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Note on the Jacobi sum J(x,x).

par STANISLAV JAKUBEC

Notation

¢ = cosZE + isin2F

= 2% | 4eipn2t

Cp = cos=r +isin
-1

m= "

X - the Dirichlet character modulo p, x(z) = Ci“d(i)

l
JOGX) = +Z 1X(af:)x(y) - Jacobi sum
ZTTY=

p—1
7(x) = Y. x(x)¢; - Gaussian sum
z=1
Recall that 7(x) € KQ((), where K C Q(¢p) and (K : Q] = 1.
Introduction

Let J(x,x) be the Jacobi sum, J(x,x) € Q(¢:). It is well known that
J(x, x)J (X, X) = p, and one easily proves that

J(x,x) =X(4) (mod 2).

The main aim of this paper is to solve the problem: When is J(x,x) up

to association and conjugation uniquely determined by the solution of the
equation

XX =p, XeZ(&), X=1 (mod 2)?
We give a complete solution in cases [ = 11,19.
On the basis of this result, the following question is answered:
When is the prime 2 an 11-th resp. a 19-th power modulo p if p is not
representable by the quadratic form z2 + 11y2, resp. x2 + 19y2.
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We shall now present a survey of results obtained by solving the problem
when the prime 2 is an [-th power modulo p.

Jacobi has given necessary and sufficient conditions for primes ¢ < 37
to be cubes modulo primes p = 1 (mod 3). For example, he proves the
following

PROPOSITION 1. 2 is a cube modulo p if and only if L =0 (mod 2), where
4p = [? + 2TM?,
L=1 (mod 3).
Emma Lehmer [2] finds the following result:

PROPOSITION 2. Letp = 1 (mod 5) be a prime. Then 2 is a fifth power
modulo p if and only if x = 0 (mod 2), where (x,u,v,w) is one of the ez-
actly four solutions (z,u,v, w), (z, —u, —v,w), (z,v, —u, —w), (z, —v, u, —w)
of the diophantine system (Dickson):

16p = 22 + 50u® + 5002 + 125w?,

zw = v? — duv — u?,

z=1 (mod 5).
P.A. Leonard and K.S. Williams [4] prove the following

PROPOSITION 3. Letp=1 (mod 7) be a prime. Then 2 is a seventh power
modulo p if and only if x; = 0 (mod 2), where (x1, %2, ...,%e) is one of the
ezactly siz non-trivial solutions of the diophantine system of equations

(3) 72p = 222 + 42(x3 + 22 + 22) + 343(22 + 322),

(48) 1222 —12x3 414722 — 44122 +562, 26+ 242223 — 2422 4 +482 524 +98L526 = O,

(463) 1222 —1202 +4922 —14722+28%1 25 +482223+ 242524+ 242324 +49025 26 = 0,

(iv) 11 =1 (mod 7).
P.A. Leonard, B.C. Mortimer and K.S. Williams [3] prove the following
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PROPOSITION 4. Let p = 1 (mod 11) be a prime. Then 2 is an eleventh
power modulo p if and only if a certain condition involving solutions of
a very complicated diophantine system holds (the exact statement may be
seen in [3]).

J.C. Parnami, M.K. Agrawal and A.R. Rajwade [5] have the following

PROPOSITION 5. Let p =1 (mod ). Then 2 is an l-th power modulo p if
and only if
ar+az+--+a-1 =0 (mod 2),

where (ay,az,...,a;—1) is one of the ezactly I — 1 solutions of the diophan-
tine system of equations

-1 -1
. 2
@p=) 0= aii,
=1

=1

-1 -1 -1
(%) E a;iQip1 = Zaiai+2 == E a;qiq1—1,

i=1 i=1 =1

-1
(i4i) p does not divide [ o ( a:i¢; ) ;
1

A2k)>k

=

where A\(n) is the least non-negative residue of n modulo I, and oy, is the
automorphism (; — CF,

Gvyl4+a1+--+a-1=0 (mod!l),

(v)ar1+2a2+---+({(—-1)a;-; =0 (mod ).

