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Relative Galois module structure of integers of abelian fields

par NIGEL P. BYOTT &#x26; GÜNTER LETTL

RÉSUMÉ. Soit L/K une extension d’un corps de nombres, où L est abélienne
sur Q . On établit ici une description explicite de l’ordre associé AL/K de
cette extension dans le cas où K est un corps cyclotomique, et on démontre
que l’anneau des entiers OL de L est isomorphe à AL/K . Cela généralise
des résultats antérieurs de Leopoldt, Chan &#x26; Lim et Bley. De plus, on
montre que AL/K est l’ordre maximal si L/K est une extension cyclique,
totalement et sauvagement ramifiée, linéairement disjointe de Q(m’)/K,
où m’ désigne le conducteur de K.

ABSTRACT. Let L/K be an extension of algebraic number fields, where
L is abelian over Q. In this paper we give an explicit description of
the associated order AL/K of this extension when K is a cyclotomic
field, and prove that OL, the ring of integers of L , is then isomorphic
to AL/K . This generalizes previous results of Leopoldt, Chan &#x26; Lim and

Bley. Furthermore we show that AL/K is the maximal order if L/K is
a cyclic and totally wildly ramified extension which is linearly disjoint to

Q(m’) /K, where m’ is the conductor of K .

1. Introduction.

Let L/K be a finite Galois extension of algebraic number fields with
Galois group r and denote the ring of integers of any number field M
by OM - The associated order ALIK of the extension L/K is given by

where Kr operates on the additive structure of L . In studying the Galois
module structure of 0 Lover K one seeks to determine the associated
order and the structure of OL as an AL/K-module. For more
about this problem we refer the reader to [4], [10] and the second part of
[9] .
Now let us assume that L is an abelian extension of Q with conductor

r~ e N . For any integer t e N let (t denote a root of unity of order t
and the t -th cyclotomic field.

Manuscrit regu le 17 decembre 1994
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If .K = Q , the Galois module structure of OL was determined by
Leopoldt (see [6], [7]). Quite recently, this problem was also solved for
K = and L = qn) (see [3]) as well as for K = 0-’) and L

such that qn) / L is at most tamely ramified (see [1]). In all these cases
OL ~ holds.

We will show that this result also holds for K = and arbitrary L ,
i.e. we also cover the situation where qn) /L is wildly ramified (only wild
ramification at 2 is possible). In [3] and [I] , the proof involves splitting
the extension qn) /~’~’ ~ into parts whose conductors are prime powers.
The result is proved for a wildly ramified extension whose conductor is a
prime power, and then Leopoldt’s theorem and lemma 3 below are used
to obtain the general result. In contrast to this, we will look at the whole
extension from the beginning. Although this looks more clumsy at the first
glance, we obtain a very explicit description of ALIK and of a generating
element E oL with while keeping the problems
arising with the prime 2 to a minimum. Our proof does not depend on
Leopoldt’s result. It even covers Leopoldt’s theorem, which occurs as the
special case m’ = 1 .

2. Notations and auxiliary results.

Let G be a finite abelian group of exponent n , K a field with

K its algebraic closure and G* = the dual

group of G . First we will assume that K contains all n -th roots of

unity, which constitute the group J.Ln . For any character X E G* let

be the corresponding idempotent in the group ring K G .

Now let H  G be a subgroup and put H1. = G* ~ = I} . It is
well known that H* ~ and (G/H~* N H1, and we will frequently
identify under these natural isomorphisms. Let 7r: K G -+ K[G /H] be the
K -linear map induced by the canonical projection. The following lemma
describes how the idempotents behave when we change to a subgroup or a
factor group of G :

LEMMA 1.
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ê,p,G/ H , where i E 7} C G is a set of representatives for G/F .

Proof.

a) Let 1 E (pj i E 7} C G be a set of representatives for G/H . Then
we obtain

b), c) clear.

In the next lemma we describe a special behaviour of the idempotents
for cyclic Kummer extensions. Let K be given as above, L = K(a) with
an = a E K such that [L : KJ = n , and denote the (cyclic) Galois group
of L/K by r . The Kummer character Xa E r* belonging to a is
defined by

and r* = (xa) is generated by X,, -

Let G and K be given as at the beginning of this section, but now
we no longer assume that K contains For any character X E G* ,
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put I = ord(X) , = and 6 = Gal (K(l) / K) . Thus the
characters which are conjugate to X over K are the x" for C1 E 0 -
Then e G E and

is a primitive idempotent of the group ring KG . Occasionally, we will
write Ex,KG instead of ex to indicate the group ring, if this is not clear
from the context. Let GK C G* be a set of representatives for the classes
of characters which are conjugate over K . Then it is well known that

is the decomposition of KG into simple K -algebras, where each summand
is isomorphic to a field; more precisely, K(ord(x») .

