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The Palindromic Index - A Measure of Ambiguous
Cycles of Reduced Ideals Without any

Ambiguous Ideals in Real Quadratic Orders.

par RICHARD A. MOLLIN

ABSTRACT. 2014 Herein we introduce the palindromic index as a device for
studying ambiguous cycles of reduced ideals with no ambiguous ideal in the
cycle.

§ 1 Introduction

The theory of ambiguous classes of ideals in real quadratic fields goes
back to Gauss’ genus theory of binary quadratic forms. Recently, some nice
papers on the topic have been written on the subject such as [4] - [5] , but
also some published works such as [1] and [3] contain some incorrect infor-
mation. In this paper, we give a complete overview of the subject including
a general criterion for an arbitrary real quadratic order (not necessarily
maximal) to have ambiguous cycles of ideals (not necessarily invertible)
without any ambiguous ideals in them. We do this via the introduction
of what we call the palindromie index for an ideal in an ambiguous cy-
cle over a real quadratic order. We also compare and contrast our results
with those in the literature. We illustrate the results by several examples
which we have placed in an Appendix at the end of the paper to improve
the readability and flow of the paper, as well as to provide easily accessed
illustrations of the theory.

§2 Notation and Preliminaries

Let Do &#x3E; 1 be a square-free positive integer and set
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the algebraic conjugate of wo. Let wo = fwo + h for some f, h E Z, and
D = where g = gcd( f, r). Thus, if Â = (wo - Wô)2, then A -

= 4D/u2 where Q = r/g. Do is called the radicand associated with
the discriminant A. Throughout the paper when referring to a discriminant
A, we will be referring to this general setup unless otherwise specified.

Let [a,,8] = aZ fI) (3Z, then if we set 06. = [1, fwo] = [1, this is
an order in K having conductor f and fundamental discriminant Ao. Let
I = [a, b + with a &#x3E; 0. It is a well-known (eg. see [10, Theorem
3.2, p.410]) that I g Z is an ideal in Oo if and only if c 1 a, c ~ 1 b and
ac where N is the norm from Q; i.e., N(a) = aa’.
As shown in [10, Corollary 3.1.1, p.410] for a given ideal I in 06. vùth I g Z,
the integers a and c are unique, and a is in fact the least positive rational
integer in I. We denote the least positive rational integer in I by L(I) and
we denote the value of cL(I) by N(I), which we call the norm of I. An
ideal I = [a, is called primitive if c = 1. Moreover, if I = [a, b+cvo]
is primitive, then so is its conjugate I’ = [a, b + w~]. Two ideals I and J of
Oô are équivalent (denoted I N J) if there exist non-zero a, ~i E (~o such
that (a)I = (,3)J (where (x) denotes the principal ideal generated by x).

Remark 2.1. At this juncture it is worth cautioning the reader concern-
ing some data in the literature. Our notion of "primitive" given above
coincides with that of [10J wherein that definition of primitive is needed
to develop a full theory of continued fractions and reduced ideals; Le., to
ensure that all cycles of reduced ideals are taken into account. However,
although equivalence of ideals is defined in [10] exactly as we have done
above, classes of ideals are not mentioned throughout their paper. The
reason is that their (and our) definition of primitive is insufficient to ensure
invertibilitv of an ideal. To see this we recall that a fractional 0/B -idéal of
K is a non-zero, finitely generated OA-submodule of Q(ù3), and this, of
course, includes all non-zero ideals of called integral ideals. Moreover
any fractional Oà-ideal I of Q(J’K.) is called invertible if I I-1 = Co
where I-1 = {x E Q(ù3) : xI C Now we illustrate that we may
have a primitive ideal which is not invertible. Let 0 = 1224 = 23 - 32 - 17
be the discriminant with conductor f = 3 and order (?A = [1, m].
Consider the primitive ideal I = [9,15 + 306]. Here I-1 = (9)I’ and
[ [-1 = (3, 306~ ~ Oa. Thus, the ideal I is indeed primitive but not
invertible, since it contains the rational integer factor 3 dividing f.
The definition of "primitive" given in [5] is sufficient (and necessary)

for invertibility of ideals. However, since their definition and that of [10]
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conflict (in that they use the same term for different concepts) we introduce
a new term here to emphasize the difference since we need both versions
herein.

