk) > 201 — 7 (m, ug, up-1)
provided that k > 1. Further, in virtue of (8) and 7(m,ug, ux—1) € Z7,
N
e, pa, mlm ) > 0) < S0 expl-o(2)7) <
< (Lz)exp { — cexp{(L3z)?/2}} = o(1).

According to (9) this implies that for y € [ug,ur+1] uniformly in 1 < k <
N-1
(10) log, 7(m,y) > w(m, uk—1) > w(m,y) — (w(m, vr4+1) — w(Mm, ur—1))

for almost all m < z.

To estimate the second difference for almost all m, we will use Ruzsa’s
[17] following result.

LEMMA 1. Let hj(m), j = 1,...,s, be real-valued additive functions.
There exist a probability space {Q, F, P}, independent random variables
() p < z, defined on it by P(¢S) = hi(p")) =p~"(1—1/p), r >0, such
that

v« om0l 2 ) < P g 160 -l 2 1)
PSS
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for arbitrary a; € R and v > 0, with an absolute constant in the symbol
<.

Thus, applying Lemma 1 we obtain
Vs (lsgg%_l(w(m, Uk1) — w(m,up—1)) > E\/Lga:) <

13
< P<1521531‘3,(_1 Z gp > 5\/ Lzm) = Pm,

k-1 <P Uk41

Now &p, p < z, denote independent random variables defined by P(¢, =
1) =1-P(¢p = 0) = 1/p. After elementary estimation of their expectations
and variances from the exponential inequalities (see [11], p.254) we derive

N
P, < ) _exp{—e\/Lyz/24} = 0(1)
k=1

for each £ > 0. Hence and from (10) we conclude that
(11) Xz(m,t) 2 9P (m,t) + o(1)

uniformly in v < ¢ <1 for almost all m.
The relation v = v, ~ (L3z)?/Loz and Theorem B imply

Vz( sup [¢z(m,t)| > e) = o(1).
0<t<y

Moreover, for sufficiently large z,

V,,( sup |X,(m,t)| > e) <, (10g2 6(m, exp{2(L3z)?}) > -;-\/Lzz)

0<t<y

which by the law of large numbers for additive functions [10] tends to zero.
So, the estimate (11) remains valid uniformly in 0 < ¢ < 1. That completes
the lower estimation in (4). Theorem 1 is proved.

3. Proof of Theorem 2.

We split the proof of Theorem 2 into several lemmata. Denote

T(m,v) :=log, 7(m,v) — Lav.
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For arbitrary k > 2 we put n; = ik~ Loz, J; = (n;—1,n;] where 1 <i < k.
For convenience in the space £ of distribution functions we shall use the
Lévy metrics defined by

A(F,G)=inf{e>0: Flu—¢)—e < G(u) < F(u+¢€) +¢}, F,Ge L.

In what follows the symbol o(1) may depend on some parameters which
sometimes will be indicated, while the other symbol < will contain absolute
constants.

LEMMA 2. Let
k 1
1) Vw=w(Y X Tmdm) < Euls).
i1 log, 7€ Ui 7
Then the relation (3) is equivalent to A(V,,As) — 0.

Proof. In the double sum of (12) j runs over the natural numbers belonging
to the interval (1,2%22]. To estimate the sum over 222° < j < 7(m), we
observe that by the law of large numbers for the additive function log, 7(m)
(see [10]) we have |log, 7(m) — Laz| < (Laz)3/* for all but o(z) numbers
m < z. Hence for these numbers

Y i ) L« Lyt

Lyz<log, j<log, 7(m) J Lyz<log, j<Laz+(Lzaz)3/4

Now from the definition of the Lévy metrics we obtain A(U,,V,) — 0.
Lemma, 2 is proved.

Observe, since the distribution function As(u) is continuous, the conver-
gence A(V,, As) — 0 implies uniform convergence in u € R.

LEMMA 3. Let N; := exp{exp{n;}}. We have
Ve (6) := v, (|T(m,d;j(m)) — T(m, N;)| > 6v/n;) < 67271 + 05,;(1)

uniformly in j such that log, j € J;, for each i = 2,...,k and § > 0.

Proof. Let

N; = {m < z : |Ladj(m) — log, j| < 24/n;Lan;}.
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Then by (1) we obtain v,(m ¢ N,} = o(1), and further,

ve(8) < v, (m € N, : [T (m,d;(m)) — T(m, N;)| > 6v/n; ) +0(1)
<, (ma.x{|T(m,k) —T(m,N;)|: Ni—a <k < Niya} > 6\/_) + o(1)
=: v+ o(l),

uniformly in j, log, j € J;, provided z is sufficiently large. But according
to Theorem 1 and the definition of the process X, (m,1),

=P(ma.x{|W(t) —W(i/k)|: G—2)/k<t<(i+1)/k} > 6\/i/_k) +o(1)

< P(|W((i - 2)/k) - W(i/k)| > 276:/ifk)+
+ P(IW((i+1)/k) — W(i/k)| > 27261/5/k) + o(1) < 6721 + o(1).