Now let XX = p, and let J(x, x) be associated with the number X, i.e.
J(x,Xx) = €X, where ¢ is a unit of the field Q({;). Then
J06x)I(xX) = p = EXX
implies €€ = 1 and hence € = (—(;)™. So we have

JO6x) = (-4)"X.

Let 2 be a primitive root modulo I. Consider a residue class field
Z((1)/(2) of the degree f = | — 1 over Z/2Z. Let g be a generator of
the multiplicative group (Z({;)/(2))* of the field Z({;)/(2) such that there
holds ¢(g) = g2, where ¢ is a generator of the Galois group G(Q((1)/Q).
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LEMMA 1. Every unit € of the field Q((;) is a z—"ili’—l—-th power in the group
(Z(¢)/(@)), m =5t

Proof. Let € = g™ (mod 2). It is necessary to prove that #ln. Consider
m—1

the unit & = ] ¢*(¢). Then &, - &, = N(g) = 1, hence £; must be a root
=0

of 1, therefore €' = 1. Further,

1= € H © (5)21 H @ (gn)zl H gznl 2’ 2!n(2’"—1) (mod 2).

1=0 =0 i=0

It follows that 2In(2™ — 1) = 0 (mod 2! — 1), and therefore n = 0
(mod &), O

LEMMA 2. Let 2 be a primitive root modulo I. For a natural number a,
0 < a <l-—1 the following identity holds

-1

2-1 2n} .,
a 7 =Z[—l—]2”

(the decomposition into binary system), where v, =1~ 2 — ind(n) + ind(a)
(mod l—1), 0 <r, <l—1, and ind(z) is the index of the element = in the
group (Z/1Z)* under the base 2, i.e. 24 =z (mod ).

Proof. The lemma can be readily proved when the rational number £ is

expressed in the binary system, % Z a2~ ",

LEMMA 3. The factorisation of the Jacobi sum J(x, X) into prime divisors

-1
of the field Q(&) is J(x, x) = 1 o1 (p)[%ﬁl, where p is a prime divisor of

n=1

the field Q(¢1), plp, and oy is an automorphism o1 &) = Q%.
Proof. According to [1],
T(X)7(X)
J(x, x) = ===~
(x:x) 0%

-1
The factorisation J(x,x) ~ [ o1 (p)[*! is obtained using the factori-
n=1 "

sation of the Gaussian sum into prime divisors of the field KQ(¢;). O
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l_Z . .
Consider a divisor A = [] ¢*(p)’, where j; = 0;1, and define
=0

-2 ] ] -2 )
v([[ et p)y) =D 52"

1=0 1=0

-2
LEMMA 4. The factorisation A = ] ¢*(p)? is a conjugation of the factori-
=0

sation J0,x) = T1 o3.) (%] # and only i ¥ (TT ') ) = a2,

where 0 <a<l-—1.

Proof. Let A be a conjugation of J(x,X). Then A = J(x*, x*) for some s.
If s= £ (mod I), then we can write

% 1:[ ;‘1. ] = ﬁ (pind(%.%)p[glg]
n=1 n=1
-
(H ind(%-§) (p) % ) - i [_z_l’l] gind(3-§) _

n=1 n=1
-1 . . 21——1 -1
Z [ ] . 2!—1—md(n)+md(k)—l =k ; (by Lemma 2)

2. Conversely, let ¥ (]’I 7 (p)’*) . azl—;‘l, O<a<l-1.

By Lemma 2,
- -2
2 1 1 _ Z [2"1}27,. - (H ‘pmd( )(p)[zl—'l]> — ij .9

Since the expansion of a number in the binary system is uniquely deter-
mined, Lemma 4 is proved. [

For p|p, denote by hy the least natural number such that a principal
divisor p** = (a).