DEFINITION 2.1. &#x3E; 0 be a discriminant and I = [a, (b + 
an ideal in Oà, then I is called strictly primitive if I is primitive and
gcd(cc, b, (~ - b2)/(4a)) = 1. (Note that this definition is the usual notion
of primitive associated with quadratic orms.)

The following generalizes [5, Proposition 2, p.325], and is illustrated by
the example discussed in Remark 2.1.

PROPOSITION 2.1. Let 0 &#x3E; 0 be a discriminant arad Let I = [a, (b+ ~/,-à)/2]
be a prirrvitive ideal If g = gcd(a, b, (0 -b2)/(4a)) then I-1 = Il
and I I’ = (a) [g, Thus, I is invertible if and only if I is strictly
primitive.

Proof. Since (a) [a, (b + v’X)/2, (b - ~)/2, (à - b 2)/(4a)], then
a check shows that I Il = Clearly then (j) I’I C Oa and a
tedious exercise verifies that indeed there are no other values x E 
such that xI C OA - Hence, if I is invertible then Oo = I I-1 = (j) I’I =
[g, whence g = 1. Conversely, if I is strictly primitive then 9 = 1 and

= Oo; whence I is invertible,. D

Much of the theory, as elucidated in [1] or [3] for example, avoids such
problems by considering only ideals for which gcd(N(I), f) = 1, (and such
I are invertible). However, the converse does not necessarily hold. Thus
the aforementioned restriction on ideals actually masks a phenomenon (not
considered in [1]-[5]) which we wish to highlight; viz., that of ambiguous
cycles without ambiguous ideals (see Section 3). In fact, since Oo is not
necessarily a Dedekind domain then not all ideals need be invertible, as
illustrated by the above example. (In fact a Dedekind domain may be
defined as a domain in which all fractional ideals are invertible.) However,
we may have strictly primitive ideals I with gcd(N(I), f) &#x3E; 1. For example,
let A = 725 = 5~ ’ 29 with order do = [1, (5 + B1’725)/2] and conductor
f = 5. Consider the strictly primitive ideal I = (25, (25 + B1’725)/2]. This
ideal is invertible (as are all principal ideals in a given order), since 7
I-1 = Oo with I-1 = (2~) I = (£5) I, and in fact 1= (25).
Now we are in a position to define ideal classes. The aforementioned no-

tion of equivalence of ideals in is an equivalence relation, and according
to the above elucidation the equivalence classes of strictly primitive ideals
forms a group Co under multiplication, and we call this group the ideal
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class group of i.e. C’A consists of the équivalence classes of invertible
ideals of The order of Cà is denoted by ho, the class number of 0A.
The connection between the class number of the maximal order and that of
an arbitrary order contained in it may be found for example in [1, Theorem
2, p. 217~.

DEFINITION 2.2. A prirrtitive ideal I of Oà is called reduced if it may be
written in the form I = [a, (b + )/2 where -2a  b - ùl  0 

2a  b + Ù1. Any reduced ideal which is strictly primitive will be called
strictly reduced.

Now we give an elucidation of the theory of continued fractions as it
pertains to the above. The details and proofs may also be found in [10].

Let I = [N(I), b + be a primitive ideal in Oo and denote the
continued fraction expansion of by  &#x3E; with

period length 1 = where and,

with L J being the greatest integer function, or

From the continued fraction factoring algorithm (as,given in (10)) we get
all reduced ideals equivalent to a given reduced ideal I = [N(I), b + wv];
i.e. in the continued fraction expansion of (b + we have

Finally, Ii = Io = I for a complete cycle of reduced ideals of length
lei) = 1. Therefore, the (Pi + are the complète Quotients of (b +

and the represent the norms of all reduced ideals ea u i
valent to I.

