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The fractional part of nf + ¢ and Beatty sequences

par Takao KOMATSU

1. Introduction

Let 6 be real and ¢, be the denominator of the n-th convergent of the
continued fraction expansion of §. Thus when 6 is rational, 8 = py/qn for
some integer N. Denote the fractional part of 8 by {6}, the floor, that is
integer part, of @ by |8/, and its distance from the nearest integer by ||9||.

It is well known that the continued fraction convergents are best approx-
imations to @ in the sense that

. _ >1
omoin |26l = llgn-16l  forn =1

The corresponding results for one-sided best approximations are readily
derived, see for example van Ravenstein [9], and are °

. 0 {an-10} if n is odd; form> 2
022, =\ {(@a - 4u)0} i s even, T ED
and {« )6} if
Gn — Gn—1)0} if n is odd;
_ >2.
02‘25,,, et} { {gn—-10} if n is even, o=

The purpose of this paper is to give similar results in the inhomogeneous
case x6 + ¢, where 8 and ¢ are real numbers, not necessarily irrational, and
to apply these results to find the characteristic word

f(n;0,0) = |[(n+1)0+ ¢| — |nb + 9] forn=1,2,---.

of the Beatty sequence. A Beatty sequence is a sequence of the form [n8+4¢|
for fixed real numbers @ and ¢. The homogeneous case ¢ = 0 has been dealt
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with extensively (see for example [3], [4], [5], [8], [10], [11], [12], and [2]
for additional references). The inhomogeneous case ¢ # 0 is also discussed
from several viewpoints (see [5], [7], [8]), but these sources do not necessarily
make it easy to get the actual Beatty sequences. The paper [5] is complete
on the theory, but only the limited periodic case yields Beatty sequences.
The paper [8] provides a very effective description of Beatty sequences, but
regrettably, it is now known that the results do not match the facts (see
the corrected version, [6]).

2. The minimum of the fractional part of =6 + ¢

We first consider how to find an integer « satisfying
min{z6 + ¢} = {k0 + ¢} .
z€Z

When both 6 and ¢ are rational, the problem is not too difficult. But how
should we treat the irrational case? The answer is given in the following
theorem. Using this result, we can find k directly in every case — though
two values must be compared when 6 is irrational.

THEOREM 1. Let 0, ¢ be real numbers, and let p,/q, denote the n-th con-
vergent of 8. Then forn > 2,

. _ 2
Osnigh{xﬂ-l-d)} = {knb+ ¢} < e

n

where Kn = (—1)"gn_1(|g.¢] +t) mod g, and t =0 or (—1)".
When 0 = pp/g. (n>2), {0+ ¢} has period ¢, in x and

. o _ 1.
1351%{1:9 + ¢} = 0315121"{119 + ¢} = {rab + ¢} < P

n

andt=0.

Proof. Set o, = |gn@]. Consider the case 0 # p,/g.. We recall that

2oBicocn< BB g ool L
92 44 3 Q1 an Indn+1 Gy
When n is odd,

<—q£2+x%'—‘+¢<x0+¢<

an n n dn
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To minimize {z0 + ¢}, we need

Iont O 5 m9+¢zw,
Gn qn
Wntom—1 _, o x9+¢<w_
an n

And this is possible since (pn,q,) =1 and 0 < z < gy,.

Now, since (gn—1,Pn—1) is a solution of

PrT — qny = (“‘1)n_1>
= (—1)"gn-10n, ¥ = (—1)"pr—104, is a solution of the diophantine equa-
tion
P — QnlY = —Qp .

Thus, the solutions of this equation are

r= ("l)nqn—ll_(Jn¢J mod g,
Y= ('—1)npn—l I_Qn¢_| mod Dn .

If we find = with 0 < z < g,, we get

kn = (=1)"qn-11gnd] — (-1)"¢n|gn-14] or
kn = (—1)"Gn-11920] — (-1)"gn|gn-1¢] + ¢n -

Therefore, when n is odd and (zp, + an)/gn € Z,

Kn = —Qngn_1 mod gy .

In like manner, when 7 is odd and (zp, + an — 1)/qn € Z,

kn = —(0tn — 1)gn—1 mod gn .