THEOREM 1. Let 2 be a primitive root modulo I, and let o = gM (mod 2),
where (M, 271) =1,
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If .
XeZ(), XX=p, X=1 (mod 2),

then X 1is, up to association and conjugation, equal to the Jacobi sum
IO x)-

Proof. According to Lemma 1, the choice of a generator o of the principal
divisor p™* = () is not substantial.

Suppose the factorisation of X into prime divisors of the field Q(¢) is
-2 ’
X ~ [ ¢ (p)*
1=0

It is necessary to prove that this factorisation is a conjugate of the factori-
sation J(x, Xx)-

Clearly
-2 ' -2
xt = [0y ~ [T o' (@)%,
1=0 1=0
hence

-2
Xt =e[[ ot (@*,

=0
where ¢ is a unit of the field Q(¢:).
But ¢ = 1 implies € = (—(;)*, and therefore

1—2
Xt = (=¢)* [] ¢ (@*.
1=0
From X =1 (mod 2) we obtain
-2 -2 . 1-2
1= () [T (@ = (-0 [T (6™ = (= [] 95 =
i=0 i=0 =0

-2
M Y §;2¢
= (=¢)’g" &% (mod 2).

Since {; = —¢; (mod 2), we have
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-2 i
MUY ;2!
g &’ =1 (mod 2),
hence o
IMY j:2t=0 (mod 27! -1).
1=0
Consequently
-2 ] 21_1 1
:2° = ). 1
M ; 7:2* =0 (mod 7 ) (1)

It is easy to prove that the condition XX = p gives
-2

> 5i2=0 (mod 2™ —1). 2)

=0

From the congruences (1) and (2), using the assumption (M, gz_'"lﬂ) =1
and the fact that (2™ — 1,2™ + 1) = 1, we obtain the congruences

-2 -1 _
> 4:2°=0 (mod 2—T—1-), (3)

=0

hence
-2

. 21—1 -1
ol = .
2 =T
From XX = p, it follows that j; < 1, and this implies a < [ — 1. Due to
Lemma 4, Theorem 1 is proved. [

Remark. If (M, -2-1[t-1—) = d > 1, then instead of the congruence (3) we get
the congruence

-2
; 21 -1
Zjﬂ’ =0 (mod ——).
i=0 ld
It can be proved that this congruence has always the solution (jo, j1, - - - , Ji—2)

which is not corresponding to the conjugates of the Jacobi sum J(x, x).

The question of whether for p with d > 1 the Jacobi sum J(x, x) can be
uniquely determined transforms in the question, for which j; the divisor

-2
[1¢ e,
i=0

is principal.
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COROLLARY 1. Let 2 be a primitive root modulo I, and let the class number
of the field Q({;) be equal to 1. Then the Jacobi sum J(x,x) s uniquely
determined, up to association and comjugation, from the solution of the
equation XX =p, X =1 (mod 2) X € Z((;) if and only if (M, -%Tftl) =1.

Proof. This follows from the preceding Remark, because in such a case,
every divisor is principal.

ExXaMPLE 1. [ = 5, %’—1 = gz—gﬂ = 1. It follows that for all p one has
d = 1, hence the Jacobi sum J(x,x) is uniquely determined, up to asso-
ciation and conjugation, by the solution of the equation XX =p, X =1
(mod 2), X € Z({).

EXAMPLE 2. [ =11, 2% = 241 — 3.7 = 19, 2741 — 2241 _ 97,

It is easy to see, that if we want to answer the question, for which primes
p is the Jacobi sum J(x,x) uniquely determined, up to association and
conjugation, by the solution of the equation XX =p X =1 (mod 2), X €
Z((;), then we must know for which primes p the number o, where N(a) =
p, is a third power in the group (Z(¢:)/(2))*. This question is solved in the
following lemma.

LEMMA 5. Let 2 be a primitive root modulo I = 3 (mod 4), p|p, and p™» =
Q.