Remark ~. ~ It follows from the above development that the class group
CA of a given order consists of classes of strictly primitive ideals,
whereas if we do not consider C b. but merely wish to look at cycles of
reduced ideals then the cycles may consist of reduced but not strictl re-
duced ideals. We will have need of this distinction later on.

Now we cite a couple of useful technical results which we will need
throughout the paper. In what follows Eo &#x3E; 1 denotes the fundamental
unit of 
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LEMMA 2.1. Let I = [a, b + wa] be a reduced ideal. If Pi and Qi for
i = 1,2, ...,l(I) = f appear in the continued fraction expansion 

n

Proo f . This is well-known (eg. see [5, Corollary 5, p.346]). An alternative
.

form, eo is given in [10, Theorem 2.1, p.409] as well.
i 1

We note that if (P2 + then (VD - 4&#x3E;-;1. D

See Example AI in the Appendix for an illustration of Lemma 2.1.

LEMMA. [a, (b + ~)/2] zs a primitive ideal of d© then I =
[a, na + (b + Ùà) /2] for any Z

Proof. This follows from the development in [10, Section 3, p.410]. D

§3 Ambiguous Classes and Cycles

The only proof given in this section is that of the last result, Theorem
3.5, which is essentially the proof of a conjecture posed in [9, Remark 2.3,
p. 114]. The remaining lemmata and theorems have very easy proofs which
the reader can readily reproduce.

DEFINITION 3.1. Let à &#x3E; 0 be a discriminant. a reduced ideals in
no then I is said to be in an ambiauous I j = I’ for some integer j
with 0  j  l. In particular, if I = l’ then I is called an ambi9uouS ideal.

Observe that if I is strictly primitive then we may speak of the class
of I in CA in which case I’ = h means that I ~ I’ 1, the
usual notion of an ambiguous ideal class in Cà. However, it is possible to
have an ambiguous cycle which contains no ambiguous ideal. We introduce
the following concept which will help to clarify (and correct errors in the
literature concerning) the notion in particular of ambiguous classes without
ambiguous ideals. It will be, in fact, the device by which we classify all real
quadratic orders which have class groups generated by such classes. We
maintain the more general setting however for reasons outlined in Section
2.

DEFINITION 3.2. Let A &#x3E; 0 be a discriminant and let I = [a, (6+~/A)/2]
be a reduced ideal. in do with 0  (~ - b) / (2a)  1. If I is in an

ambiguous cycle then in the continued fraction expansion of (b+ -,~/Â) / (2a),
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we must have I’ = Ip for some integer p E Z with 1  p  lei). We call
p = p(I) the palindromic index of I, since for a given I as above, p is

unique.

We will suppress the I and just write p for p(I) and 1 for whenever
the context is clear. It follows from [7, Lemma 3.5, p.831] that an ambiguous
ideal class (or more generally an ambiguous çycle of ideals) can have at most
2 reduced ambiguous ideals.

In order to give our criterion we need a couple of useful technical lemmas.

LEMMA 3.1. If I = [a, (b + à) /2] is a reduced ideal in (?~ with 0 
(~ - b)/2a  1 then in the continued fraction expansion of (b + Ù1) /2a
we have that ai whence, I’ (Pi + ~/D)/3f =

The next lemma generalizes observations made in [6, 

LEMMA 3.2. Let I, .~ and p be as in Definition 3. ~, then = for

Now we are in a position to give the aforementioned criterion, which
follows easily from the above two lemmata.

THEOREM 3.1. Let A &#x3E; 0 be a discriminant and Let I be a reduced ideal
in Then I is in an ambiguous cycle without an ambiguous ideal if and
only if l(I) = 1 is even and p(I) = p is odd.

Remark. If we consider the continued fraction expansion of (15 + 30fi)/9
given in Example Al of the Appendix then we see that the primitive ideal
1 = ~9,15 + 3ofi] has p(I) = iCI) - 1 = 5; whence, I is in an am-
biguous cycle with no ambiguous ideal. However, there does not exist an
ambiguous class without ambiguous ideals in Cs .