Similarly, when = is even,

T
Pt 00 pprp< 2t g BnEEOFD
n an n an

Thus,
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n'vn n'vn n 1
Lﬂn0+¢J=pn + o, or Pnbn + Oy + ’
qﬂ- Qn

that is
Kn = QnQn-1 O (0n +1)gn—1 mod gy .

When 0 = p, /g, for some n > 2,

ZPn + On <zh+¢< TPn + On _'_l.
qﬂ n q'n
Now
kn = (=1)"ngn-1 mod g,
gives

(xprn + an)/qn € Z.

Remark. If we disallow z = 0 (in order that van Ravenstein’s result [9] is
a particular case), Theorem 1 must be modified. In this case

Ky = _1 n—1 Qn—l } n

{comt=tl,
when 0 < {¢} < 1/q,.

Corresponding results for the maximum can be obtained symmetrically:
One uses the ceiling instead of the floor in the proof above.
COROLLARY. Let 8, ¢ be any real numbers and let p,/q, be the n-th con-
vergent of 8. Then forn > 2

2
0 = {pnb >1-—,
oJax {20+ ¢} = {pnb + ¢} p

where pp, = (—=1)"gn-1(|g¢] +t+1) mod g, andt =0 or (-1)".
When 60 = pn/qn (n > 2), {260 + ¢} has period gn in x and
1
max{zf + ¢} = Oggfh{xo + ¢} ={pb+¢} >1- )

n

and t = 0.

Remark. In the range 0 < z < g, in which z = 0 is disallowed,

Pn = {(-1)"‘1"—_1} n

n

when 1-1/g, < {¢} < 1.
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3. THE MINIMUM VALUE OF ||z + ¢||

Combining the results for minimum and maximum, we get the following
theorem:

THEOREM 2. Let 0, ¢ be any real numbers and let p,/q, be the n-th con-
vergent of 6. Then for n > 2

foin llz6 + ¢l = [1€.0 + ¢l

where &, = (—1)"qn-1(|gn¢} +t) mod g, and t = —1, 0 or 1 if n is odd;
andt =0, 1 or 2 if n is even.

When 6 = pp/q. (n > 2), |20 + ¢|| has period g, in x and
min ||26 + ¢l = min ||z + ¢l = [1£x0 + &Il ;

andt =0 or1l.

Furthermore, if an4+1 = 2, then for any real 6 and ¢ we havet = 0 or
1. And for any real 6 and ¢ and for infinitely many n with n > 2 we have
t=0orl.

Proof. The first two assertions are obvious. It suffices to deal with the case
when n is odd. Then from the first assertion there are three cases, say

Gn—1
SLO) = {— Zn an} Gn ,

gV = { q'; (om - 1)} In,
o= { q';’ (o + 1)} Gn -

We will show that |60 + ¢l > 1670 + ¢|| if antr > 2. Now

(-1)
IECD0 + gl = {ECV0 + g} = (€26 + ¢) — Eobo q+°‘”‘1

p‘n -1 an 1
= — ——9) 13 )+( ——)+—.
(qn ¢ ¢ an gn

1 Pn ) _ a 1
- <—(Z2-0)eV<0 and 0<¢p-—2<—,
Gn+1 (q'n n ¢ Gn o

Since
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it follows that

1 1 _ 2
0<—-— 35 1’49+¢H<5—- (1)

gn n+1 n

On the other hand
€926 + ¢|| = min[{€60 + ¢},1 — {£70 + ¢}]
— (Pn/0n — 0)5,(,0) + (¢ — an/qn), if this value is positive,
"\ @n/tn - OO — (6 - an/gn),  otherwise.

Since
1 DPn ) (0) ( Qln ) 1
—_— < —-|—=—0 + -— )< ,
dn ( n fn ¢ qn Qn+t1
we have )
0 < 678 + ¢l < : (2)
qn+1

From (1) and (2) the fact gn+1 = @n+1qn + gn—1 = 2¢, now yields the
conclusion.

