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The fractional part of n03B8 + ~ and Beatty sequences

par TAKAO KOMATSU

1. Introduction

Let () be real and be the denominator of the n-th convergent of the
continued fraction expansion of 0. Thus when 0 is rational, 8 = for
some integer N. Denote the fractional part of 0 by {9}, the floor, that is
integer part, of 0 by and its distance from the nearest integer by ~~8~~.

It is well known that the continued fraction convergents are best approx-
imations to 0 in the sense that

The corresponding results for one-sided best approximations are readily
derived, see for example van Ravenstein [9j, and are ’ 

°

and

The purpose of this paper is to give similar results in the inhomogeneous
case x8 -- , where 0 and ø are real numbers, not necessarily irrational, and
to apply these results to find the characteristic word

of the Beatty sequence. A Beatty sequence is a sequence of the form 
for fixed real numbers 0 and 0. The homogeneous case § = 0 has been dealt
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with extensively (see for example [3], [4], [5], [8], [10], [11], [12], and [2]
for additional references). The inhomogeneous 0 is also discussed
from several viewpoints (see [5], [7J, [8]), but these sources do not necessarily
make it easy to get the actual Beatty sequences. The paper [5] is complete
on the theory, but only the limited periodic case yields Beatty sequences.
The paper [8] provides a very effective description of Beatty sequences, but
regrettably, it is now known that the results do not match the facts (see
the corrected version, (6~).

2. The minimum of the fractional part of z0 + §

We first consider how to find an integer x satisfying

When both 0 and 0 are rational, the problem is not too difficult. But how
should we treat the irrational case? The answer is given in the following
theorem. Using this result, we can find x directly in every case - though
two values must be compared when 8 is irrational.

THEOREM 1. be real numbers, and let .denote the n-th con-

vergent of 0. Then for n &#x3E;_ 2,

Proof. Set an = Consider the pn/qn. We recall that

When n is odd,
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To minimize {xB + 01, we need

And this is possible since (pn, qn) = 1 and o  x  qn.

Now, since is a solution of

is a solution of the diophantine equa-
tion

Thus, the solutions of this equation are

we get

Therefore, when n is odd and (x pn + an)/qn E Z,

In like manner, when n is odd and (xpn + an - 1)/qn E Z,

Similarly, when n is even,

Thus,
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that is

When 0 = pn /qn for some n &#x3E; 2,

Now

gives

Rerriark. If we disallow x = 0 (in order that van Ravenstein’s result [9] is

a particular case), Theorem 1 must be modified. In this case

when 0   
’

Corresponding results for the maximum can be obtained symmetrically:
One uses the ceiling instead of the floor in the proof above.

COROLLARY. Let 8, ~ be any real numbers and let the n-th con-

vergent of 0. Then for n &#x3E; 2

and t=o.

Remark. In the range 0  x  qn in which x = 0 is disallowed,
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3. THE MINIMUM VALUE OF + oil

Combining the results for minimum and maximum, we get the following
theorem:

THEOREM 2. be any Teal numbers and let pn/qn be the n-th con-
vergent of 0. Then for n &#x3E; 2

where ~~, _ +t) mod qn and t = -1, 0 or 1 if n is odd;
1 or 2 if n is even.

When 0 = (n &#x3E; 2), llxo ~- Oil has period qn in x and

andt=0 orl.

Furthermore, if an.~l _&#x3E; 2, then for any real 0 we have t = 0 or
1. And for any real 0 and for infinitely many n with r~ &#x3E; 2 we have
t=0 orl.

Proof. The first two assertions are obvious. It suffices to deal with the case
when n is odd. Then from the first assertion there are three cases, say

We will show that

Since

and
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it follows that

On the other hand

if this value is positive,

otherwise.

Since

we have

From (1) and (2) the fact qn+l = + 2q~ now yields the
conclusion. ,

Using Hurwitz’s theorem for infinitely many pn/qn, that is for infinitely
many n

and

we obtain the last part of Theorem 2.