This example is no accident as the following generalization of [6, Lemma
6, p.65] shows, (see also [4, Lemma 5, p.275]).

LEMMA 3.3. &#x3E; 0 and I = [a, (b + ~~/2] be a reduced ideals in an
ambiguous cycle and 0  ~~-b)/~2a~  1, then A = 4az+b2 if and only

i. e. p = ~ -1.



453

The following generalizes a well-known result which can be found in [1]
for example.

LEMMA 3.4..Let 0 &#x3E; 0 be a diseriminant. In Oa there an ambigu-
ous cycle of reduced ideals, containzng no ambiguous ideal if and only if

= 1 and D is a sum of 2 squares.

Remark. ~. ~ Now we need a definition which will lead us into a result which

basically says that, if we have one ambiguous cycle of reduced ideals without
ambiguous ideals then we also have the maximum possible. For maximal
orders this means that, if we have one such class, then we may generate
the class group entirely by such classes. See Example A2 in the Apppendix
for an illustration pertaining to non-maximal orders, and Example A3 for
maximal orders.

DEFINITION 3.3. &#x3E; 0 be a discrzmznant and let s be one half the
of the number of divisors of D = rr2 D/ 4 of the f orm 4 j -I- 1 over

those divisors of the form 4 j + 3. Thus s corresponds to the number of
distinct sums of squares D = a2 + b2 (where distinct here means that, al-

though gcd(a, b) is not necessarily one, we always assume that both ac and
b are positive, but we do not count as distinct those, which only by
the order of the factors. For example, the 8 solutions of x2 + y2 = 5 :
~I, 2), (-1,2), (1, -2), (-1, -2), (2,1), (2, -1), t-2,1) and (-2, -1) are con-
szdered as only one solution.

THEOREM 3.2. Let A &#x3E; 0 be a discriminant, then if there exists an am-
biguous cycle of reduced ideals without ambiguous ideals there are s such
cycles when D = U2 A/4 is even and when D is odd there are sl2 of them.

Remark. 3.2 In [1, pp. 190, 225] it is asserted that there can be at most
one ambiguous class without an ambiguous ideal in it, when considering,
CAtor the maximal order. This is shown to be incorrect by Theorem 3.2.
What we think that Professor Cohn meant to say was that / =

2 where Cp,2 is the elementary abelian 2-subgroup of C t1 and C Atl is the
subgroup of Co consisting of classes with ambiguous ideals. In fact from
Lemma 3.4 and Theorem 3.2, we see that there exists an ambiguous class
without ambiguous ideals if and only if there exist 2t ambiguous classes
without ambiguous ideals, where t is the number at distinct prime divisors
at A. In order to clarify the situation, we give the following criterion.

THEOREM 3.2. Let A &#x3E; 0 be a discriminant not divisible by the odd power
of any prime congruent to 3 modulo 4 in its canonical prime of factorizat2on
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then the following are equivalent :

i) D = a sum of two squares and = 1.

ii) There are s ambiguous cycles of reduced ideals without ambiguous
ideals in 0.6. when D is even, and there are sl2 of them when D is
odd.

iii) There exists an ambiguous cycle of reduced ideals without ambiguous
ideals in Oo.

Remark 3.3. When Oa is the maximal order Theorem 3.3 says that if t
is the number of distinct primes dividing A (not divisible by any prime
congruent to 3 modulo 4) and there exists an ambiguous class without
ambiguous ideals then there are 2t such classes.

Example A3 in the Appendix not only illustrates Theorem 3.3 for max-
imal orders but also shows that by a judicious choice of an ideal I in an
ambiguous class without ambiguous ideals (namely the ones arising from
the pairs of representations as sums of squares) we may always guarantee
that p(I) = t(I) - 1.

Part of the impetus for studying and clarifying the above data on am-
biguous classes was to see if [7. Lemma 3.5, p.831] çould be generalized
to hold for ambiguous classes. The answer is no. We do however have a
general result for ambiguous classes which yields [7, ibid] as an immediate
consequence, which follows easily from Lemma 3.2.