Using Hurwitz’s theorem for infinitely many p./qn, that is for infinitely
many 7

_ 2
< 1€5V0 + ¢l < p

n

1 1

@ V/5qn

we obtain the last part of Theorem 2.

1

and  0< |l€@0 +¢|| < ,
V5an

Remark. In the range 0 < x < ¢y, in which & = 0 is disallowed,

gn—1 qn—1
e R e T

when 0 < {¢} < 1/gpor1—1/g, < {¢} < 1.

4. The third possibility in Theorem 2

If 0 is irrational and an+1 = 1 for some n(> 2), there may be the third
possibility, namely ¢t = —1 when n is odd; ¢ = 2 when n is even. In this
section we describe 6 and ¢ which give this third possibility.
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Once again it suffices to consider just odd n. Again set an = |gnd)]
and E,(f) = —@pn—1(0tn +t) mod gn, where t = —1, 0, 1. Then, the third
possibility occurs if

1S V0+ 6l < 1ED0 + 9ll, 11E6 + ¢l ®3)
But (3) is equivalent to

P + Cp —1 < 1

z0+ ¢ — P
¢ an 2gn
or )
Dn Olp,
—=—0jx>—+\|0——), 4
(‘In ) 2q, (¢ q'n) “)
where z = ,(,-1). Since ¢ — a,,/q, > 0and 0 <z < g, — 1, 6 must satisfy
Pr c
= 0> ——, 5
Gn 2gn(gn — 1) 5)

where ¢ is a constant with 1 < ¢ < 2, which we determine later. Let
an+1 = 1, a,, and a,42 be large positive integers, say L,, and L, 2, respec-
tively for odd n in the continued fraction expansion of §. Then

1 1 1
n — 0= = > )
P O = g g Yt A+ 1/(Lmsz +€)n + @1~ 2(qn— 1)

where 6,41 = [@n+t1, Gny2, ---] and 0 < € < 1. Thus, this 0 satisfies (5).
By comparing with (5), we get

Qn_]- )
1<e<2 <2.
(Qn-H +qn/(Lny2 +¢€)

Since we may take L, as large as we like, the condition on ¢ is

-1
1<c<2(q“ )<2.
n+1

This condition will be sharpened in (8).

We still have to make £ = —gn-1(arn — 1) mod ¢, large enough and
have to make ¢ — a;,, /¢, > 0 small enough to satisfy (4). First, we select z,

and then may choose o, = knpn +1, £ = ¢, — k.. To satisfy the conditions
of (4), the value of k,, must be in the range

_ (1+2{Qn¢})(Qn-1) < gn— gn—1
c - c

kn <gn



394 Takao KoMATSU

Together with the condition for ¢ we get

1Skn<qn__q'n2+1=Qn_QQn—l <_(_121;_'

This condition will be sharpened in (7). We conclude that z is as large as

Qn+1 — qn + Gn—-1
2 2

<z<qg,—1.
Next, we select ¢. We can say that the condition (3) is

SV +an — 1 < 2t +

(-1)g 4+ ¢ —
&n o) o .

where the two fractions are integers. When 57(1_1) = qn — k, we have f,(zo) =
gn — Qn—1— kn since g, > Lngn—1 and given the conditions on k.. Recalling
the definition of a,,, we get

gﬁ <¢< Qn—le_pn—l

7 B —(gn — kn)0 + pn .

This is equivalent to

{22} < (0 < { B2 22— g~ ko)

n

—10 — pn—
= @_lz—pl + (pn — qne) + {kng} b)
whence
0n-160 — Prn-1 1 1
{kn6} 2 (P =420) 2n+1  Gnt1+Gn ©

To see that, we note

1 1 -
_Skn(?ﬁ_)+_<ql__g_”_+£+i<i
an qn qn gndn+1 qn 2Qn

)

whence we have

n— 0_ n-— n— 0—' n—
q—l—zi—l+(pn~qn0)+{kna}={9-——‘—5—-’i——l—(qn— n)o+pn}
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{a—"}=kn(’—”i— )+—1—+{kn0}.
n an an