Then « is a third power in the group (Z(¢)/(2))* if and only if p™» =
x2 + ly?, where x,y are not simultaneously divisible by p.
Proof. By Lemma. 1, the choice of a generator « of the principal divisor p”»
is not substantial.

Consider the product

B= [] ¢:(e), hence B € Q(V=).
(=1
Let
ﬂ=a’ Z Ciz+bl Z Cl—z’ a,,blez,
($)=1 ($)=1

and let o = g" (mod 2), where r = 0 (mod 3),

-3
2 p ol—1_
8= H az(oz)zl_[g"2 =¢"* 5 =1 (mod?2).

($)=1 i=0
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So we have ¢’ = b’ =1 (mod 2).

Hence
R I A B RV
,6=a'IZCl+b ZCI =a B +b B
()=t ($)=1
=a+b/=1l, a,be Z,
therefore

BB = p™* = a® + 1%
Let conversely p"* = a2 + Ib%. Put

a+b\/_——i=a'_1+2\/:—l+b'—1 "2‘/__7=

— -9V e

This implies a’ = ¥ =1 (mod 2), hence

B=a' Y G4V Y ¢F=1 (mod2).

(§)=t1 ($)=1

Let p|B3. Then since 3 is invariant on o,, where (#) = 1, we set that
o.(p)|B-

But if (%) = —1, then o,(p) does not divide 3 (in the opposite case we
would get p|S8, hence a contradiction).

It implies
B~ ][ o)™,
($)=1
therefore
1=6=(-¢)° [] o0 =(-¢)*g" = (mod 2),
(3)=1

and
g”'zl_sl_l =1 (mod 2).
From this we finally obtain
21-1 1
3

lr

=0 (mod 2'~! — 1) which implies r =0 (mod 3).
O
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THEOREM 2. Let | = 11;19, and let p =1 (mod [), 4p = A% +(B%. The
Jacobi sum J(x,X) is uniquely determined, up to conjugation and associa-
tion, by the solution of

XX=p, X€Z(Q), X=1 (mod 2),
if and only if A= B=1 (mod 2).
Proof. The proof follows from Lemma 5 and Corollary 1. 0O

By Proposition 5 and Theorem 2, we come to the following

THEOREM 3. Let | = 11;19, and let p = 1 (mod [), 4p = A% + IB?,
A= B=1 (mod 2). Then 2 is an l-th power modulo p if and only if

Ggp=a=--=a-1=1 (mod 2),

where (ay,az,...,a;—1) is one of the ezactly l — 1 solutions of the diophan-
tine system of equations

-1 -1
; 2
@) p= Zai - Eaiaiﬂ,
i=1 =1

=1

-1 -1 -1
(i) Zaiaiﬂ = Zaiai+2 == Zaiai+l—l>
i=1 i=1
(w)l+a1+---+a-1=0 (mod]l),

(v) a1 +2a2+---+(-1a;-1 =0 (mod I).

Remark. As we can see, Theorem 2 enables us to remove condition (iii) of
Proposition 5.

REFERENCES

[1] H. HASSE, Vorlesungen uber Zahlentheorie, Berlin 1950.
[2] E. LEHMER, The quintic character of 2 and 3, Duke math. J. 18 (1951), 11-18.

[3] P. A. LEONARD, B. C. MORTIMER and K. S. WILLIAMS, The eleventh power
character of 2, Crelle 286 /287 (1976), 213-222.



Note on the Jacobi sum J(x, x)- 471

[4] P. A. LEONARD and K. S. WILLIAMS, The septic character of 2,3,5 and 7, Pacific
J. Math. 52 (1974), 143-147.

[5] J. C. PARNAMI, M. K. AGRAWAL and A. R. RAJWADE, Criterion for 2 to be
l-th power, Acta Arithmetica 43 (1984), 361-364.

Stanislav JAKUBEC
Mathematical Institute

of Slovak Academy of Sciences
Stefanikova 49

814 73 Bratislava

Slovakia