THEOREM 3.4. &#x3E; 0 be a discriminant and let I = (a, (b+ ~)/2)
with 0  (ùà - b) /2a  1 be a reduced ideal in an ambiguous cycle of 0/1.
Let Qi be in the continued fraction expansion of (~ + b)/2a, then I = I’
if and only if one of the following holds:

i) p = 1 and i = 0 or ~.
ii) p is even and i = p/2.
iii) p and 1 have the same parity and i = (p + £)/2.

Remark 3.4. We note that the main result of [3, Theorem 3.1, p.75] was
shown to be false in [8] where we considered class groups of quadratic
orders (with positive or negative discriminants) generated by ambiguous
ideals. Therein we gave a general criteria (which yielded as an immediate
consequence a correct version of [3, op.cit.~) for the class group of a maximal
quadratic order (in real or complex quadratic fields) to be generated by
ambiguous ideals. This criterion was given in terms of canonical quadratic
polynomials.
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Remark. 3.5. The reader should note that a correct and very appealing
treatment of ideal classes in real quadratic fields is contained in [2~ . 

We conclude with a proof of a conjecture made in [9] using the results
of this section. In [9] we classified and enumerated all discriminants A &#x3E; 0

such that there is exactly one non-inert prime less than ù1/2 (with one
possible exception whose existence would be a counterexample to the gen-
eralized Riemann hypothesis) using a well-known result of Tatuzawa. Ad-
ditionally we used this result to show that certain forms for A cannot exist
with the aforementioned property (again with one possible exception re-
maining). We now give an unconditional proof of this result as a nice
application of the theory developed to this point.

THEOREM 3.5. Let A = q2 + 4q where both q and q + 4 are primes with
q &#x3E; v’X/2. Furthermore, zf r  ùl/2 is a prime such that (A/r) =

1 and phà &#x3E; then r is not the only non-inert przme Less that ~/2.

Proof. Assume that r is the only non-inert prime less than v’X/2. Since
N (q + 2 + v’X)/2) = 1 then the period length of any reduced

ideal is even by Lemma 2.1. In particular, if I = [r, b + wA] then 
is even. If hà is even then is in an ambiguous class, and as shown
in [9], IhA/2 is reduced. If p(Iha/2) = p is even then by Lemma 3.2,

= q, Qp/2 = 2q and 0 - q2 + Qp/2Qp/2-1 = q 2 + 4q ~ whence
Qp/2-1 = 2. This means 1, a contradiction. Thus p is odd and
so by Theorem 3.1, is in an ambiguous class without an ambigu-
ous ideal. Moreover 0(p-i)/2 = ~~p+1~/2 and Ô. = P(~.i)/2 + ~p+i)/2~
by Lemma 3.2. Since C~tp+1~/2  à then = 2Pj, so 

i.e. j _ hA/2(mod However, rhA &#x3E; ViS = hà/2; i.e.

~~p+1~/2 . = 2r~°l2. Yet, by definition Qp = 2pht:../2 and is the first such f,?Z
with this property, a contradiction. Hence h A is odd. Now, if there exists
a  VA for any i with 0  i  1 in the continued fraction expansion
of (b + then Qi = 2ri for some j &#x3E; 0; whence, I - Therefore

j = hà), but If j = 1
then I - I’ and if i = hà - 1 then I - [-1 rv Il. In either
case .~ is in an ambiguous class. Since hà is odd then 1 - 1. However,
in the continued fraction expansion of wo, the principal class, the period
length 1(l) = 2, and QI = 2q # 2r, a contradiction. Hence, there does
not exist any integer i with 0  i  £(1) - .~ such that Qi  ùl in the
continued fraction expansion of (b + Yet Ll = for
0  i  1, and we cannot have both Oi and bigger than Thus,
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.~ = 2 with QI = 2s &#x3E; v’X, 8 a prime. Also Pl = P2 = alQi - Pl; whence
Pl = sal which forces s to divide A since A = Pi + 4s. Thus s = g and so
A + 4rq = q 2+ 4q, a contradiction. Il

It is hoped that the introduction of the palindromie index and the rami-
fications of it elucidated herein have made this beautiful topic more under-
standable.