Among these k,, satisfying (6) we choose k, such that the left hand side of
the inequality defining the range of ¢ is less than the right hand side, so

and

kn(p__ )+—<g-—l—g——l+(])n-‘qu0),

Gn Gn 2
that is,
In—1 1 0n+1 dn )
1<k, <gn— - =(1—-— )¢ —Gn-1 < — —Qn—-1-
< " T = ad) ( 5 )q Un-1 < 75 = Gn-1
(7
When n > 3, it follows from (5) that such k,, exist if we take c as
n 1 2 n
1<—2—(-(-1-————)—<c<£1——1—)<2. (8)
2¢n ~ Qn-1 Jn+1

We remark that 2(g, — 1)/(2¢n — gn-1) is near to 1 and 2(g, — 1)/gn41 is
near to 2 because L,, is large.

When there is a k,, satisfying (7) and

n + 1 10 — D
{knpqn+ }<{q 1 219 L (g n)O},

we can select ¢ as

{lc“np_f"l'} <191 < {gﬂez—# —(gn - kn)f)} - (9)

The 0 and ¢ so selected give the third possibility for odd n. When n is
even, instead of (9) we can choose ¢ as

{%-19 — Pn—1

. -(qn—kn)0}<{¢}<{'—°—"pq"—'1}, @)

n

By these steps, we can always find 6 and ¢ to give the third possibility for
any odd n, or any even n when a,4+1 = 1, by taking L,, and L, , large
enough so that there is an integer k, satisfying the conditions (7) and (9)
(or (9")). Moreover, it is possible to obtain ¢ giving the third possibility
for infinitely many odd (or even) n’s.
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We now show the way to find the next interval such that I,,42 C I,:

Take an increasing sequence of constants {6,} with 0 < §,, < 1/3 for all
positive integers n. For each odd n (> 3) we shall always choose

1 1
’ 6n+1 - 6n, 6n - 6n—l

Ln+2 > Ln > max (L ) and kn < 6nQn ,

where L is an integer with L > 8 and k,, satisfying condition (7). Put

1 1
an={%}+— and Brn = 0y + —, (10)
an an mgn

where using the notation of the ceiling

_ (6L2+8L+2
m=[f 75

and we assume that
a>2/qn and Bn <1-1/2q,. (11)

Then, comparing with (7),

and B, < 1-1/2q, yields (6). Let I, be the interval of (10). Note that if
Iny2 C I, then I, will automatically satisfy condition (11).

We examine the fractional parts of various integer multiples of p,4+2/qn+2
with an eye to combining them to find an integer k, 42 such that

1
{ K2 Dn+2 } b
In+2 Qn+2

is in a subinterval of I,, . First,

o<Pr _Praz Pn_Pnt1 1

an qn+2 an Gn+1 Indn+1 ’

0< {k,,p—"} _ {k,,”"“} < (12)

In Gnt2 Tnt1

S0
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We also have

n 1
{anP +2} _ qn+lpn+2 Pt = ——, (13)
In+2 qn42 n+2
Pry2 Pn42 DPrnt1 Pn42
{ ¢ n+2 } { ( " Gni2 4 In+1 " Gny2
n 1
= — g + s
Qn+19n+2 gn+1
and . .
{q'n— 1 Pnt2 } = + - I ’ (14)
qn+2 On+1 Gni2 Gr+1Qn+2

where the third equality can be obtained by adding the first two. From
(12) and (14) we have

1 1 n 1
< {knp—”}+—— ({(kn+qn-1)p +2}+ )
Qn42 qn an n+2 Qn+2
61,, 1 1 < 6n+1

Qn+1 dn gn+1 Qn+1

<

Now let [ be the non-negative integer satisfying

l+1
< O0n — {(kn+Qn—l)p'n'—+2} < .
Gn+2 In+2

Jn+4-2
Using (13) we get

l 1
O < {(k,, + qn_l)p””} + +
n+2 dn+2  Qni2
n 1
= {(kn + qn_l)p”“} + {lanp +2} +
Jn+42 gnt2 Qn+2

n 1
= {k,,+2p “} + (15)
Jn+2 Qn+2

and

n 1 1
{kn+2p +2} + +
qn42 Qn+2  MGnt2
l 1 1
= {(kn +qn_1)p”+2} + + +
Gn+2 n42  Qni2  MGny2

1
+ < s 16
On+2 mgrn+2 ,Bn ( )

< anp +
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where kn12 = kn + gn—1 + lgn+1 for some [ with

Ont1Gnt2
Qn+1

0L

Now
kntz < (1 +1)gn+1 < bni2gny2-

Having chosen L, 42 and k,+2 we define o, 42 and 3,42 analogously to a,
and G, in (10). In view of (15) and (16) we have I,,42 C I,,.