At the last stage we have used the well-known Lévy and Kolmogorov in-
equalities (see [11]). Lemma 3 is proved.

LEMMA 4. We have

My =

> ¥ 5 3 ITH(T(m, di(m)) = I* (T, M)

i=1log, jEJ; ¥ m<lz
< kY4 4 0(2).

CBL2

Proof. Suppose log, j € J; and

D;j:= Z \I* (T (m, dj(m)) — I*(T(m, N;))| =

[ ] m<z
= v, (T(m, dj(m)) <0, T(m,N;) > 0)+
+ Vg (T(m,d;j(m)) > 0, T(m,N;) < 0) =
=: ul + uz.
Let 6 > 0 be arbitrary, then

pt < v (0 < T(m, N;) < 6v/n;) + vo(T(m, N;) — T(m,d;(m)) > 6v/n;)
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and

p? < vy (=6v/n; < T(m, N;) < 0) + v, (T(m, dj(m)) — T(m, N;) > 6v/n;).
Hence and by Lemma 3

(13) Dij < v (|T(m, N;)| < 6v/n;) +v2(8) <
<L v, (|T(m, N;)| < 6v/n;) + 6721 + o(1)

provided that 2 < ¢ < k. Theorem 1 implies the one-dimensional limit
relation

ve (IT(m, N;)| < 8v/m;) = v (|Xa(m, i/k)| < 61/i/k) =
= P(|W(i/k)| < 61/3/k) + o(1) < 6 + o(1).

Thus, from (13) we obtain
D;; <6+ 6% 14 o(1)
uniformly in j, log,j € J; , for each 2 < i< k and § > 0. Now

n;
L2 Zz

M K

k
1 —2.-1 1 Lk
i i§=2 (6+6% T +0(1) D ; L6+ 75T o(1).

]032 JEJ‘!

Choosing 6 = k~1/3 we complete the proof of Lemma, 4.

LEMMA 5. Let V,(u) be defined in Lemma 1 and

k
War(u) == v, (% ZI“"(T(m, N;) < u) .

=1
Then A(Vy, War) € k™18 + 04(1).

Proof. Lemma, 4 implies

A

1 k 1
[ ; logzza;aj (I*(T(m, d;(m)) — I*(T(m, N;))

>5)

L6 M € 671 (k™4 + 0(1))
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for each 6 > 0. Now if

Wk (u) = ((M)MZ > —I+(T(m, i) < )

i=1 log, JEJ

then -
AV, W) € 8§+ 671 (k™% + 0(1))

for each 6§ > 0. The choice § = k~/8 yields
AV, Wai) < k™18 4 0(1).

Since Wik (1) = War(u + 0(1)), Lemma 5 is proved.

The main probabilistic ingreedient is the following result of P. Erddos and
M. Kac.

LEMMA 6. Let Y;, ¢ > 1, be independent, normally distributed random
variables such that EY; = 0 and EY? =i. If

k
1 +
Pu(u) = P(E?:;I (%) <u),
then A(Px,As) — 0 as k — oo.

Proof see [7].

Proof of Theorem 2. Denote by X.(v1,-...,yr) the characteristic function
of the set

{(1s-.>y%) € R* :IF(y1) + -+ + I'F (yx) < uk}.
For the distribution function W,;, defined in Lemma 5 we have

Wzk(u)=/kXu(ylv'wyk)dvz(T(maNl)<y1n'-~’T(m’Nk)<yk)-
R

Further, we substitute y; — y;v/k~1L,z in the integral on the right-hand
side. Since the functional limit result presented in Theorem 1 implies weak
convergence of the k-dimensional distributions, we obtain

Wzk(u)=
=/[;} Xu(yl,---,yk)de(Xz(m,l/k)\/E<y1,...,X,,(m,1)\/E<yk)

= /Rk Xu@1s- -, ye)dP(W(1/E)WVE < y1,. .., WVE < gi) + o(1)
= Pr(u) + o(1)
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uniformly in © € R. Hence and by Lemma 6
Jim lim A (W, As) = 0.

According to Lemmas 5 and 2 the last equality yields the assertion of
Theorem 2.

Finally, what about the process Y,? We expect that the following con-
jecture is true.

PROPOSITION. Let D; be the o-algebra in D of the Borel sets generated by
the Skorokhod topology (see [2] for the definition). There exits a probability
measure Q on Dy such that v, o Y,! weakly converges to Q.
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