Acknowledgements. The author’s research is supported by NSERC
Canada grant #A8484. The author also welcomes the referee for comments
which led to a more compact paper.

Appendix

I. Examples

Example Al. Let A = 1224 = 2~ . ~32 17, D = 306 = 2 - 32 - 17,
Do = 2 ~ 17 = 34 and Ao = 23 ~ l’l; whence, f = 3, o~ = r = g = 1 and OA =
[1,3J34] = [1, fwo] = [1, Consider the ideal I = [9,15+ 306], then
the continued fraction expansion of (15 + 306)/9 is

and

In fact if we consider P5 = [5, 1 + B/306] and look at the continued fraction
expansion of (1 + 306)/5 we get

and,
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Moreover, by [1, op.cit.], hA = 4 and since P5 - Pli where Pl, lies
over 11 then p2 - 1; whence, P5 has order 4. Hence, Cb. = Pb &#x3E;.

Example A2. Let a = 23 - 132. 52 - 17 then D = 143650 = 2 132. 52 - 17
with u = r = g = 1 and f = 2 - 5 - 13. D is representable as a sum of
squares in 9 distinct ways; viz.,

and each one of these yields an ambiguous cycle without any ambiguous
ideals. However the last 5 of these arise from 13 and 5; i.e. they give rise
to ideals which are not strictly primitive and therefore do not represent
classes in Cà. For example, I = [195,325+-,~/143650] has continued fraction
expansion for (325 + 143650)/195 being

an ambiguous cycle with p(I) = 5 = leI) -1, thus without any ambiguous
ideals, but I is not strictly primitive. However the first 4 representatives
of D as a sum of 2 squares do represent classes in Ca; viz.,

Moreover, C(A,2) = 2-part of a
class group generated by ambiguous classes without ambiguous ideals.

Example A3. Let A = .Do = 45305 = 5 - 13 - 1 fi - 41 and let

We choose this since the ambiguous classes without ambiguous ideals arise
from the representations as sums of 2 relatively prime squares. Here A =
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192 -~ 4 - 1062. The continued fraction expansion of (19 + 45305)/212 is

Here we see, as predicted by Lemma 3.3, p(I) = 25 = leI) - 1 and
by Theorem 3.1 this is an ambiguous class without an ambiguous ideal.
We also see that I generates the representation A = 1492 +4.76 2 since
P13 = 149 and Q13 = Q12 = 152. Note as well that although Ql,5 = 212
this does not represent the conjugate, by Lemma 3.2, because there is no
symmetry about 15.

Now we consider J = [14, (211 + 45305)/2J which arises from A =
2112 + 4.142. The continued fraction expansion of (211 + 45305)/28 is

We see that J also generates à = 1812 + 4 . 562 since Plo = 181 and
QI0 = Qq = 112. Here p(J) = 19 = l(J) - 1 so it’s an ambiguous class
without an ambiguous ideal. Note as above that although Q6 = 28 this
does not represent the conjugate.

Finally we let L = [62, (173 + B/A)/2] which arises from A = 1732 +
4~622.

The continued fraction expansion of (173 + B/A)/124 is
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Thus p(L) = 23 = teL) - 1 and again, as predicted, we have an am-
biguous class without an ambiguous ideal. Moreover the other sum of 2
squares which L generates is A = 1072 + 4 .922 since Pi2 = 107 and
Q12 = 184. As above although Q9 = 124 this does not represent the
conjugate due to lack of palindromy.
We note that there is one more pair of representations of A as a sum

of squares (since there are 2t-l = 8 such representation); viz., ~ = 832 +
4 ~ 982 = 2032 -~- 4 - 322. The ideal which arises from this pair is M =

[98, (83 + -%/453Ô5)/2]. However, M - whereas there are no such

relationships between I, J and L; whence CA = I &#x3E; x  J &#x3E; x  L &#x3E;,
a class group generated by ambiguous classes without ambiguous ideals.
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