Therefore,

6=100,1,1, Ls, 1, Ls, ---, 1, Las—1, 1, Lost1, ...]
¢€"'Izi+1CIzi_1C“'CI,5CI3C[O, 1]

give the third possibility for eachodd n =3, 5, ---, 2t -1, 2 +1, ---.
EXAMPLES.

9= ‘/ﬁ;" 4200,1,1,10, 1, 10, -] (= 0.52189893--)

¢ =0.573777...

give the third possibility forn=3, 5, 7, 9, ---.

0=+v35-5=][0, 1, 10, 1, 10, ---] (= 5.91607978---)
¢ = 0.81678 - -

give the third possibility forn =2, 4, 6, 8, ---.

5. The sorting of {z0 + ¢}

We can solve the sorting problem by using the former results. When
0 is irrational, let g, be the denominator of the n-th convergent of 0, as
above. When 6 is rational, let § = p,/q,, where p, and ¢, (> 0) are
coprime. Let ({u;0+ ¢}),j =1, 2, ---, N, be the ordered sequence of
fractional parts. That is, {u1, u2, ---, un} =140, 1, 2, ---, N -1}, and
{uif + ¢} < {u;j+10 + ¢}.

When 4 is irrational and ¢ = 0, the following result is well known:
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LEMMA. When N =gq,, forj=1, 2, ..., g

where Uz = qn—1 if n is odd, uz = gn — gn—1 if N is even.
Proof. This follows immediately from Lemma 2.1 and Theorem 3.3 of [9].
"~ We will sort the fractional part of 6+ ¢, which includes the result above.

THEOREM 3. When N =g, , forj=1,2, -+, gn

wy = {(—1)”;;1({%@ ri—j +1)}qn,

where t = 0 or (—1)™ and is independent of j.

Proof. Set o, = |gn¢p]. When 26 + ¢ is not integer, for each x there exists
an integer ¢ satisfying

-1 i
“<wpn+o;n+t <wpn+an+ <zh+¢

<:1:pn+o;n+t+1 <xpn+o;n+t+2<m.
n n

Let (9 = 2 with 0 < z(® < g, satisfy
zp, + 0 +t=0 mod g, .

Then
{20 + ¢} < {20V0+ ¢} < {2 DO 4 g} < ---.
From Theorem 1 ¢t must be 0 or (—1)".
When z6 + ¢ is integer, there exists x satisfying

ZPn + On =z0+¢.

an

In particular, ¢t = 0 when 6 is rational, or if 0 < ¢ < 1/g,.
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6. Application to the inhomogeneous Beatty sequence

In this section, we introduce the easiest method for getting the inho-
mogeneous Beatty sequences in every case. Indeed, one easily obtain the
sequence by the use our theorems once one knows the corresponding ho-
mogeneous Beatty sequences; see the examples in §7.

Consider the sequence of differences, that is the characteristic sequence
f(m;0,8) =|(n+1)0+¢]—[nb+¢] n=12....
First, let @ be rational. Then, the following theorem is essential.

THEOREM 4.  Let 0 be a rational number, ¢ a real number, and let k be
an integer satisfying

gleig{a:e + ¢} = {k0 + ¢}.
Then for all integer n we have f(n+ k;6,¢) = f(n;0,0).
Proof. Plainly
l(n+K)0+¢| +{(n+K)0+¢} = (n+K)0+ 0 =nb+ KO+ @] + {0+ ¢} .
Because 0 < {(n + k)0 + ¢} — {k0 + ¢} < 1, we have ‘
[n8] = [(n+K)0+ @] — KO+ ).
Since also [(n+1)0] = |(n + Kk + 1) + ¢] — |k + @], the result follows.