Remark.. In the range 0  x  qn, in which x = 0 is disallowed,

4. The third possibility in Theorem 2

If 0 is irrational and an+l = 1 for some n~&#x3E; 2), there may be the third
possibility, namely t = -1 when n is odd; t = 2 when n is even. In this
section we describe () and § which give this third possibility.
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Once again it suffices to consider just odd n. Again set an - Lqnoj
and -_ + t) mod qn, where t = -1, 0, 1. Then, the third
possibility occurs if

But (3) is equivalent to

or

where x = ~~-1). Since 0 - 0 and 0  x  qn - 1, 8 must satisfy

where c is a constant with 1  c  2, which we determine later. Let

an+l = 1, an and an+2 be large positive integers, say Ln and L~.~2, respec-
tively for odd n in the continued fraction expansion of 0. Then

where an+2, - - - ] and 0  E  1. Thus, this 0 satisfies ~5) .
By comparing with (5), we get

Since we may take Ln+2 as large as we like, the condition on c is

This condition will be sharpened in (8).
We still have to make x = 1) mod qn large enough and

have to make § - 0 small enough to satisfy (4). First, we select x,
and then may choose = knpn -E-1, z = To satisfy the conditions
of (4), the value of must be in the range
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Together with the condition for c we get

This condition will be sharpened in (7). We conclude that x is as large as

Next, we select 0. We can say that the condition (3) is

where the two fractions are integers. = qn - kn we have 
qn - since qn &#x3E; and given the conditions on kn. Recalling
the definition of an, we get

This is equivalent to

whence

To see that, we note

whence we have
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and

Among these kn satisfying (6) we choose kn such that the left hand side of
the inequality defining the range of 0 is less than the right hand side, so

that is,

When n &#x3E; 3, it follows from (5) that such kn exist if we take c as

We remark that 2(qn - 1)/(2qn - is near to 1 and 2(qn - is

near to 2 because L~, is large. ,

When there is a kn satisfying (7) and

we can select 0 as

The 0 and 0 so selected give the third possibility for odd n. When n is
even, instead of (9) we can choose 0 as

By these steps, we can always find 0 and § to give the third possibility for
any odd n, or any even n when an+, = 1, by taking Ln and Ln+2 large
enough so that there is an integer kn satisfying the conditions (7) and (9)
(or (9’)). Moreover, it is possible to obtain § giving the third possibility
for infinitely many odd (or even) n’s.
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We now show the way to find the next interval such that In+2 C In:

Take an increasing sequence of constants with 0  6n  1/3 for all
positive integers n. For each odd n (&#x3E; 3) we shall always choose

and

where L is an integer with L &#x3E; 8 and kn satisfying condition (7). Put

and

where using the notation of the ceiling

and we assume that

and

Then, comparing with (7),

and ~3n  1 -1/2qn yields (6). Let In be the interval of (10). Note that if
In+2 C I~, then will automatically satisfy condition (11).
We examine the fractional parts of various integer multiples of Pn+2/ qn+2

with an eye to combining them to find an integer kn+2 such that

is in a subinterval of First,

so
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We also have

and

where the third equality can be obtained by adding the first two. From
(12) and (14) we have

Now let 1 be the non-negative integer satisfying 
’

Using (13) we get

and
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where i for some 1 with

Now

Having chosen and we define an+2 and #n+2 analogously to an
and,8,, in (10). In view of (15) and (16) we have C In -

Therefore,

give the third possibility for each odd

EXAMPLES.

give the third possibility for r

give the third possibility for n = 2, 4, 6, 8, - - - . .

5. The sorting of {x8 + 0}

We can solve the sorting problem by using the former results. When
0 is irrational, let qn be the denominator of the n-th convergent of 0, as
above. When 0 is rational, let 0 = p~/qn, where pn and qn (&#x3E; 0) are
coprime. Let + ~~), j - 1, 2, - - - , N, be the ordered sequence of
fractional parts. That is, Jul, uZ, - - - , ) = 10, 1, 2, - - - , N - 1 ) , and

When 0 is irrational and ¢ = 0, the following result is well known:
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LEMMA. When N = qn, for j - 1, 2, ..., qn

where u2 = if n is odd, u2 = qn - if n is even.

Proof. This follows immediately from Lemma 2.1 and Theorem 3.3 of [9].

We will sort the fractional part which includes the result above.

THEOREM 3. When N = qn , for j - 1, 2, ... , qn

where t = 0 or (-1)n and is independent of j.