Up to the end of this section we will now assume that K is the quotient
field of a Dedekind domain 0 K . For any field extension L / K let 0 L be
the integral closure of oK in L . Since G is abelian, KG contains a

unique maximal o K -order which is the integral closure of oK in

KG . We have the decomposition

where is the maximal order of KG Ex -

LEMMA 3. Let X E G* be of order I and d = [K(l) : K] .
a) Let 1 E G with x(~) _ ~ a root of unity of order I . Then we have

In particular,

b) Let K be a finite extension of F E I p E P} and o K
its ring of integers. Then we have 0 K(l) = if and only if
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In particular, this condition is fulfdled when K is a cyclotomic fields.

Remark. In the case of b), where K is a local or global number field,

is the same as saying that K and are arithmetically disjoint over
their intersection field Ki (see [5], p. 125; in this case, (2.13) in [5] is an
equivalence).

Proof. a) There exists a K -linear isomorphism p : KG .6x 2013~ K~ ~~ with

~p (~ £x ) _ ~ . Thus = is the maximal order of KG £x ,
and all claims are obvious.

b) We have = 0 Kz [(] , which implies the first claim. The others
are also easily verified.

LEMMA 4.

a) Let L/K be a finite field extension and .M C LG be the maximal

OL -order. ThenmnKG is the maximal OK -order of KG .

b) Let H  G be a subgroup, M C KG be the maximal OK -order
and 7r : KG -~ K[G/H] be induced by the projection. Then 
is the ma,ximal oK -order of K[ G / H] .

Proof.

a) Immediate.

b) By lemma l.b)c) either = 0 or 7r(&#x26;x,KG) = 
Using e.g. lemma 3.a, the claim follows.

The next two lemmas will show how the associated orders of composite
fields and of subfields can be determined under certain additional assump-
tions. Still, K will be the quotient field of a Dedekind domain oK . If

L/K is a finite Galois extension we define the associated order in
the same way as in the introduction. In a more special setting, lemmas 5
and 6 can be found in [3] and [1], respectively.

LEMMA 5. For i E {1,2} let Li/K be finite Galois extensions with
ri = Gal (LIIK) , put L = LiL2 and suppose that oL = OL, ® oL2 .

oK
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Proof. The proofs are immediate.

Now suppose that we have finite Galois extensions L/K and L’/K
with K C L C L’ , and put A = Gal (L’/K) and r = Gal (L/K) .
Let K A -+ K r denote the K -linear map induced by the projection

LEMMA 6. Suppose that L’/L is at most tamely ramifed and that °L’ =
AL’/KT’ with some T’ E OLI - Then AL/K = 7r(AL’/K) and OL =

with T = where trL’/L denotes the trace from L’
to L .

Proof. Since L’/L is at most tamely ramified, tr L’ / L (0 L’) = oL . Thus
we obtain

3. Statement of results.

For the rest of this paper, L will always denote an absolutely abelian
number field with conductor n E N , so L C 0’) , and K some subfield
of L with conductor m’ln . For any integer t E N let o(l) = o(Q(t) denote

the ring of integers of It) , G~t~ = Gal (It) /Q) and Mt = M n 01)
for any number field M . We put

Note that we admit rri == 2 mod (4) , in which case has conductor

r;. Our notation allows a uniform treatment for all primes including
2 ; e.g. the extension IV-) is always of degree Let r =

,_ ._ . _. _ ._ .__. m
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be a character of r of order and

be the corresponding primitive idempotent of Kr .

r is not a cyclic group if and only if m - 2 mod (4) , 8 n and
LQ-m) = ~’~~ . In this case L2m is a quadratic extension of L~ and

L / L2m is cyclic; so let w2 E r* denote the unique nontrivial character,
which is trivial on Gal (L/ L2m) .
Now define

if r is not cyclic and both Q and Qw2 have

even order,
in all other cases,

and put

where r* c r* is a set of representatives for the classes into which r* is
divided by the definition of the pairwise orthogonal idempotents E.~ .