Next, we consider the case 6 irrational. The main theorem is Theorem
5, which will follow from Proposition 1 and Proposition 2. The method of
proof is similar to that of the rational case. As seen in the assertions, we
need not necessarily take an integer x which minimizes the fractional part
of 20 + ¢, but it is surely the best way to use such an integer.

ProposITION 1. Let 6 be an irrational number with continued fraction
ezpansion
0= [ao,al,az,- '-],
and let ¢ be a real number. Fori=0,1,2,... denote the convergents of 8
by pi/¢: .
Ifaiy1/gi41 = {kO+ ¢} for a non-negative integer k, then for all integer
n with —¢; +1 < n < ¢; — 2 we have f(n + k; 6, ¢) = f(n;0,0).

This proof depends on the following lemmata:
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LEMMA 1. Let 6 be an irrational number and ¢ any real number. If
Git+1/Giv1 > {k6 + @} for a non-negative integer k, then for every posi-
tive odd integer i

{(gi — qi=1)0 + (kO + @)} > {(q; — qi—1)0},
{gi—10 — (k0 + ¢)} < {qi-10};

and for every positive even integer ¢
{@i-10 + (k0 + @)} > {q:i—10},
{(gi —qi-1)0 — (k0 + &)} < {(g: — q:-1)0} .

Proof. When 1 is odd,

Pi 1 Di 1
i — Qi1)=— =Pi —Pi—1 —— and 0<——-4< .
(@ —a 1) 3 Pe =P q; a qiGi+1

Then,

(a0 + 0+ 0) = {~@-an) (B-0) - 2+ 9]

(]

{(gi — qi-1)8} = {—(Qi ~ Qi-1) (% - 0) - i} )

1 qi
Since i 1
Qi — Qi1
1—-—>{{¢gi—g1)0}>1 - —"—— —
R 10} Gidi1 &

together with
Di 1 1 a1
i — Qi —=0)+=—>———=2>{k0+
@ —a-1) (‘Ji ) % Qi Qi+ { ¢}

the first inequality follows.

When 1 is even,

5 1 i
%’-1?—:%-1—— and O<0—p—< 1 .
q; q; & 4G+

Then,

{gi-10 + (k0 + ¢)} = {qi—l ( - z—) - qi + (k0+¢)} :

2
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{gi-10} = {q'i—l (0 - %) - qii} .

1 e 1
1- = <{gi10)<14+-EL - 1,
qi Qi Qi1 Qi

Since

together with
1 Git1 | G- ( Di )
-_—= ke + + q;—- 0 - )
qi qi+1 quz+1 P ¢} q;
the third inequality is proved.

The second and the fourth inequalities are proved similarly.

LEMMA 2. If ai41/qiv1 = {k0 + ¢} for a non-negative integer k, then for
every integer n with |n| < ¢;,

{(nf+ (k0 + §)} > {nf}.

Proof. First let n > 0. By the result of [9] and the first and the third
inequalities in Lemma 1, Lemma 2 holds for n which maximizes the frac-
tional part when 0 < n < g; for integers ¢ > 2, whence together with the
condition a;y+1/¢i+1 > {k0 + ¢} the lemma holds for the other positive n.

When n = 0, the result is trivial.

Finally, if n < 0, by [9] and the second and the fourth inequalities in
Lemma 1, for 0 < n’ < g;,

{6 — (k6 + ¢)} < (w6} .
Hence, together with
{-nf+(k0+¢)}=1—{n0— (kO +¢)} and {-nb}=1-{nd},
we have the claim.
Proof of Proposition 1. If {kf + ¢} = 0, then for any integer n
Fin+k;0,¢0) = |(n+1)0+ {k6 + ¢}| — [n0+ {kO + ¢}| = f(n;6,0).

By Lemma 2, {nf + (k6 + ¢)} = {nf + {k6 + ¢}} is never located on the
the number line to the left of {nf}. Therefore, if {k6 + ¢} # 0, for each
integer n with |n| < ¢;

{nb + (k0 + @)} — {nd} = {k0 + ¢}.
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This gives
f(n+k;0,¢) = f(n;6,0).