Proof. Set When x8 + 0 is not integer, for each x there exists
an integer t satisfying

Let x(t) = x~t~ with 0  x(t)  qn satisfy

Then

From Theorem 1 t must be 0 or (-1)".
When x6 + 0 is integer, there exists satisfying

In particular, t = 0 when 0 is rational, or if o  ~  1/qn .
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6. Application to the inhomogeneous Beatty sequence

In this section, we introduce the easiest method for getting the inho-
mogeneous Beatty sequences in every case. Indeed, one easily obtain the
sequence by the use our theorems once one knows the corresponding ho-
mogeneous Beatty sequences; see the examples in §7.

Consider the sequence of differences, that is the characteristic sequence

First, let 0 be rational. Then, the following theorem is essential.

THEOREM 4. Let 0 be a rational number, 0 a real number, and let r~ be
an integer satisfying

Then for all integer n we have

Proof. Plainly

Because ( we have

Since also the result follows.

Next, we consider the case () irrational. The main theorem is Theorem
5, which will follow from Proposition 1 and Proposition 2. The method of
proof is similar to that of the rational case. As seen in the assertions, we
need not necessarily take an integer x which minimizes the fractional part
of z0 + 0, but it is surely the best way to use such an integer.

PROPOSITION 1. be an irrational number with continued fraction
expansion 

- -

and let 0 be a real number. For i = 0,1, 2, ... denote the convergents of 0
by pilqi .

If &#x3E; f ~o+~~ for a non-negative integer k, then for all integer
n with  qi - 2 we have f (n -~- J~; 8, ~) = f ~n; e, o~ .

This proof depends on the following lemmata:
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LEMMA 1. Let 0 be an irrational number and 0 any real number. If
+ ~} for a non-negative integer k, then for every posi-

tive odd integer i

and for every positive even integer i

Proof. When i is odd,

Then,

Since

together with

the first inequality follows.
When i is even,

and

Then,
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Since

together with

the third inequality is proved.
The second and the fourth inequalities are proved similarly.

LEMMA 2. If {~8 + 01 for a non-negative integers k, then for
every integer n with Inj  qi ,

Proof. First let n &#x3E; o. By the result of [9] and the first and the third
inequalities in Lemma 1, Lemma 2 holds for n which maximizes the frac-
tional part when 0  n  qi for integers i &#x3E; 2, whence together with the
condition (x0 + 01 the lemma holds for the other positive n.

When n - 0, the result is trivial.

Finally, if n  0, by [9] and the second and the fourth inequalities in
Lemma 1, for 0  n’  qi,

Hence, together with

we have the claim.

Proof of Proposition 1 ~ If {kB + ol = 0, then for any integer n

By Lemma 2, InO + (kB + 0)} = {nB + {kB + ~}} is never located on the
the number line to the left of Therefore, if (k0 + ~} ~ 0, for each
integer n with Ini  qi
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This gives

As the inequality of Lemma 2 may not hold for n = qa, there is the
possibility that

PROPOSITION 2. be an irrational number with continued fraction
expansion

and let 0 be a real number. Denote by pilqi (i = 1,2,...) the i-th con-
vergent of the continued fraction expansion of 0. Let r~l be a non-negative
integer satisfying

If l &#x3E; i for an integer i with i &#x3E; 2, then for all integers n with

Proof. This is similar to the proof of Theorem 4.

Now, we combine Propositions 1 and 2 to get the main theorem for an
irrational 0.

THEOREM 5. Let 0 be acn irrational number wzth continued fraction expan-
sion

a real number. Denote by pilqi (i = 1,2, ...) the i-th convergent
of the continued fraction expansion of 0. Let "’I be a non-negative integer
satisfying

then for all integers n with
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Remark. We don’t have to care for the mysterious condition 
For, always

in these cases.

7. Examples

and

by Theorem 1

From

and

we get ~4 = 20.

Next, since by Theorem 5

we have

For example, according to the method of Fraenkel et. al. [4], as

and

we get
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Furthermore,

and

that is
is

where the underline indicates the place f (0; V2, 0).

and

by Theorem 1

Next, by Theorem 4 we have

for all integer n .

For example, according to the method of Fraenkel et. al. [4~, as

and .

we get

Therefore, f (n; 36/25, for n E Z is

where the underline indicates the place f (0; 36/25, 0) and the double-underline
indicates the place f (0; 36/25, 

Of course, we can use the form 36/25 = (1, 2, 3,1,1) to have the same
characteristic sequence.
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