Let D(m,n) denote the set I mid and For t E V(m,n)
let Rt C a(n) be a set of representatives for Gal and define

m
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THEOREM. Let L be an abelian number field containing K = crimi) .
Then, with the above notations, the associated order of is given
by

and } generates OL as a free, rank one module over
More exphcitly, we have

We call an extension of numberfields totally wildty ramified if
each intermediate field different from M is wildly ramified above M .

COROLLARY. Let L/K be a cyclic and totally wildly ramified extension
which is linearly disjoint to the extension where m’ denotes
the conductor of .K . Then ,ALIK is the maximal order of 

Proof of the Corollary. For K = ~rn~ ~ , we have AL/QfTn’) &#x3E; = &#x3E; by
the theorem. If L/crim’) is cyclic and totally wildly ramified, _

°(j.Tn,)r £~ is the maximal order of I-’)r by lemma 3.b.
In the general case, put L’ = and A = Gal 

Since L/K and are linearly disjoint, we have the canonical
isomorphism Jr : 0-’)A , Since &#x3E; is the maximal

order of n Kr is the maximal order of Kr

by lemma 4.a. On the other hand Kr C ,A,LIx , which
concludes the proof.

Remarks.

1. The assumption of the linear disjointness is crucial in the above corol-
lary. For k &#x3E; 3 , let L = and K = Q( (21c :I: ç;/) . Then L/K
is cyclic of degree 2 and totally wildly ramified, but is not
the maximal order (see [8]).

2. In the situation occurring in the corollary, we only know the associated
order, but we do not know the structure of OL as a module over ,A,LIK
if 

3. In the general case, one cannot expect that oL is free over 

(e.g. see [2]).
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4. Proof of the Theorem.

Throughout this section, we have K = I") . Therefore, for any
t E D (m, n) we have K t = (}to) with to = ( , m’) and ?Zt is a

Tn m

set of representatives for First we will show that for 
the roots of unity in the theorem indeed generate as module over
o~’°’z’ ~ r’ . We use the same notations as introduced above.

LEMMA 7. 
_ _, 1 1 1, -

Proof. Obviously,

put

Since ~~t&#x3E; /~t~ &#x3E; is only tamely ramified, -r((t,) can be written as
for a suitably chosen root of unity of order t (see e.g.

lemma 3 in [7]). Thus we have

prove the lemma, we will show that for any T E G(’) there exist some
a E Rt, 1 E T‘’ and 1~ E Z such that

For I E N let (TI denote the Galois automorphism with (11«() = (I
for all roots of unity C of order prime to l . Now choose some j E
Z with (j,t) = 1 and T = Furthermore, r’ consists of the

automorphisms for a E Z . First we can find some Q = Rt
with 30 = 3. mod (to) . Now we have to look for some a, k E Z such that

j - + jo (1 + am’) mod (t) . This reduces to
m

Since ’ has only prime factors, which do not divide m’ , we obtain
,

( m, , m’) - to and (mto’:) = 1 . Since (jo, n) = 1 , we obviously can
find a, k e Z satisfying the above congruence. This concludes the proof
of lemma 7.
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L Proof for the totally wildly ramified cyclotomic case ).
We will first prove the theorem for the totally wildly ramified case; thus

we have m = 2m’ if m’ is odd and n is even, and m = m’ otherwise.

For X E r* , let Lx be the subfield of In) belonging to x , i.e. the
field fixed by ~y E r ~ = 1} -
Now let E r* be of order l , t E D(m, n) be minimal with

L, C It) , and put mo = (m, I) .
If m = 2 mod (4) and then t = 2lm , IK is not cyclic

and L, is a quadratic subfield of (Q(t) . In this case 1/1 and OW2 both
have even order and both characters induce the same character, say ?P of
order I for the cyclic extension qt) /Q(2m) of degree 1. The following
diagram illustrates this situation:

In all other cases t = lm and Lo = crjt) is cyclic over 1.) .
The conductor of L, equals t except for the case that m - 2 mod (4)

and I is odd. In this latter case it equals 1 , but nevertheless t)

Now consider the cyclic Kummer extension Q(t) /~~ ~o ~ and denote its
Galois group by ro .
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Since Q. mo) is fixed by (5 , for any E 6 Q and coincide when
restricted to Fo . With these notations we will prove the following

LEMMA 8. Let (E ~t~ be a root of unity of order t . Then

Proof. Since any prime divisor of 1 also divides mo , of

degree mo and has no tame subextension. Therefore for any root of unity

Putting r1 = Gal (0’) /0-)) we obtain
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is cyclic, and vanishes for all

(1). In this case we can continue our calculation as follows:

assertion follows with lemma 2.