As the inequality of Lemma 2 may not hold for n = g;, there is the
possibility that
f(gi—1+k;0,0) # f(g: — 1;6,0).

PROPOSITION 2. Let 6 be an irrational number with continued fraction
expansion

0= [aO’a1>a'2""])

and let ¢ be a real number. Denote by p;/q; (i = 1,2,---) the i-th con-
vergent of the continued fraction expansion of 0. Let k; be a non-negative
integer satisfying

oJun {zf + ¢} = {ri0 + ¢} .
Ifl > i for an integer i with i > 2, then for all integers n with
—KiSn<g— K —2
we have f(n + k150, ¢) = f(n;6,0).
Proof. This is similar to the proof of Theorem 4.

Now, we combine Propositions 1 and 2 to get the main theorem for an
irrational 6.

THEOREM 5. Let 0 be an irrational number with continued fraction expan-
sion
0= [aOaa'lya‘Zy' ] )

and ¢ a real number. Denote by pi/qi (i = 1,2,---) the i-th convergent
of the continued fraction expansion of 6. Let k; be a non-negative integer
satisfying

i (a0 + 9} = (ki +4}.

If aiv1/qiv1 = {ki0 + ¢} for | > i > 2, then for all integers n with
0<n<q—-2+k,

f(n;0,8) = f(n— £i;6,0).
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Remark. We don’t have to care for the mysterious condition @;41/¢i+1 >

{ki0 + ¢} as long as ai41 > 2 (4 =1—-1,1-2) or i <1 — 3. For, always
ait1/Giv1 = 2/q > {ki + ¢} in these cases.

7. Examples
Let = V2, ¢ = /3. Since

V2=1[1,2,2,...] and q,q2,-..=2,5,12,29,70,169,... ,
by Theorem 1
412
ke =1 (~1) 55[29\/??] .29=20 or
12
Ka = {(—1)4ﬁ |29v/3] + (—1)4)} 29 =3.

From
{20-v2++/3}=0016322--- and {3 -V2+V3} =09746914 -
we get kg = 20.

Next, since by Theorem 5
2
= = 0.0285714- - > {20-v2+ 3},

we have

f(n;v2,V3) = f(n—20;v2,0) for 0 <n <47.
For example, according to the method of Fraenkel et. al. [4], as
f(1;v2,00 =1, f(%v2,00=2 and T =(2,512,29,70,...),
we get

Ty =(12)*,

Ty = (T1, 5)° = (12121),

T3 = (T1,12)* = (121211212112)*°,

Ty = (Th,29)*° = (12121121211212121121211212121)*° .



The fractional part of nf 4+ ¢ and Beatty sequences 405

Furthermore,
F(0;v2,0)=1, f(-1;v2,00=2 and  f(-n6,0) = f(n—1;6,0).
Thus, f(n;v2,v3) for 0 < n < 47, that is f(n; /2, 0) for —20 <n < 27,
is
211212121121211212121121211212112121211212112121,
where the underline indicates the place f(0;+v/2,0).
Let 6 = 36/25, ¢ = v/5. Since
36/25 = [1, 2,3, 1,2] and 41,42,43,44 = 2)779725)
by Theorem 1
Kq = {(—1)42—95125\/@} .25 =20.

Next, by Theorem 4 we have
f(n;36/25,v/5) = f(n — 20;36/25,0) for all integer 7.
For example, according to the method of Fraenkel et. al. [4], as
f(1;36/25,v5) =1, f(2;36/25,v5)=2 and . T =(2,7,9,25),

we get
Ty = (12)*,

Ty = (Th, 7)™ = (1212121)>,
Ts = (T1,9)™ = (121212112)>
Ty = (T1,25)™ = (1212121121212121121212121)>° .

Therefore, f(n;36/25,v/5) forn € Z is
S 1212%2112121212112121212;1212121121212121121212121 ey

where the underline indicates the place f(0;36/25,0) and the double-underline
indicates the place f(0;36/25,/5).

Of course, we can use the form 36/25 = [1,2,3,1,1] to have the same
characteristic sequence.
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