If t = 21m , 0 and OW2 induce the same character 0’ on

Gal /~2"’~&#x3E; ) and differ by the factor -1 for the nontrivial auto-

morphism of Gal In this case we have

and again lemma 2 establishes our assertion.

After these preparations we will start the proof of the theorem. We will
show that for any 0 E r* there exist uniquely determined t E D (m, n)
and a E Rt with

and that the correspondence E, - (t, Q) is bijective. Using lemma 7, all
claims of the theorem follow immediately from this.

For any k e N let q(k) E N denotes the powerful part of k , which
we define by

For any character X E G~’~~* of conductor f and any d e N , lemma 2
in [7] yields

Now let o E r* be of order I and put t = lm or t = 21m ,
as above. Let f E f t, -il be the conductor of L.~ . By lemma l.a,

, and one can easily verify that if the conductor of



137

x E divisible by m’ then this conductor must equal f . For
d E we conclude that E~ ~d ~ 0 can only hold if d = t , and
therefore

We have where to = ( m, m’) and mo = (l, m’) as above.

Now we can see that there is exactly one u E 7 ’ t for
e Fo = Gal (~t~ /~~ ~° ~) ; so by lemma 8, = u((t) .

On the other hand, any u E Rt defines by the above formula a character
of ro of order mo , from which we can derive that the correspondence

(t, ~) is bijective.

II. Proof f or the cyclotomic case 

Let again 1/J E r* be of order I and put t = lm or t = 2tm , as
above. With to = ( ~, m’) _ (l, m’) and t§ = ( m, m) we now have the

following situation:

Let 7Z’ be a set of representatives for 0/0’ and ~Zt a set of rep-
resentatives for From now on, we will use a second subscript to
indicate the group ring with respect to which the idempotents are con-
structed. The same arguments as in the proof of the wild case show that
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there exist uniquely determined pER’ and u E Rt such that

and that the correspondence E1/J,Kr r-+ ~t, ~) is bijective. Using lemma 7
again, all claims of the theorem follow.

III. Proof for the general case ).

Putting L’ = Lcrim) we have [In) : L’J  2 . We denote the Galois
groups as indicated in the following diagram:

Let us suppose that the theorem holds already for the extension L’/K .
Since L’/L is at most tamely ramified, we will apply lemma 6. One

easily checks that trL’/L(TL’/K) = TL/K . The projection x : ~’~’~0’ -~
induces an isomorphism x : A - r with dual isomorphism

~r* : F* - A* . Since for all ip E r* we have = 

this shows 7r(BLI/K) = · 

’

Thus it only remains to prove the theorem for the case where L is
a quadratic subfield of (jn) with conductor n and (jm) C L , so
m = 2 mod (4) and Bin. The following diagram shows this situation and
the notations we will use.
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Let 7r: ~(m~ )0’ -~ denote the projection, put 1 = Gal 
i#2m)) and identify r* with Lli under Let A* be
the quadratic character belonging to thus w2(T) = -1 ,

= 1 and 0* = Ag x {1,~2} = I‘* UúJ2r* . Using lemma l.b) c)
we have for any Q E A*

from which we deduce that BL/K .

To finish our proof, we have to show that oL C 

So let y E oL , which is equivalent to y E o(4) and T(y) = y . Our
theorem holds already for therefore there exists some

with a~ E o~m~~~’ such that y = Since a is uniquely
determined, it follows that = for all 0 E A* - On
the other hand we have 

~ 
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For 0 E r* with odd order I , we put t = lm and have fi.t) = Lt .
Then we obtain

and

Now let 1/1 E r* with even order I and put t = 21m . Then OW2 o r*
also has even order. Let A’ = Gal (~’~~ ~~4m~ ~ ) . Since 1/1 and 1/1úJ2
coincide on ~l and differ by the factor -1 on 7-Al , we see that

E O(m’)dl C Om1 . Decomposing ap = a’ + (1 + Ta" with

a’, a" E o(m’) ~~ and inserting this into Ta~E~,~o = a.~E~,KO , we can
deduce that = 0 and = (1 Thus we
obtain

Combining this with (2) shows that

which finishes the proof.
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